
Timings Matter: Standard Compliant IEEE 802.11 Channel
Access for a Fully Software-based SDR Architecture

Bastian Bloessl∗, Andre Puschmann†, Christoph Sommer∗ and Falko Dressler∗
∗ Distributed Embedded Systems Group, University of Paderborn, Germany

† Integrated Communication Systems Group, Ilmenau University of Technology, Germany
{bloessl,sommer,dressler}@ccs-labs.org, andre.puschmann@tu-ilmenau.de

ABSTRACT
We present a solution for enabling standard compliant chan-
nel access for a fully software-based Software Defined Radio
(SDR) architecture. With the availability of a GNU Radio
implementation of an Orthogonal Frequency Division Multi-
plexing (OFDM) transceiver, there is substantial demand for
standard compliant channel access. It has been shown that
implementation of CSMA on a host PC is infeasible due to
system-inherent delays. The common approach is to fully
implement the protocol stack on the FPGA, which makes
further updates or modifications to the protocols a complex
and time consuming task. We take another approach and
investigate the feasibility of a fully software-based solution
and show that standard compliant broadcast transmissions
are possible with marginal modifications of the FPGA. We
envision the use of our system for example in the vehicular
networking domain, where broadcast is the main communi-
cation paradigm. We show that our SDR solution exactly
complies with the IEEE 802.11 Distributed Coordination
Function (DCF) as well as Enhanced Distributed Channel
Access (EDCA) timings. We were even able to identify
shortcomings of commercial systems and prototypes.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication; C.4.3
[Performance of Systems]: Measurement Techniques

Keywords
SDR; GNU Radio; OFDM; CSMA; IEEE 802.11a/g/p

1. INTRODUCTION
Software Defined Radios (SDRs) have become one of the

most powerful tools when it comes to experimental and proof-
of-concept solutions of new wireless technologies [15]. Even
more importantly, the use of SDR proved hugely beneficial
to general wireless networking research as well. The main

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiNTECH’14, September 7, 2014, Maui, Hawaii, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3072-5/14/09...$15.00.
http://dx.doi.org/10.1145/2643230.2643240 .

advantage is that freely programmable radios provide access
to all data including the physical layer and allow to study
current protocol standards in greater detail, to study new
protocol variants, or even to study completely new protocols.

In this paper, we are interested in the IEEE 802.11 protocol
family, particularly in Orthogonal Frequency Division Multi-
plexing (OFDM)-based physical layers. These are defined
in IEEE 802.11a/g – and also IEEE 802.11p, which has been
designed for Inter-Vehicle Communication (IVC) [2,13].

In the automotive domain, SDRs technology helps to de-
velop a new era of future proof radios. A completely software
driven radio can be updated to next generation communica-
tion technologies and protocols via simple firmware updates.
Given the rather long product cycles in the automotive indus-
try, this may be the only option to keep track with changing
standards or just enable such changes [8].

Following [16], we can distinguish two kinds of SDR ar-
chitectures based on how the physical layer is implemented:
First of all, we have what we’d like to call software-only
solutions. Here, the most common approach is to use a
system like GNU Radio where the complete physical layer
is implemented on a general purpose processor, i.e., a host
PC [6]. This approach gives the user the best flexibility and
also allows even newcomers to the field to quickly set up the
entire communication system. On the other hand, this archi-
tecture does not allow to quickly react on received signals
since streaming the samples to the host PC and decoding on
a CPU running a non-real-time operating system introduces
significant delays and non-determinism expressed in delay
variations [17]. Therefore, conceptually simple tasks like
conforming to Carrier Sense Multiple Access (CSMA) timing
constraints become infeasible.

The second approach is what we call hardware solutions,
where the physical layer is implemented directly on a Field-
Programmable Gate Array (FPGA) [14] or very close to the
hardware as with Digital Signal Processors (DSPs). Using
this architecture, timings are deterministic and delay require-
ments of modern wireless standards can be met, however,
reprogramming the system becomes complex and time con-
suming. Another drawback is that an implementation of a
wireless standard is specific to an SDR platform.

Given the strong need to support SDR-based solutions
especially in the IVC application domain, we investigated
the aforementioned limitations in greater detail.

In many applications, for example in the vehicular domain
using the IEEE 802.11p protocol, broadcasting is the main
communication paradigm. Considering broadcasting only,
we have less timing constraints. In particular, we do not

57

have to cope with dependent transmissions like Acknowl-
edgement Frames (ACKs) or Request/Clear To Send Frames
(RTS/CTS). Timings of our great concern are therefore
Clear Channel Assessment (CCA) and the CSMA backoff
mechanism.

In previous work, we developed a GNU Radio-based trans-
ceiver system for use with the Ettus N210 SDR [4, 5]. We
now extended this work to also perform standard compliant
channel access with minor modifications of the FPGA, while
maintaining all benefits of the software based architecture.
We further implemented Enhanced Distributed Channel Ac-
cess (EDCA) functionality, which is part of the IEEE 802.11e
amendment. Our solution is particularly useful for research
in the vehicular networking context, but also implements
IEEE 802.11a/g functionality and, thus, can also be used for
WiFi.

To verify our channel access mechanism, we conducted an
extensive set of timing measurements and verified fair share
with IEEE 802.11a/g/p Commercial Off-The-Shelf (COTS)
hardware based on a standard Atheros chipset. We were not
only able to show that out SDR solution exactly complies
with the IEEE 802.11 Distributed Coordination Function
(DCF) and EDCA timings but were also able to identify
shortcomings of the ATH5K driver and the Cohda MK2
system.

Our main contributions can be summarized as follows:

• We present a way to ensure standard compliant carrier
sensing for broadcast packets for a software-only SDR
platform.

• We make all the code available1 as Open Source.

• Our CSMA implementation supports both the standard
DCF as well as the EDCA QoS extensions.

• We tested and verified the compliance with Commer-
cial Off-The-Shelf (COTS) hardware and IEEE 802.11p
prototypes.

2. RELATED WORK
It is well known that meeting the latency requirements

of state of the art wireless standards is among the biggest
problems for SDR platforms. Especially the challenges of im-
plementing the IEEE 802.11 protocol have been well studied
in the literature. In this context, we are interested in CSMA
implementations on different SDR architectures.

The possible design space for architectures spans three
subgroups: hardware-based, software-based, and hybrid solu-
tions. Hardware-based solutions implement the entire physi-
cal and MAC layer on top of programmable hardware, such as
FPGAs or DSPs. Their main advantage is the offered perfor-
mance and deterministic timing, but they are expensive (since
the hardware needs to be more powerful) and programming
is complex and time consuming. The WARP [14] platform is
a prominent example that follows this architecture. Recently,
the project has released a IEEE 802.11 Reference Design pro-
viding a standard compliant FPGA implementation of the
IEEE 802.11g standard. This design implements the DCF,
i.e., does not support QoS extensions of IEEE 802.11e, but
is able to meet all timing constraints posed by the standard.

In contrast to hardware-based solutions, software-only ap-
proaches offer a high degree of flexibility. With software

1http://www.ccs-labs.org/projects/wime/

approaches, the whole physical layer is implemented on a
host PC and only some signal processing tasks like sam-
ple rate conversion or channel filters are implemented on
the FPGA. The fundamental challenges are system-inherent
latencies between the host PC and the SDR as well as compu-
tational performance and non-deterministic delays introduced
by running the physical layer on a non-real-time operating
system [16]. Therefore, conventional architectures with USB
or Gigabit Ethernet interfaces are not able to meet the latency
requirements of the IEEE 802.11 [17].

As a consequence, the Sora project [18] has combined a
radio front-end that connects to the host computer via the
high-speed low-latency PCIe bus. This ensures that the
timing requirements of IEEE 802.11 protocol can be satisfied,
even though the physical and MAC layer are implemented on
the host. Sora uses highly optimized threads, look up tables,
process scheduling, and caching of premodulated ACKs to
meet the timing requirements. However, the high degree of
optimization and the fact that the Sora platform is not Open
Source limits its application for prototyping new protocol
variants.

In [10], the authors present a complete IEEE 802.11 DCF
implementation in software, running on the host PC. The
authors show that the implementation exceeds the CSMA tim-
ings as defined by the standard by three orders of magnitude
and, thus, the implementation is not standard compliant.

Hybrid approaches aim at combining advantages of both
hardware and software strategies. The idea is to implement
time critical functionality in hardware to achieve determinis-
tic timing, while leaving the non time critical system parts
in software for higher flexibility. The split functionality ar-
chitecture of Nychis et al. [16] was among the first functional
implementations of the hybrid concept. Their prototype fea-
tured a GNU Radio implementation of a CSMA MAC that
realizes carrier sensing, backoff processing and dependent
packet processing inside the FPGA of an first generation Et-
tus USRP. Recently, [7] presented a similar architecture for
an embedded USRP. However, both approaches do not aim
to implement standard compliant channel access, since both
do not transmit IEEE 802.11 frames, implement a very simpli-
fied backoff algorithm and consequently are not interoperable
with COTS hardware.

In this paper, we follow the split functionality approach
and present a new architecture that allows to implement
standard compliant channel access for IEEE 802.11 broadcast
transmissions.

3. IEEE 802.11 Wireless LAN (WLAN)
Since its initial release in 1997, the IEEE 802.11 Wireless

LAN (WLAN) standard [3] has grown to encompass several
access technologies and many different amendments. In the
context of this paper, we refer to IEEE 802.11 as only the
subset that is directly relevant for our system. Referring to
these sections as the standard amendments that introduced
them, these are

• IEEE 802.11a, the specification of an OFDM physical
layer,

• IEEE 802.11e, the MAC layer amendment defining QoS
enhancements for access prioritization, and

• IEEE 802.11p, which specifies amendments for opera-
tion in the 5.9 GHz Dedicated Short Range Commu-

58

Parameter Value Reference

slot time 13 µs [3, Table 18-17]
SIFS 32 µs [3, Table 18-17]
aCWmin 15 [3, Table 18-17]
TXOP 0 [3, Table 8-106]

Table 1: Selected CSMA timing parameters.

nications (DSRC) band; in particular, specification of
the Outside the Context of a BSS (OCB) mode and
associated QoS parameters.

Furthermore, we restrict the discussion to the broadcast
case, but have an in-depth look. In general, IEEE 802.11
specifies a contention based channel access algorithm, the
well known CSMA/CA, along with an EDCA procedure that
adds support for multiple Access Categories (ACs) to provide
QoS functionalities.

IEEE 802.11 channel access works as follows: Whenever
a station is not sending, it senses the channel to determine
whether the medium is busy. Carrier sensing is divided
in virtual and physical carrier sensing and the channel is
declared busy if either method senses it busy.

Virtual carrier sensing relies on the duration field of over-
heard frames. The sender of a frame may set the duration
field to a timeslot during which the channel is virtually busy.
This timeslot covers the duration of the frame and all its
dependent transmissions, like ACKs following a data frame
or the actual transmission following RTS/CTS.

Physical carrier sensing is divided in preamble detection
and energy detection. The preamble consists of a repeating
pattern that can be recognized even for low energy signals.

Once a frame is detected, the receiver tries to decode the
signal field that follows the preamble. The signal field is
encoded in the most robust modulation and coding scheme
and contains the length and encoding of the following data.
If the receiver is able to decode the signal field, it senses the
channel busy for the duration of the frame (which can be
derived from the data in the signal field), even if the data can
not be decoded or even if the energy level drops. The second
variant of physical carrier sensing is energy detection, where
the channel is declared busy if the received power exceeds a
given threshold. According to the standard, the medium has
to be sensed busy for power levels above −65 dBm.

The output of the carrier sensing module is used by the
CSMA state machine that decides when a frame may be sent.
Considering broadcasts, a station may transmit immediately
if the channel has been observed to be idle for the duration
of an Arbitration Inter Frame Space (AIFS). The length of
the AIFS depends on the AC of the frame and is shorter for
higher priorities. It is defined as an integer multiple of slots
(AIFSN) and based on the Short Interframe Space (SIFS) as
AIFS[AC] = SIFS + AIFSN[AC] · slot time. An overview of
relevant timings can be found in Table 1.

Any station that unsuccessfully tries to access the channel
enters a random backoff period, i.e., it delays sending the
frame. The length of this backoff period, measured in an
integer multiple of slots, is chosen uniformly in the interval
[0; CW]. The upper limit CW of this contention window
starts at CWmin and increases for every unsuccessful (e.g.,
collided) transmission. Like the AIFS, the value of the

AC CWmin AIFSN AIFS

Background aCWmin = 15 9 149 µs
Best Effort aCWmin = 15 6 110 µs
Video (aCWmin + 1)/2− 1 = 7 3 71 µs
Voice (aCWmin + 1)/4− 1 = 3 2 58 µs

Table 2: Default EDCA parameters used for all our
experiments in this paper [3, Table 8-106].

contention window depends on the AC of a frame. CWmin is
very small for high priority frames and larger for lower priority
frames. Thus, a node’s MAC waiting for a free channel for a
packet with high priority (hence, short AIFS and, on average,
lower number of backoff slots) will most likely be able to
access the channel sooner than another station’s MAC that
wants to send a low priority frame.

Furthermore, each AC corresponds to a separate MAC
layer queue, each with its own backoff timer, that compete
for channel access. If multiple queues are trying to access the
channel at the same time, the conflict is resolved internally
using a virtual collision mechanism, where the frame with
higher priority is sent and the other queue enters a backoff.
Note that this is the sole possibility of a detected collision,
since broadcasts are not acknowledged, collisions are generally
not detected and the congestion window remains constant.

Once a frame is sent, the device enters a post-TX backoff
that works similar to the normal backoff procedure. The
post-TX backoff ensures that the device does not capture the
channel and starts sending packets spaced by AIFSs once it
won the contention, potentially causing starvation of other
devices. This mechanism is crucial in order to guarantee
fairness.

In general, the EDCA parameters, i.e., AIFS durations
and the maximum number backoff slots are configured by
higher layers. However, the IEEE 802.11p as well as the
IEEE WAVE [12] and ETSI ITS G5 [9] standard agree on
parameters listed in Table 2. Consequently, we employ this
parameter set for all presented measurements.

Apart from ACs, IEEE 802.11e also introduced the concept
of Transmission Opportunity (TXOP) limits. A TXOP limit
is specified by the AC and defines a time for which a station
can occupy the channel once it won the contention and is
allowed to access the medium. TXOPs were introduced to
solve the well known rate anomaly of IEEE 802.11 [11].

This anomaly arises since the normal DCF provides fairness
on packet level and not on time level, i.e., a station with a
bad connection has to use a more robust encoding, resulting
in a longer frame and, thus, occupies the channel for a longer
time. Therefore, a single station with a bad connection
can considerably degrade network performance. However,
IEEE 802.11p sets the TXOP of all ACs to zero, effectively
disabling the mechanism and falling back to packet based
fairness.

Finally, a notable feature introduced by IEEE 802.11p is
its novel operation mode, the Outside the Context of a BSS
(OCB) mode, in which no authentication or association is
performed by the MAC sublayer. Instead, stations transmit
(and receive) frames with a wildcard BSSID value and, thus,
avoid the need for any signaling prior to exchanging informa-
tion, supporting the high dynamics and short contact times
of vehicular networks.

59

GNU Radio UHD

N210 USRP

VITA

ZPU

FPGA

PHY

CSMA / CCA

Figure 1: Overview of the system architecture.

Component Type

GNU Radio Version 3.7
UHD Version 003 006 001
SDR Ettus Research N210 revision 4
Daughterboard XCVR2450
Xilinx ISE Version 12.3

Table 3: Relevant components of our testbed.

4. CONCEPT AND IMPLEMENTATION
In the following, we detail our implementation, which

extends our Open Source IEEE 802.11a/g/p OFDM WiFi
transceiver [4, 5] with CSMA functionality. The transceiver
is implemented based on GNU Radio on the software side
and on the Ettus N210 on hardware side.

An overview of the system can be seen in Figure 1, where
WIME depicts our physical layer implementation of the WiFi
standard. We follow the split functionality approach and
move time critical functionality, i.e., CCA and backoff logic
into the FPGA while keeping all physical layer processing in
software, maintaining all advantages of a software-only SDR
platform. The most important components of our testbed are
listed in Table 3. While we base our implementation on the
most recent versions of GNU Radio and the USRP Hardware
Driver (UHD), we used an older version of the Xilinx ISE
to compile the FPGA image because we experienced timing
problems when using the most recent version.

To implement CSMA functionality we had to extend all
layers of the system, i.e., our transceiver (implemented based
on GNU Radio), the UHD (used to interface the SDR), the
FPGA image of the SDR, and the firmware of the ZPU soft
core running on the FPGA.

At first, we created a new GNU Radio block that provides
four inputs for the ACs. The sole functionality of the new
block is to tag the data packets with CSMA metadata, i.e.,
AIFS and the random number of backoff and post-TX backoff
slots. Hence, all random numbers are generated on the host.
The tags are propagated through the transmit chain until
they reach the USRP sink block that orchestrates the SDR
through the UHD. Here, the CSMA parameters are extracted
from the annotated tags and added to the VITA 49 header
to make them accessible from within the FPGA. The VITA
49 packet format [19] is used to transport samples between
the host and the SDR.

On the FPGA, the CSMA parameters are used to configure
the CSMA state machine. The samples are buffered until

AIFS

IDLE

AIFS
&GO

SEND

SLOT
free

busy

BACKOFF

Figure 2: CSMA state machine implemented on the
FPGA that controls frame transmission.

the state machine triggers their transmission. Note that
currently we maintain a single queue for all frames on the
host side as opposed to one queue per AC. Multi-queue
support would require to implement queues on the FPGA,
which adds functionality, but does not pose further timing
challenges. Also, the available memory for such queues on
the FPGA is very limited.

Finally, we extended the firmware of the ZPU soft core to
provide a control interface to set data that does not change
per packet, like slot time and the CCA threshold used for
energy detection.

4.1 Clear Channel Assessment
Since virtual carrier sensing is not relevant in the broadcast

case due to the lack of dependent transmission we only have
to consider physical carrier sensing, i.e., preamble and energy
detection. We limited our implementation to energy detec-
tion, since with preamble detection we have to demodulate
and decode at least the signal field on the FPGA. This would
however, require considerable functionality on the FPGA, in-
cluding frame detection, synchronization, demodulation, and
a Viterbi decoder. Having these physical layer algorithms in
hardware would contradict the software only approach and
exceed the resources of the used Ettus N210.

For energy detection, we pipe all samples from the RX
chain to a custom Verilog module and calculate the power
per sample. The power values are averaged over a window
of configurable size and compared to a threshold. If the
average power exceeds the threshold, we report the channel
as busy to the CSMA state machine. The threshold can be
configured over the control channel that we implemented on
the ZPU softcore. For our tests and evaluations we used a
moving average of eight samples, corresponding to a time
window of 0.8 µs at 10 MHz.

4.2 CSMA State Machine
When a frame is to be transmitted, its samples are trans-

fered to the SDR and buffered in memory until the CSMA
state machine triggers its transmission. Each frame is an-
notated with its AIFS duration and random variables for
backoff and post-TX backoff. An overview of the state ma-
chine is depicted in Figure 2. It starts in the Idle state and
remains there until a frame is loaded on the SDR. Once a

60

frame is buffered in the SDR, it switches to the AIFS&Go
state. If the medium is sensed busy while in the AIFS&Go
state, the normal backoff procedure starts by switching to
the AIFS state, otherwise the frame is sent immediately.

We stay in AIFS until the medium remains free for an
AIFS without interruption. Once the medium was free for
AIFS, we switch to the Slot state and start counting down
backoff slots. If the medium turns busy while in the Slot
state we reset the current slot timer and switch back to AIFS,
otherwise we send the frame after waiting for the configured
number of backoff slots. Frame transmission is triggered by
entering the Send state, where we also remain during the
transmission.

Once the frame is transmitted we enter the post-TX backoff,
which does not differ from the normal backoff logic. However,
since we also backoff even though no frame might be buffered,
we added a check just before sending and switch back to Idle
if this is not the case. Hence, the transition from Slot back
to Idle.

5. EVALUATION
Verification and evaluation of our implementation has been

performed in three steps: correct energy threshold for CCA,
timings between consecutive packets, and interoperability
with commercial products and prototypes.

5.1 Energy Threshold for CCA
For energy detection, we have to set a threshold that defines

the power level at which the channel is sensed busy. In our
case, the threshold does not define an absolute power level,
but is expressed in the raw values that are output by the A/D
converter – calibration with a reference device in order to set
the threshold to the power levels defined in the standard is
possible but was not necessary for the following experiments.
We created an application to monitor the output of the
signal power module on the FPGA. With this monitoring
application we set the threshold between the power level of
the noise floor and a frame transmission.

In order to investigate the timing of our implementation,
we used a third SDR to monitor the power level of the chan-
nel over time. We synchronized the clock of the monitoring
device with clock of the device that performs channel sensing.
This way we prevent a relative clock drift between the devices
so that the sampling frequencies of the device that monitors
the power levels and the signal strength module of the de-
vice that performs carrier sensing are in sync. Furthermore,
we set all backoffs to zero so that the channel is accessed
deterministically after the AIFS period.

In a first experiment, we used a second SDR to block the
channel so that the frame transmission is blocked reliably.
The results of this experiment are depicted in Figure 3. Dur-
ing the first 100 µs, the channel is blocked with random noise.
Furthermore, we see that frame transmission is delayed even
after the channels turns free. In this case, we configured the
AIFS to 58 µs, i.e., the inter frame space of the voice AC
and measured a value of 59.8 µs. The additional 1.8 µs can
be well explained by 1 µs RX-TX turn around time of the
MAX2829 transceiver IC [1] that is used on our RF fron-
tend and the 0.8 µs averaging window of the energy detector.
Moreover, this complies with the upper limit of 2 µs defined
in the standard.

We made similar measurements with different inter-frame
spaces to assure that the timing does not drift for larger

po
w

er

time (in µs)
0 100 200

AIFS

59.8us

Noise WiFi Frame

Figure 3: Power measurements to verify AIFS tim-
ing and to determine channel access delay.

values (which it actually did with a more recent version of
the Xilinx ISE) and observed similar results. The constant
additional delay 1.8 µs can be compensated by subtracting
it from the AIFS, resulting in a more precise timing. We
did, however, not compensate for that, since CCA delay
and RX-TX turnaround delays are already considered in the
standard and are part of the calculations for the slot time.

5.2 Inter-arrival Time
As a next step we tested the basic CSMA functionality.

A convenient way to do that is to saturate the channel and
measure the inter-arrival time of frames. If a single device
saturates the channel, the CSMA mechanism is as follows:
the device sends a frame, enters the post-TX backoff and
sends the next frame immediately after the post-TX backoff
– where the post-TX backoff lasts for AIFS plus a random
number of slots between 0 and CWmin. Thus, ideally, the
inter-arrival times are assumed to be discrete and equally
distributed over the CW range.

As receiver we used a Linux PC with a Unex DCMA-
86P2 IEEE 802.11p-capable card.2 This card is based on an
Atheros chipset that is supported by the ath5k Linux driver.
Since there is no IEEE 802.11p stack available yet, we had to
make some changes to the kernel and the driver to achieve
physical connectivity: We extended the regulatory domain
with the Intelligent Transportation System (ITS) channels
in the 5.9 GHz band and, thus, allowed the card to tune to
those frequencies. Furthermore, we had to switch to half rate
mode, i.e., switch from 20 MHz to 10 MHz bandwidth.

In order to measure the inter-arrival time, we extended the
RX interrupt handler of the card with logging functionality.
We configured the SDR to saturate the channel by sending
frames as fast as possible and configured different ACs. The
distribution of the inter-arrival times of the measurements
with the voice and video ACs can be seen in Figure 4.

Each histogram is based on more than 30 000 frames and,
thus, samples of the measured inter-arrival times. The red
dashed lines indicate the slot boundaries where the trans-
missions are expected. Note that in this and the following
histogram we added a constant a offset of 3 µs when plotting
the slot boundaries. This honors RX-TX turn around time
and a slight offset that seems to be introduced by limited
clock resolution of the Linux PC that we used to measure
the inter-arrival time.

We can clearly see that the card waits for the mandatory
AIFS duration plus a random number of slots. This verifies

2http://www.unex.com.tw/product/dcma-86p2

61

AIFS[VO]

Slot
de

ns
ity

AIFS[VI]

inter-arrival time (in µs)

de
ns

ity

0 50 100 150

Figure 4: Distribution of the inter-arrival time when
using the ACs for voice and video.

the slot time, the AIFS duration, the CWmin setting, and
shows that the number of backoff slots is approximately
uniform as expected.

Additionally, the histograms give a good impression about
the accuracy of the implementation. We repeated the mea-
surements for the other ACs and observed similar results
(data not shown).

5.3 Interoperability
In a final experiment, we verified interoperability in terms

of fairness with IEEE 802.11p prototypes. We started with
the Cohda Wireless MK2, which has been used for major
field trials in the U.S. and in Europe.3 It provides an IEEE
802.11p radio implemented on an FPGA that ships with
all the firmware and software of a complete IEEE WAVE
stack; we used firmware revision 4.0.14615. To assert that
we configured the device correctly, we conducted the same
measurements as for the SDR. The results for the MK2 are
plotted in Figure 5 (top plot).

Clearly, the distribution does not correspond with the ex-
pected results. It turned out that the Cohda MK2 does not
implement the post-TX correctly and sends consecutive pack-
ets deterministically after the AIFS period. We configured
different ACs and observed different AIFS, indicating that
the QoS queues are indeed used and parameterized correctly.
However, the post-TX backoff did not work for any ACs. We
are in contact with the technical support of Cohda Wireless,
but there is no solution yet. Since the post-TX backoff is
a crucial part of the CSMA mechanism, especially when it
comes to a saturated channel and since we wanted to sat-
urated the channel for our measurements, we excluded the
Choda MK2 from additional experiments.

Instead, we switched to the Unex cards that we already
used for our initial measurements. However, for the fairness
test physical connectivity is not sufficient: we need standard
compliant and correctly parameterized MAC functionality.
This required further modifications of the ath5k driver. We
had to instantiate and configure the QoS queues, set the slot
time, and the SIFS duration.

With these changes the QoS queues are enabled, but all
packets go to the default queue. For setting the AC per

3http://www.cohdawireless.com/

AIFS[VO] Slot

Cohda MK2

de
ns

ity

SIFS

Unex w/ TXOP

de
ns

ity

AIFS[VO]

Unex w/o TXOP

de
ns

ity

inter-arrival time (in µs)
0 20 40 60 80 100

Figure 5: Distribution of inter-arrival times of Co-
hda MK2 (top) and Unex card with (middle) and
without (bottom) TXOP (voice AC).

packet, we used the Radiotap header. When the WiFi card
operates in monitor mode, the Radiotap header allows to
annotate metadata (like modulation and coding scheme and
signal power) to a frame. We exploited a field that is currently
not used on the TX side to signal the AC to the kernel, where
we put the packet in the corresponding queue.

Since we made major modifications to the driver, we first
validated the changes with measurements of the inter-arrival
time. At first, we observed the distribution depicted in the
center of Figure 5 and realized that the driver sets TXOPs for
certain ACs by default. That means that when a device wins
contention, it uses the channel for the time period configured
as TXOP and sends packets spaced by SIFS during that
time. Only after a TXOP, the device will trigger the post-
TX backoff, indicated by the small bars at the slot boundaries
in the plot. The ratio between packets sent after SIFS and
sent after a post-TX backoff is controlled by the duration of
the TXOP limit.

Following these tests, we explicitly disabled all TXOPs
and repeated the measurements. This time we observed
the expected timing distribution depicted in the plot at the
bottom of Figure 5. Also for the other ACs we observed the
correct distribution. With these tests we know that the AC
categories are working and that the AIFS, SIFS, slot time,
and CWmin are configured correctly.

With the validated Unex devices, we are able to conduct
fairness measurements as a final step towards ensuring the
correctness of the implemented algorithm. We use one PC
with a Unex card as monitoring device that logs all frames
and (in the first setup) saturate the channel with a SDR and
a Unex and (in the second setup) with two Unex devices.
The average throughput over time of both configurations is
shown in Figure 6: we observe perfect fairness in both cases.

62

SDR vs. Unex

0
10

0
20

0
pa

ck
et

s
(p

er
s)

SDR
Unex 1

Unex vs. Unex

0
10

0
20

0
pa

ck
et

s
(p

er
s)

0 5 10 15 20
time (in s)

Unex 1
Unex 2

Figure 6: Throughput / fairness when saturating the
channel with two devices (Unex and SDR).

6. CONCLUSION
We presented a method that allows for standard compliant

channel access for broadcast transmissions for a software-
based SDR architecture. Our implementation follows the split
functionality approach, where only time critical functionality
such as carrier sensing and CSMA logic is implemented in
hardware. All remaining physical layer processing remains
implemented as software on a host PC.

This architecture preserves the ease and flexibility of a
software implementation but at the same time allows for stan-
dard compliant channel access for broadcast transmissions.
To demonstrate this, we studied the broadcast case in great
detail and presented an Open Source implementation, which
has been validated with an extensive set of measurements.
This highlights the feasibility of the approach and shows that
our implementation is able to meet all timing requirements
of the standard. Furthermore, we showed its interoperability
with IEEE 802.11p prototypes, as its transmissions occupy
exactly an equal fair share of the wireless channel.

We believe that this work is particularly helpful in the
vehicular context where broadcast is the primary commu-
nication paradigm. The availability of our implementation
extends interoperability and standard conformance of SDRs
from physical layer up to MAC and application layer.

7. REFERENCES
[1] MAX2828/MAX2829. Datasheet Rev 0, Maxim

Integrated, October 2004.

[2] Wireless Access in Vehicular Environments. Draft
Standard P802.11p/D10.0, IEEE, January 2010.

[3] Wireless LAN MAC and PHY Specifications. Std
802.11-2012, IEEE, 2012.

[4] B. Bloessl, M. Segata, C. Sommer, and F. Dressler. An
IEEE 802.11a/g/p OFDM Receiver for GNU Radio. In
ACM SIGCOMM 2013, 2nd ACM SIGCOMM
Workshop of Software Radio Implementation Forum
(SRIF 2013), pages 9–16, Hong Kong, China, August
2013. ACM.

[5] B. Bloessl, M. Segata, C. Sommer, and F. Dressler.
Towards an Open Source IEEE 802.11p Stack: A Full
SDR-based Transceiver in GNURadio. In 5th IEEE
Vehicular Networking Conference (VNC 2013), pages
143–149, Boston, MA, December 2013. IEEE.

[6] E. Blossom. GNU Radio: Tools for Exploring the Radio
Frequency Spectrum. Linux Journal, (122), June 2004.

[7] P. Di Francesco, S. McGettrick, U. K. Anyanwu, J. C.
O’Sullivan, A. B. MacKenzie, and L. A. DaSilva. A
Split MAC Approach for SDR Platforms. IEEE
Transactions on Computers, 2014. to appear.

[8] F. Dressler, H. Hartenstein, O. Altintas, and O. K.
Tonguz. Inter-Vehicle Communication - Quo Vadis.
IEEE Communications Magazine, 2014. to appear.

[9] ETSI. Intelligent Transport Systems (ITS); Access
layer specification for Intelligent Transport Systems
operating in the 5 GHz frequency band. EN 302 663
V1.2.1, ETSI, July 2013.

[10] J. R. Gutierrez-Agullo, B. Coll-Perales, and
J. Gozalvez. An IEEE 802.11 MAC Software Defined
Radio Implementation for Experimental Wireless
Communications and Networking Research. In IFIP
Wireless Days Conference 2010, pages 1–5, Venice,
Italy, October 2010. IEEE.

[11] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and
A. Duda. Performance Anomaly of 802.11b. In 22nd
IEEE Conference on Computer Communications
(INFOCOM 2003), volume 2, pages 836–843, San
Francisco, CA, March 2003. IEEE.

[12] IEEE. IEEE Standard for Wireless Access in Vehicular
Environments (WAVE) - Multi-channel Operation. Std
1609.4, IEEE, February 2011.

[13] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk,
B. Jarupan, K. Lin, and T. Weil. Vehicular Networking:
A Survey and Tutorial on Requirements, Architectures,
Challenges, Standards and Solutions. IEEE
Communications Surveys and Tutorials, 13(4):584–616,
November 2011.

[14] A. Khattab, J. Camp, C. Hunter, P. Murphy,
A. Sabharwal, and E. W. Knightly. WARP: A Flexible
Platform for Clean-Slate Wireless Medium Access
Protocol Design. ACM SIGMOBILE Mobile
Computing and Communications Review, 12(1):56–58,
January 2008.

[15] J. Mitola. The Software Radio Architecture. IEEE
Communications Magazine, 33(5):26–38, May 1995.

[16] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, and
P. Steenkiste. Enabling MAC Protocol
Implementations on Software-Defined Radios. In 6th
USENIX/ACM Symposium on Networked Systems
Design and Implementation (NSDI 2009), pages
91–105, Boston, MA, April 2009. USENIX.

[17] T. Schmid, O. Sekkat, and M. B. Srivastava. An
Experimental Study of Network Performance Impact of
Increased Latency in Software Defined Radios. In 2nd
ACM International Workshop on Wireless Network
Testbeds, Experimental evaluation and Characterization
(WiNTECH’07), pages 59–66, Montréal, Québec,
Canada, September 2007. ACM.

[18] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang,
Y. Zhang, H. Wu, W. Wang, and G. M. Voelker. Sora:
High Performance Software Radio Using General
Purpose Multi-core Processors. Communications of the
ACM, 54(1):99–107, January 2011.

[19] VCO. VITA Radio Transport (VRT). Std 49.0, VITA,
2009.

63

