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Abstract

Wireless sensor networks (WSN) are composed of

battery-driven communication entities performing multiple,

usually different tasks. In order to complete a given task,

all sensor nodes, which are deployed in an ad-hoc fashion,

have to collaborate by exchanging and forwarding mea-

surement data. We define the behavior of the overall sensor

network based on the parameters lifetime and functional

density. The functional density describes the distribution

of all necessary tasks in a given geographical area. The

lifetime is primarily given by the time each task is success-

fully performed by at least one node, i.e. the functional den-

sity of all necessary tasks. Nodes can become unavailable

due to insufficient remaining energy. We assume that sen-

sor nodes can be reconfigured or reprogrammed by a mo-

bile robot system. There are various reasons for consider-

ing robots for this reconfiguration, e.g. reliability, security,

and deployment issues. In this paper, we evaluate the ad-

vantages of exploiting reconfiguration and reprogramming

schemes WSN using mobile robots. The primary objective

is to increase the lifetime of the overall network. This goal

is achieved by optimizing the functional density of hetero-

geneous tasks. Based on a developed simulation model, we

discuss the advantages and performance characteristics.

1. Introduction

The research on wireless sensor networks (WSN) has

become a major research area during the last couple of

years [8]. Especially the characteristic capabilities of

WSN, such as the number of available resources (en-

ergy, processing speed, storage), distinguish sensor net-

works from other ad hoc networks. Regardless of these re-

source restrictions, WSN are exposed to requirements such

as increased lifetimes and difficult environmental condi-

tions [7]. Many aspects have already been investigated [2],

e.g. self-organization issues [11], the interaction of sen-

sor/actuator networks [1], and energy-aware task allocation

schemes [10], while others are still work in progress. For

example, the deployment of nodes that will build an ad hoc

sensor network is an open problem. Basic deployment pro-

cedures were investigated in [13]. More sophisticated ap-

proaches have been identified: usually, optional mobility is

exploited to optimize the initial deployment [15,19,20]. Es-

pecially, the use of mobile robot systems leads to optimized

deployments [4]. Basically, all these approaches try to op-

timize the coverage of a given homogeneous WSN under

different objectives such as energy constraints or network

lifetime.

The consequential next step is to analyze the behavior

of a heterogeneous sensor network. In the context of this

paper, we understand the term heterogeneous as the possi-

ble co-existence of similar sensor nodes with different pro-

grammings. This constraint can be easily relaxed by con-

sidering a number of variants of sensor nodes that can fulfill

similar tasks under different restrictions.

In this paper, we concentrate on the optimized lifetime

of a pre-deployed sensor network by considering the func-

tional density and objective-driven reprogramming of indi-

vidual sensor nodes [12]. Functional density is a measure

for the dispersion of the available programs in a given sen-

sor network, i.e. their heterogeneity compared to the loca-

tion of the particular nodes and, therefore, an enhanced def-

inition of coverage by means of functional diversity. Then,

the lifetime of a sensor network can be estimated by moni-

toring the minimum functional density in all relevant areas.

Similar to other approaches that try to increase the cover-

age in a WSN, we consider the employment of mobile robot

systems. Nevertheless, we do not concentrate on re-locating

sensors but on reprogramming them. The performance gain

can be deduced by evaluating the functional density over

the time and examining different deployment strategies and

mobility models. We implemented a simulation model in

OMNeT++ [18] to perform an in-deep analysis of the pro-

posed methodology. To produce statistically significant re-

sults, simulation control techniques were applied to all our

simulations.

The contributions of this paper may be summarized as



follows. Lifetime and functional density as key character-

istics of WSN are described. The possibilities of exploit-

ing mobile robot systems to increase the functional den-

sity in a WSN are motivated and discussed. A simulation

model is presented that allows multiple performance stud-

ies in common ad hoc and sensor networks including mobile

robot systems. The functional density as a key parameter

to heterogeneous sensor networks is analyzed under differ-

ent conditions (number of robots, pre-deployment strategy,

sensor location). We obtain statistically significant results

by evaluating multiple setups with multiple runs.

The remainder of the paper is organized as follows. Sec-

tion 2 introduces the scenario an application domain. The

methodology to estimate lifetime and functional density are

discussed in section 3. The developed simulation model is

depicted in section 4 followed by some measurement results

in section 5. Finally, section 6 concludes the paper.

2. Scenario

Basically, we consider the following scenario: a num-

ber of sensor nodes are deployed over a given area. These

sensors build a stationary sensor network, i.e. they cannot

move or otherwise change their position. The overall ap-

plication expects a number of different tasks to be simul-

taneously fulfilled by all nodes. Therefore, all nodes must

be differently programmed in order to achieve this demand.

Sensors nodes can be reprogrammed at any time by a mo-

bile robot system (if it is within the communication range

of the node) but a node can only run one program at a time.

This behavior is usual for embedded sensor nodes due to

their processing and memory restrictions.

Due to the possible heterogeneity of hardware platforms

and the low resources in terms of processing power, avail-

able memory, and networking capacities, new approaches

for efficient software engineering are needed. An overview

to such issues in sensor nodes is provided in [9]. Culler and

coworkers describe the necessity for network-oriented soft-

ware architectures. Issues on the questions of how to con-

figure, reconfigure, program, and reprogram networked em-

bedded systems such as sensor nodes are discussed in [14].

Currently, we are investigating methods for adaptive re-

configuration of sensor nodes using mobile robot systems.

Two separate goals should be achieved using these tech-

niques: calibration of sensor hardware and reprogramming

based on changes in the environment. In order to address

these issues, we apply profiling mechanisms as described

in [12].

The use of mobile robots for reconfiguring single sensor

nodes and, finally in a global context, larger ad hoc sensor

networks has many advantages. For example, the robot sys-

tems usually have much more available resources and can

store and maintain software modules needed by various sen-

sor nodes. Additionally, applications like sensor calibration

can be done only locally. Calibration means to use expen-

sive high quality sensors attached to the few robot systems

to verify much cheaper sensors distributed in the field. We

discovered that such cheap sensors need a recalibration in

regular intervals.

A possible application domain for WSN assisted by mo-

bile robots is agriculture. Imagine an agricultural setting,

for example a vineyard or a potato field, where numer-

ous sensor nodes are deployed within the area. The sensor

nodes are capable of measuring humidity, nutrient content

of the soil, presence of pests, and maybe even the degree of

ripeness of the fruits. They can also transmit the collected

information to a base station, possibly using other sensor

nodes as routers on the way. The base station can be conve-

niently located off the field (see [3, 5, 6] for information on

real-world deployments of such systems). It is intuitive that

in each sector (i.e. potato bed or row of vines) there has to

be a minimum number of each of the different sensor types

for the system to work properly.

This in itself could lead to a reduction of the workload

of the farmer, as well as improve the farming decisions by

providing a good information base. However, due to the

manual actions still required, and due to the necessity of

replacing the node batteries from time to time, the system

still has room for improvement. This improvement can be

gained by introducing mobile robots with the following ca-

pabilities. While driving around the field or vineyard, they

can monitor the distribution of the different sensors to rec-

ognize sensor failures (caused by battery depletion or hard-

ware failures), reprogram nodes in a sector to cover the

tasks of failed nodes, inductively recharge depleted batter-

ies, and supply water, pesticides, herbicides or fertilizer to

those areas (sectors) that currently have need of them.

In that way, the workload for the farmer could be greatly

reduced, while at the same time augmenting the quality of

the farm output because the necessary measures are taken

immediately without the delay introduced by humans (e.g.

robots don’t sleep!).

3. Methodology

In the previous section, we explained the necessity and

the principle behavior of robot-assisted reprogramming of

sensor networks to increase functionality and network life-

time. Here, the basic measures for the optimization are dis-

cussed in more detail. Basically, the lifetime of the overall

network is the basis for all optimizations. Nevertheless, we

cannot simply extract network lifetime from the lifetime of

individual nodes. Also, the coverage as defined in most ref-

erences in terms of covering each point in the network with

at least one sensor is not an appropriate measure.

In order to cope with the new demands, we define func-



tional density as the primary parameter for measuring the

grade of operation, i.e. the lifetime of the network. Let

S be the number of available, i.e. running sensor nodes.

Then, we can define N(S) being the global number of avail-

able sensors and Na(S) the global number of nodes running

program type a. Let Q be the size of the area in which the

sensors are deployed. Based on these parameters, we can

calculate the overall, i.e. global, functional density Fa(S)
of program a as follows:

Fa(S) =
Na(S)

Q
(1)

In most application scenarios, the global characteris-

tics of a WSN are insufficient to describe the functional-

ity. Therefore, we need to arrange the working area Q into

smaller areas n (squares) of size Q

n
each. Then, we can

define the number of sensor nodes running a particular pro-

gram a in each sector as N i
a(S) as shown in figure 1. Thus,

we can define the functional density F i
a(S) of program a in

sector i as follows:

F i
a(S) =

N i
a(S)

Q/n
(2)
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Figure 1. Parameters for calculating the func-
tional density

Now, we are ready to define the lifetime of the network in

terms of operability. The network is operable, if the func-

tional density for each program a and each sector i exceeds

a predefined threshold Ta:

∀i : ∀a : F i
a(S) > Ta (3)

Therefore, the network lifetime can be defined as the sum

of all time periods where the previous condition holds. In

the following section, we provide a simulation model that

was used to evaluate the approach.

4. Simulation Model

We used the discrete event simulator OMNeT++ [18]

(version 3.2) to build our simulation model. Additional

modules from the INET framework (version 20050922)

were used for modeling wireless transmissions and mobil-

ity.

The basic building blocks of our model are the nodes in

the network. We distinguish three types of nodes, namely

sensor nodes, robots, and base stations. Each of the node

types is composed of multiple modules that represent all el-

ements of the protocol stack, applications, node mobility,

and node batteries. Figure 2 displays an exemplary network

setup. It contains 50 sensor nodes, the white lamp indicat-

ing a particular programming. A base station in the middle

of the area and a mobile robot denoted by the penguin on the

lower right complete the setup. The channel control mod-

ule on the left is an INET module responsible for managing

wireless transmissions, and the analysisProfiling module is

a collector for statistical data.

Figure 2. View of the network in the model

4.1. Protocol Stack

Nodes can exchange messages over the air. The physi-

cal layer model has to take care of the transmission dura-

tions, noise on the channel, and all collisions or other cor-

ruptions of messages. The model employs the 802.11 phys-

ical layer contained in the INET framework, modified to

record a number of packet loss statistics. We also use the

corresponding 802.11 mac layer to avoid side effects (like

long transmission delays) that would result from the use of

a more energy efficient protocol that puts the node to sleep

periodically.

The routing protocol AODV was implemented follow-

ing RFC 3561 [17]. Two timeouts had to be adjusted to

take the relatively slow radio operations in a WSN into ac-

count. The ”Hello Timeout”, i.e. the period after which



each node sends a short message to its neighbors, was incre-

mented from 1 to 10 seconds. The ”Active Route Timeout”,

i.e. the period after which a previously active route is con-

sidered as expired and no longer used, was also multiplied

by 10, resulting in a 30 second timeout in our model.

4.2. Application

Each of the three node types has its own application

model. The base station represents a packet sink for all

sensor data in the network. It records statistics on message

delays and afterwards simply discards all incoming packets.

The robot application is responsible for reprogramming

sensor nodes based on the mechanisms described in the pre-

vious section. To simplify the model, the robot does not

collect information about its environment, but has global

knowledge about the positions, current programs, and bat-

tery powers of all the sensor nodes, as well as its own po-

sition. As the robot can only reprogram nodes within its

communication radius and uses only local information to

figure out which nodes to reprogram in the envisioned ap-

plication scenario, the global knowledge could be replaced

by the robot actively inquiring all necessary details from

the surrounding nodes. Two reprogramming strategies are

available to the robot. First, a node can be picked randomly

from all qualifying nodes each time a reprogramming is

considered necessary. Secondly, the node with the greatest

amount of remaining energy among the qualifying nodes

can be chosen. A node is qualified for reprogramming if it

is within the robot’s communication radius and if there are

enough instances of its current program a in the robot’s ra-

dius so that the removal of one instance would not reduce

the number of instances below the threshold Ta.

The modeled sensor applications have two tasks. The

first one is to listen for messages from the robot indicating

a reconfiguration of the node and to perform the reconfig-

uration. The second task is to model the behavior of the

current program. We model this behavior using the two

parameters frequency and permanent energy consumption.

The frequency with which sensor data have to be sent to the

base station and the additional energy consumption indicat-

ing how expensive it is process the data depend on the par-

ticular program. We have defined three different programs

Pa for the simulations. The first one, P0, sends one mes-

sage every 60 seconds and has no additional energy usage.

The second program, P1, has to send a new sensor reading

every 10 seconds, but still has no additional energy usage.

The third one, P2, again sends messages every 10 seconds,

but also has an additional energy consumption of 5000 mA.

All message frequencies are exponentially distributed with

the given mean value. The destination of all sensor readings

is a base station placed in the middle of the simulation area.

4.3. Mobility

Two different mobility models were employed in our

simulations to characterize possible movements of the mo-

bile robots. In the first model, the robot moves randomly

according to the Random Waypoint mobility model. In the

second model, called Rectangle mobility model, the robot

may only move along a fixed rectangular path inside the

simulation area. In both cases, the robot speed was fixed at

0.7 m/s, which is an appropriate speed for the chosen area

of 200x200m. Additionally, it corresponds to the maximum

speed attainable by the ”Robertino” robots used in our Labs.

Although the sensor nodes remain stationary through-

out the simulation, a special ”static” mobility model is ap-

plied to them, so that the node positions can easily be ob-

tained and the model remains extensible for future simula-

tions with mobile nodes. There are two variants for node

placement: in random placement (RAND), each node inde-

pendently picks x and y coordinates which are uniformly

distributed between 0 and 200. The second method is

grid placement (GRID), where the nodes are placed in an

equidistant grid inside the simulation area.

4.4. Battery

A battery model has been developed to account for the

usage of energy by the sensor nodes. Just as in a real sen-

sor node, there are several consumers that need energy to

operate. The main consumer is the radio, but processor, a/d

converters, and sensors also consume some amount of en-

ergy. The physical layer monitors the current state of the

node radio (sleep, idle, receive, or transmit). The energy

used by the radio is calculated from the time spent in each

of the states. Average consumptions of the typical radio

states have been taken from [16]. As the exact state of the

node processor at each point in time is hard to determine

in a simulation, we make the simplifying assumption that

the processor is active whenever the radio is receiving and

transmitting, and inactive otherwise. In addition to the de-

tailed accounts for energy drain by the radio and processor,

the other consumers are combined to form a third consumer

that consumes a fixed but freely configurable amount of en-

ergy regardless of the current operations of the node. In our

model, battery depletion is the sole cause for node failures.

5. Measurements

All simulation runs were conducted on a simulation area

of 200x200 meters. In addition to the sensor nodes and

robots, exactly one base node was placed in the middle of

the simulation area. The communication radii of all nodes

were fixed at 35 m. To reduce the simulation time, all sen-

sor nodes had a battery with a capacity of only 1 mAh. To



determine the operability of the network, four sectors were

used with a threshold of Ta = 2 with (a = 0, 1, 2). The

duration of each replication run was fixed at 2100 seconds

as most of the sensor batteries are depleted by that time. Ta-

ble 1 gives an overview over all parameters that were varied

in our simulations.

Number of robots 0, 1, 3

Number of sensors 50, 100

Initial deployment Program 0, random program

Node placement random, grid

Reprogramming strat-

egy

Random node, node with

most energy

Mobility module Random Waypoint, Rectangle

Table 1. Variable simulation parameters

A variety of statistical data is collected during the sim-

ulations. These include communication statistics (like the

number of messages sent/received/dropped and end-to-end

delays), energy statistics, node positions, mobility traces,

operability statistics, and the distributions of programs.

These data enabled us to analyze the performance of the

network and the robots, especially in terms of operability

as defined in this paper, but also in terms of classical per-

formance measures like end-to-end delays and packet loss

statistics.

5.1. Random Deployment

We first analyze the network operability with randomly

programmed nodes. Figures 3 and 4 depict the mean time

when the network becomes operational for the first time

and the percentage of the complete simulation time during

which the network is operational. The corresponding statis-

tics have been summarized in tables 2 and 3. All setups

compared in the figures contain 50 randomly placed sen-

sor nodes. The figures show the differences between setups

with none, one, and three robots and between the two re-

programming strategies. It can be seen that the mean time

of initial operability decreases with the number of robots

employed. The results of replications where the network

did not become operational have not been included in the

graphics. Instead, a column has been added to table 3 to

show the percentage of left-out replications. This explains

why the setup with no robots seems to do best in being first

operable at zero seconds in every case: either the network

is operable from the start or not at all, and the ”not at all”-

cases (which are 65% of all replications) have been left out

as described. Further, figure 4 shows that the increase in

total operational time is greatest when one instead of zero

robots is used. There is still an increase when using three

instead of one robot, but a comparatively small one.
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Figure 3. Times of first network operability
(seconds), RAND

Mean Max

no robot, Energy 0 0

no robot, Random 0 0

1 robot, Energy 159.18 846.03

1 robot, Random 89.37 705.01

3 robots, Energy 69.58 345.02

3 robots, Random 62.6 345.01

Table 2. Times of first network operability
(seconds), RAND

It can also be seen that the energy-oriented reprogram-

ming strategy gives only a little improvement (in the case of

one robot) and none at all (in the case of three robots) com-

pared to the purely random strategy. The performance dif-

ference between the Random Waypoint and Rectangle mo-

bility models is not significant in this case and was therefore

not included in in this paper.

Figures 5 and 6 feature the same setup as above, but with

nodes placed on a grid inside the simulation area. The re-

sults are very close to those with random deployment which

means that the deployment strategy does not significantly

influence the performance of the robots.

The only disadvantage of the use of mobile robots dis-

cernible so far is a slightly higher usage of energy in the

sensor nodes resulting in a small decrease of node life-

times. In the cases with 50 nodes in the simulation area,

this is negligible compared to the gain in operable lifetime

of the whole network. However, when analyzing the sce-

narios with 100 nodes in the simulation area, it becomes

evident that the robots can even decrease the operable life-

time if the network is very dense. In a setup with 100 nodes

randomly placed and randomly programmed, the operable
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% never

operable

Min Mean Max

no robot,

Energy

65 0 31.34 35.28

no robot,

Random

65 0 31.34 35.28

1 robot,

Energy

0 49.5 84.26 86.14

1 robot,

Random

5 0 82.85 82.85

3 robots,

Energy

0 81.83 88.1 89.88

3 robots,

Random

0 88.65 88.85 91.98

Table 3. Percentage of network operable time,
RAND

lifetime without robots is above 86% and degrades to 84%

and 85% with one and three robots, respectively.

5.2. Uniform Deployment

The next step is the analysis of the network behavior with

a uniform node deployment, where each node starts with the

same program (in the simulations, we used P0 as defined

in the previous section). This measurement corresponds to

the envisioned deployment strategy in real scenarios. Ob-

viously, the comparative data for a scenario without robots

yield very bad results: the network will never become oper-

able in its entire lifetime. Figures 5.2 and 5.2 show the mean

time of first operability and the percentages of network op-

erability for the scenarios with one and three robots, with
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Figure 5. Times of first network operability
(seconds), GRID

summary statistics shown in tables 4 and 5. In both cases,

50 nodes have been randomly placed in the simulation area.

Minimum Mean Maximum

1 robot 372.01 993.09 1658.02

3 robots 37.01 281.43 809.5

Table 4. Times of first network operability
(seconds)

% never

operable

Minimum Mean Maximum

1 robot 5 28.49 42.75 47.02

3 robots 0 74.37 76.48 87.12

Table 5. Percentages of network operable
time

The times of first operability increase from never with no

robots to a mean of about 1000 seconds with one robot and

less than 300 seconds with three robots. The percentage of

operable time also increases rapidly, from about 40% with

one robot to more than 75% with three robots. This is of

course closely related to the times of first operability: the

earlier the network becomes operable, the longer can it stay

operable during its remaining lifetime. The same qualitative

results hold when the nodes are placed in a grid instead of a

random deployment. Tables 4 and 5 show the minimum and

maximum values as well as the mean for the two measures.

Figure 8 shows the differences in the program distribu-

tions over time when employing one or three robots. The

robots move according to the Random Waypoint mobil-
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ity model. Program traces from 20 replications have been

plotted in each graph. Both graphs depict a scenario with

50 randomly placed nodes all starting with the same pro-

gram. Thus, the starting program is initially present on all

50 nodes. In both scenarios, the robot(s) immediately start

reprogramming nodes and succeed to establish operability.

However, it is obvious that the single robot takes longer for

this task than the three robots, and that it has a lot more

trouble in keeping the network operable. The operability

established by three robots seems to be a lot more robust

and stable.

It must also be noted that scenarios with three robots

have an advantage towards the end of the network lifetime,

as their chances to be at the right spot when a node fails

are much higher and thus the time until re-establishing op-

erability by reprogramming another node is reduced.

6. Conclusion

In this paper, we depicted an application scenario for het-

erogeneously programmed sensor nodes. Mobile robot sys-

tems were employed to perform reconfiguration and repro-

gramming tasks in order to increase the lifetime and reliabil-

ity of the overall system in terms of functional density. We

developed a simulation model to verify our hypothesis that

the WSN can essentially profit from robot-assisted repro-

gramming. The primary purpose of the simulation model

is to evaluate the methodology by analyzing time during

which the network is considered operational, i.e. during

which the functional density exceeded some given thresh-

old. In order to show the relevance of the methodology,

we investigated different mobility models, different deploy-

ment strategies, and different node locations. We executed

1
 r

o
b
o
t

3
 r

o
b
o
ts

0
2
0
0

4
0
0

6
0
0

8
0
0

993.09

281.43

1
 r

o
b
o
t

3
 r

o
b
o
ts

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

42.75

76.48

Figure 7. Times of first network operability
(left) and percentage of time network was op-
erable (right), RAND

0 500 1000 1500 2000

0
1

0
2

0
3

0
4

0
5

0

Program frequencies over time  1 robot

Time [s]

P
ro

g
ra

m
 i
n

s
ta

n
c
e

s

0 500 1000 1500 2000

0
1

0
2

0
3

0
4

0
5

0

Program frequencies over time  3 robots

Time [s]

P
ro

g
ra

m
 i
n

s
ta

n
c
e

s

Figure 8. Program distributions over time,
Random Waypoint mobility

a reasonable number of simulation experiments to obtain

statistically significant results.

Finally, we have shown that our strategy of employing

mobile robots to reprogram sensor nodes generates signifi-

cant gains in network operation time if the network distri-

bution is not too dense. We have also shown that the de-

ployment of the sensor nodes can be simplified by initially

equipping each node with the same program and leaving

the programming of the network to the mobile robots. In

summary, it can be said that the proposed method achieves

optimized results in terms of operability and increase of the

functional density.
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