
Dynamic Software Management on BTnode Sensors
Falko Dressler, Moritz Strübe, Rüdiger Kapitza and Wolfgang Schröder-Preikschat

Dept. of Computer Science, University of Erlangen-Nuremberg, Germany
Email: {dressler,kapitza,wosch}@informatik.uni-erlangen.de

Abstract—Efficient software management is one of the great
challenges in sensor networking. The main objective is to han-
dle heterogeneity and dynamics. Based on recently developed
architectures such as our profile-matching approach, decisions
can be taken on a higher level about which software module to
run on which sensor node. Going to the physical network, the
idea is still to replace the complete binary image of the sensor
node application. This process is highly resource expensive. We
developed a system that allows to add, to remove, and to replace
single modules on a running sensor node without restarting the
node. Additionally, the entire kernel can be replaced. One of the
most prominent features is the ability to keep the local state of
the node, i.e. variables as well as dynamically allocated memory
and to restore it after replacing the module.

I. INTRODUCTION

Sensor networks still represent a growing and challenging
research domain [1], [2]. With some first real-world applica-
tion scenarios such as habitat monitoring [3] and precision
agriculture [4], open issues can continuously be identified
and challenged, and appropriate solutions can be evaluated.
Many challenges, such as energy efficiency, security, and self-
organization, have been identified in this area [5], including
also software management in sensor networks [6], [7].

According to Han and co-authors [7], software management
in sensor networks consists of three fundamental components:
the execution environment at the sensor node, the software
distribution protocol in the network, and the optimization of
transmitted updates. We concentrate on software management
techniques for sensor networks that are dynamic in terms
of availability, mobility, and current application demands. In
order to support heterogeneous hardware platforms and to
address issues such as the low resources in terms of processing
power, available memory, and networking capacities (sensor
nodes are often able to run a single task only) [8], new
approaches for efficient software engineering are needed. An
overview to the issues that are specific for sensor nodes is
provided by Culler et al. [9].

For on-demand software updates and general node repro-
gramming, two things are needed. First, an architecture that
maintains an overview of the sensor network and all available
resources in general. This architecture must be able to take
decisions where to run which program in the network based on
an internal decision process. Secondly, techniques are needed
to actually upload software to the sensor nodes. We will outline
some relevant approaches in the next paragraphs.

In general, two approaches for software updates in sensor
networks have been discussed in the literature: multihop
network-based node reprogramming and robot-assisted soft-

ware management. Work on the first technique was done
mainly based on network-centric reprogramming. For exam-
ple, the Deluge system [10] was developed for reprogramming
Mica2 motes. Deluge propagates software update over the ad
hoc network and can switch between several images to run on
the sensor nodes. An role assignment system was developed
at the ETH Zurich [11] to switch between multiple tasks
depending on the current requirements. Incremental network
(re-)programming was studied by Jeong and Culler [12] and
Panta et al. [13]. The primary focus of this work was on the
delivery of software images over an ad hoc network.

We contribute to this domain by investigating techniques to
upload and to replace software modules in an efficient way.
In this context, efficient primarily stands for flexibility and
careful resource utilization. We concentrate on lessons learned
from our general software management approach for sensor
networks that uses profile-matching techniques for identifying
appropriate nodes for new software applications [6], [14]. This
system allows, based on exchanged profiles of sensor nodes
(hardware and software) and descriptions of the application’s
objectives, to identify modules to be installed on particular
sensor nodes. The working principle is depicted in Figure 1.
We implemented this system for TinyOS [15]. Unfortunately,
each reprogramming step required to compile and to install a
complete software image and the necessary reset of the node
erased all collected status information.

B

B base system

code 
fragments

code 
templates

B

B

Fig. 1. Profile-matching based reprogramming architecture for sensor
networks [14]

There are two popular micro controller operating systems
supporting modularity: Contiki [16] and SOS [17]. Both have
limitations that do not suite our needs. While SOS does not
support any thread model, Contiki has a library, which maps
threads to so called protothreads. Contiki makes only little
use of dynamic memory management and currently supports
only a single module. This limits the flexibility in adding new
applications. Finally, both operating systems do not support to
recover data saved in RAM after replacing the kernel.

Therefore, we started the development of an architecture
that allows not only just to reprogram a sensor node but also



to do this in a per-module way. As the hardware platform, we
selected the BTnode sensor node (Section II). It represents a
typical sensor node as used especially in academic research
projects. This selection was necessary as various micro con-
troller require very different handling of flash memory. The
used operating system is Nut/OS, a non-preemtive, cooperative
multi-threaded OS for sensor nodes.

The following objectives were defined for this architecture:
• The system should be able to replace single modules

including possible threads. This includes adding and
removing modules to or from the system, respectively.

• The system kernel should be replaceable. This feature
usually requires special handling of the flash memory.

• As a main capability, variables and dynamically allocated
memory should be saved during module replacement.

These objectives already define the main contributions of
this paper. We developed a system that can replace either sin-
gle modules on the Nut/OS system as well as the entire kernel.
To our knowledge, this is the first system that also allows to
restore the local state of a module after reprogramming in
such a flexible way. The developed architecture is presented
in Section III and the implementation aspects are discussed in
Section IV.

II. THE BTNODE SENSOR NODE

Before introducing the reprogramming architecture, we
briefly outline the selected hardware platform, the BTnode, a
wireless mote class sensor node developed by the ETH Zurich,
and the BTnut operating system.

A. Hardware

The BTnode platform is building the basis for our approach.
It is based on an Atmel ATmega128 micro controller. For
wireless communication it provides a CC1000 radio chip as
well as a Bluetooth radio. The Atmel ATmega128 micro con-
troller is a RISC processor with 128 KB flash ROM and 4 KB
internal SRAM that can be accessed much faster compared to
external memory. The 4 KB internal SRAM are extended to a
total of 64 KB SRAM. Additional 180 KB can be accessed by
banking the memory. The Harvard architecture, i.e. program
and data memory are addressed independently, uses the flash as
program and the SRAM as data memory. The most important
technical information is summarized in Table I.

Architecture RISC / Harvard
Flash Memory (wite cyles) 128K (10,000)

EEPROM (wite cyles) 4K (100,000)
Internal SRAM 4K

Maximum Frequency 8MHz

TABLE I
SELECTED TECHNICAL DATA FOR THE ATMEL ATMEGA128L

Besides programming the flash ROM using an In-System
Programmer (ISP) connected to a PC, e.g. via a serial interface,
the ATmega128 also supports self-programming of the flash
memory. The flash is divided into two sections: a regular and

a boot loader section. The flash can only be programmed from
within the boot loader section, which resides in the last 8 KB
of the flash. Furthermore, the flash is divided in pages of
256 Byte. Before it is possible to write a page, the page must
be erased. It is important to note that these two operations,
write and erase, are independent from each other. Whereas a
reset interrupt is delayed during a write operation, this is not
the case between the erase and write operations. It is therefore
possible that the node is reset after the erase leading to an
erased but not written page.

During a write operation on the regular flash section, it
is not possible to access or execute code from this section.
This lock affects the entire flash, not only the affected flash
page. This behavior must be considered for reprogramming
the node using communication protocols, which require real
time execution.

B. Software

The BTnode is supported by two operating systems that
are well-known in the sensor networking community: TinyOS
and BTnut, the latter one being the primary OS used for the
BTnode. Whereas TinyOS is also heavily used in the sensor
networking community, BTnut has a number of features that
make it a perfect source for our reprogramming work.

BTnut is build on top of the multi-threaded Nut/OS frame-
work. Nut/OS is a non-preemtive, cooperative multi-threaded
OS, which makes extensive use of dynamic memory man-
agement. Besides supporting thread priorities, the number of
threads is only limited by the available memory. Opposed to
other operating systems including recent version of TinyOS,
a Nut/OS thread does not need any static variables. The stack
and heap as well as memory used for thread management are
allocated during thread startup. Therefore, it is not necessary
for the compiler to know details about the threads at compile
time. Further features include POSIX-like interrupt driven
streaming I/O system.

III. REPROGRAMMING ARCHITECTURE

In the following, we outline the main principles of the de-
veloped reprogramming architecture. Basically, the following
objectives are addressed:

• Module replacement
• Kernel replacement
• Saving of single variables
• Saving of dynamically allocated memory

As the architecture depends to a certain extend on the particu-
lar BTnode hardware, we obviously focus on the specific capa-
bilities. Nevertheless, the principles can be easily transferred
to similar architectures that are based on the ATmega128.

A. Loading modules

This section describes the theoretical background of adding
code to an already existing binary. The primary system of
the node is represented by a kernel. The kernel consists the
main operating system containing a scheduler, I/O interfaces,
and other service functionality. Additional functionality can



be added at a later point of time in form of a module. The
module must contain information for the kernel which code
to execute but this will be described later in this section.

When adding code to a node several things have to be
addressed. Due to the Harvard architecture, it is not possible,
or at least quite expensive in terms of system performance, to
modify the code once it is written to the flash. This has to be
taken into account while designing module support. There are
two main subjects which must be discussed when designing
support for modules: How to access the kernel functions and
when to do the final linking.

A function can be called in two ways. Either direct or
indirect. Usually, a method is directly accessed: The code
contains the call command followed by the address of the
command. When calling a function via a pointer this is
an indirect call. The address of the function is loaded into
a special register and then the “call indirect” command is
executed. This also applies to other name to address mappings
like variable names. As they work equivalent, only function
calls will be discussed here.

Either way, the function name must be mapped to the
function address. These name to address mappings are stored
in a symbol table. When linking a program, the linker first
creates a symbol table and afterwards replaces all function
names by their memory addresses. When linking a module, it
is not possible to change the addresses of the kernel anymore
as it is already programmed onto the node. Therefore, a symbol
table containing the symbols of the installed kernel must be
provided to the linker.

The linking itself can either be done on the host computer or
the node. While linking on the node allows greater portability,
e.g. because the same unlinked code can be used on nodes with
different kernels and may also placed at different positions,
this also has drawbacks. First, the kernel’s symbol table
must be provided with the kernel. Contiki states that the
kernel’s symbol table has a size of 4 KB [18]. Besides that,
the unlinked file has to be provided with linking specific
information. Therefore, the flash memory needed as well as
the data to be transmitted increases when linking on the node.

Fig. 2. Using jump tables

If it is not possible or not wanted to resole the function
addresses at linking time, this can be done using a jump table.
A jump table is a list of jump commands. An example can be
seen in Figure 2. Instead of calling the real function, of which
the address is unknown, the jump to that function in the jump
table is called (1). The command in the jump table jumps to
the real function (2). When a function is called, the program

counter is saved on the stack. Therefore, a return jumps back
to the calling function (3). The jump table and the jump to a
function must always stay at the same address. Because of this,
it is not possible to change the address of a kernel function,
but not to add or to remove functions from the jump table.
Therefore, this is only a reasonable solution if only a limited
number of functions are provided by the jump table.

Using indirect calls, similar solutions can be implemented.
Either by looking up the address of a function using a symbol
table that is stored on the node or just by storing the address of
a function in a table without the jump command. Both of these
solutions are less efficient then the ones using direct calls.

Using only relative calls and jumps, it is possible to create
position independent code. This code can be placed at any
address. As relative jumps are limited to ±4 KB, the size of a
position independent module is limited to approximately 4 KB.
If the module is bigger then 4 KB not only the addresses of
kernel functions, but also the final position of the module must
be known when linking.

Not only the address of the text section, which contains the
executable code, but also the data section containing global
and static variables must be set during linking. While this is
not a problem when rebooting after uploading a module - the
data section of the module can be put right behind the data
section of the kernel - this is a problem when adding a module
during runtime. There is no unused data memory available,
because all memory not used by the data section of the kernel
is used by the dynamic memory management.

Besides replacing code, there is the problem of saving
local variables. Although it is possible to replace a thread
during runtime [19], it is difficult to implement this solution
efficiently on the ATmega128 micro controller. As the micro
controller is not powerful enough to do the needed analysis,
a huge amount of data, e.g. the stack, has to be transmitted to
a host computer for analysis. It is therefore more reasonable
to signal the thread to go into a safe state from which it can
recover when being started again.

B. Kernel replacement

The basic approach for replacing the kernel is to temporarily
store the new code in memory, flash the data appropriately,
and reboot the new kernel. As there is not much difference to
other reprogramming approaches that always replace the entire
software image, we concentrate on the possible problems of
the kernel replacement that need to be considered during the
reprogramming procedure.

In our scenario, the data transmission can not be done by the
bootloader and depends on a working kernel. Therefore, the
new kernel must be buffered on the node as it is not possible
to replace the kernel while transmitting data. On the BTnode,
it is possible to either buffer the new kernel on a free space on
the flash memory or in external SRAM. When the new kernel
is stored in the buffer, the node reboots and the bootloader
replaces the old kernel with the one saved in the buffer.

During the update procedure, two problems can bring a
node in a state where it is not possible to recover, at least



not from a remote connection. Either the kernel has a bug
or it gets corrupted. In case of a buggy kernel, the only way
to recover the node is to have a guaranteed working copy of
kernel saved on the node (Golden Image). If the node detects
a buggy kernel, it can then load the Golden Image. However,
for this solution to work it must be detected that the kernel is
not working properly.

While it is difficult to technically avoid bugs in the kernel, it
is possible to avoid the corruption (or at least to minimize the
possibility of corruption). A simple way of detecting a corrup-
tion is using checksums. When a corruption is detected, the
data must then be recovered, e.g. by means of retransmission.
As the kernel is needed to retransmit data, it must be assured
that it is possible to recover after any kind of possible failure.
The most likely critical failure during flashing a new kernel
is power loss. When using SRAM to buffer a new kernel, a
possible power loss during the flash operation must be ruled
out, e.g. by checking the current battery status.

C. Memory management

After replacing a kernel or module, it is often wanted to
recover state information. The usual approach is to store data
in the EEPROM. Whereas this is the appropriate place to store
such as settings, the maximum number of write cycles for
the EEPROM must be considered in scenarios where such
operations are frequently applied. With a lifetime of about
100,000 write cycles, the lifetime is exceeded in a little more
then a day if writing a value every second.

Saving data in SRAM is problematic because of possible
power loss. In exchange, SRAM is faster, bigger in size,
and has practically unlimited write cycles. Therefore, neither
EEPROM nor flash ROM are an alternative for frequent
changes of status information. It is also possible to back
SRAM with a super capacitor for several days. The main
challenge is to recover that status data after a reset.

IV. IMPLEMENTATION DETAILS

In the following, we discuss implementation specific de-
tails of our reprogramming concept related to the BTnode
architecture and the Nut/OS operating system. These aspects
reveal some deeper insights into the problem of developing the
dynamic reprogramming scheme for a real hardware platform.

A. Flash management

As the flash is normally not used for saving different data
parts, we created a flash memory management system. We
decided to use a simple linked list. Each node in the list starts
with a header and is aligned to the pages. The header contains
information about the contents of the node, and its length. To
detect corruption, the header is equipped with a CRC32. This
CRC is calculated over the whole node with the CRC field
masked. This allows to detect data corruption if anything went
wrong while flashing data.

There is one exception though. As the kernel must always
start with the interrupt vectors, the header is placed behind

the interrupt vectors. Kernels, which are saved on flash for
replacement of the original kernel, get an extra header.

Besides the name of the application, it also contains the
needed stack size and the entry function. This information is
needed to start an application properly. The header includes
the following fields:

• The length of the application
• The name of the application
• A pointer to the entry function of the application
• The starting page for which the application was compiled
• The needed stack size
• A CRC32 of the application
• Flags (deleted, kernel)

When data is overwritten, the data is first erased from back
to front and then written from front to back. This allows the
bootloader to easily recover data as the old header is kept as
long as possible. Otherwise, the next non-empty page must
contain a valid header.

Fig. 3. Deleting and adding nodes from/to the linked list

Figure 3 outlines the usage of the linked list in detail. In step
(1), there is an application saved between two other nodes. Its
header points to the next node. If part of the data is deleted,
the linked list is still valid as shown in step (2). The situation
in step (3) can be found when a node is empty: Only the page
containing the header is written. When the header is deleted
in step (4), it is easy to recover the list by finding the fist
page, which is not deleted. Step (5) shows the new header and
part of the module written. Note that the pointer still points
to a deleted page. Again this can be fixed looking for the
next written page. After completely writing the application,
the header marking the empty space is written as shown in
step (6).

B. Creating kernels and applications

The header used for the flash management, is added at
compile time using compiler attributes to put it in a special
section. During the linking, it is then placed at the correct
location and missing information is added using symbols.
As described in Section III-A, symbols are used to replace
the name of a function with an address. Similarly, instead



of passing an address this technique can be used to pass a
variable.

The following expression can be used to initialize the vari-
able foo with the address of the symbol usersymbol_foo:

uint16_t foo = (uint16_t)&usersymbol_foo;

When assigning a value to usersymbol_foo instead of
an address and passing this to the linker, foo gets initialized
with this value. This approach makes use of the default tool
chain and avoids the manipulation of the final files.

For the CRC32 calculation all files are linked twice. For the
first linking, the CRC value is set to zero. Then, the CRC32 is
calculated for the binary image and the files are linked again,
with the correct CRC. As pointers are only 16 Bit on the
8 Bit AVR, the CRC has to be passed to the linker using two
symbols, each containing a word of the CRC. After linking
the kernel, its symbol table is extracted and saved in a special
directory, using the CRC as filename for later use.

In order to compile and link the application to the right
kernel running on the BTnode, the kernel CRC is queried be-
fore linking the module. On the basis of the CRC, the adequate
symbol table can be selected. Afterwards, the module is linked
for the first time to determine it’s size. Library functions that
are not included in the kernel will be automatically be linked
into the application as they do not show up in the symbol
table. Knowing the size of the application, program memory
can be allocated on the node. A second linking step is needed
to place the application at the right memory address. Finally,
the code has to be linked a third time to add the correct CRC.
The resulting file can now be transmitted to the node, flashed,
and then executed.

Currently, we are facing several limitations. So, is not
possible to share functions between modules. It is therefore
also not possible to upload a functions or driver library. All
functions not provided by the kernel must be linked into the
application. Furthermore, it is not possible to use the data
section when writing applications. All data must therefore
saved in the program section and be loaded at runtime.

C. Flashing

Flashing is done in two circumstances: By the kernel, when
receiving an application or new kernel, and by the bootloader
when replacing the kernel. To make the flash functions, which
are part of the bootloader, accessible by the kernel a jump
table is used. This allows the kernel to access these functions
without explicit information about the bootloader.

When flashing data, all interrupts must be turned off as it’s
not possible to execute code outside the bootloader section
while flashing. This must be considered when using teal time
constraints. For example, using RS232 without flow control is
problematic as it might loose data.

The ATmega128 supports moving the reset vector to the
bootloader section. This will always call the boot loader after
a reset. It is then the responsibility of the boot loader to start
the main code. To update the kernel the node gets reset after
writing the new kernel to the flash. When the bootloader starts
up, it verifies the flash using the CRCs, if necessary deletes

broken modules and checks whether it finds an updated kernel.
To avoid having a corrupted kernel, the bootloader verifies
the CRC of the new kernel before deleting the old one. It
also makes sure that the new kernel does not overlap with
itself when being copied. After copying the kernel, the copied
kernel gets verified, before the buffered copy gets deleted to
free memory.

D. Named memory

In order to recover data saved in SRAM after a reboot, we
decided to use a concept similar to shared memory. Shared
memory is accessed using a key. Similarly, we decided to use a
string to build “named memory”. It is now possible to allocate
memory and assign a name to it. Later on, it is possible to
get a pointer to this memory using this name - even after the
node got rebooted or the kernel replaced.

Named memory is allocated like other managed memory but
it is assigned an extra header. This header contains the name
of the memory block, a pointer to the next named memory
block, and a CRC8, which is calculated over the header. The
root of this linked list is placed at the very end of the memory
during the initialization of the managed memory. This way,
the probability of a conflicted with a resized data section of
the kernel is minimized.

During the boot process, the root element of the list is
verified using the CRC. Now, it is possible to walk the linked
list verifying each header. While this does not verify the
content itself, it is quite unlikely that the contents are modified
without touching the headers. The space in between the named
memory is then freed for the normal memory management.

Fig. 4. Named memory

Figure 4 shows how the memory will be organized when
using the concept of named memory. (1) is the linked list
of free memory. (2) is the root of the linked list for the
named memory. It is at the very end of the memory. Allocated
memory always has a header containing the size of the node
(3). (4) shows a named memory block. The memory used for
this block is allocated by the normal memory management
and, therefore, has its header containing the size. Behind
that, the named memory header is saved. Although normally
allocated memory is preferredly taken from the beginning and
named memory from the end, this can still be mixed (5).

V. PROOF-OF-CONCEPT EXAMPLE

As a simple example, we use an applications to demonstrate
the thread support of Nut/OS. It basically consists of a simple
thread that repeatedly outputs a character. The following
listing shows the adjusted version of this sample application.
APPLICATION is a macro, which adds the header to the
module. The parameters are the application name, the stack



size, and a pointer to pass arguments to the application. The
latter is not used in the example. After being started, the
program will print an “U” character to the default output,
which is normally the serial port, and then sleep for 125 ms.

Listing 1. Sample application
1 APPLICATION("printU", 192, arg)
2 {
3 NutThreadSetPriority(16);
4 for (;;) {
5 putchar(’U’);
6 NutSleep(125);
7 }
8 }

The size of the binary code for this application is 54 B of
which 26 B are of executable code. When making adjustments
to this code, 52 B have to be transmitted compared to over
20 KB when transmitting the entire kernel. While this is a
small and simple application, the advantage over transmitting
the entire kernel is obvious.

Once the application is stored onto the sensor node, it can
be started passing “printU” to the module startup function,
which will initiate a new thread and then start the code.

VI. CONCLUSION

In order to support more abstract higher layer reprogram-
ming strategies in sensor networks, the efficient replacement
of application modules in single sensor nodes is strongly
necessary. Based on this observation, we identified the needs
and objectives for lower layer code replacement. We identified
three major building blocks for such reprogramming: The
replacement of single modules or the entire kernel, and, most
importantly, the ability to keep local state information, i.e.
variables and dynamically allocated memory, during such
reprogramming actions.

Based on Nut/OS we have implemented support for appli-
cation modules. We demonstrated that it is possible to load
and execute modules during runtime. Using a CRC32 for
kernel identification, it is possible to support collaborative
use of single sensor nodes without having to replace the
kernel to ensure proper linking. We also developed a simple
way to save and recover the module state, i.e. the content of
variables, after a reset or kernel update. We named this concept
“named memory”, which is built on top of the normal memory
management and, therefore, adjusts to needed and available
resources.

Open issues primarily target the memory management. First,
it is currently not possible to use a data section in the
code besides using the named memory concept. An issue,
which gets more severe using modules, includes memory leaks
caused when terminating threads. At the moment, allocated
memory is not associated to a thread and it is therefore not
possible to free allocated blocks automatically. This is a flaw
which has it roots in the Nut/OS memory management, but
needs further investigation.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Elsevier Computer Networks, vol. 38, pp.
393–422, 2002.

[2] D. Culler, D. Estrin, and M. B. Srivastava, “Overview of Sensor
Networks,” Computer, vol. 37, no. 8, pp. 41–49, August 2004.

[3] Y. Guo, P. Corke, G. Poulton, T. Wark, G. Bishop-Hurley, and D. Swain,
“Animal Behaviour Understanding using Wireless Sensor Networks,” in
31st IEEE Conference on Local Computer Networks (LCN): 1st IEEE
International Workshop on Practical Issues in Building Sensor Network
Applications (SenseApp 2006), Tampa, Florida, November 2006, pp.
607–614.

[4] A. Baggio, “Wireless sensor networks in precision agriculture,” in ACM
Workshop on Real-World Wireless Sensor Networks (REALWSN 2005),
Stockholm, Sweden, June 2005.

[5] I. F. Akyildiz and I. H. Kasimoglu, “Wireless Sensor and Actor Net-
works: Research Challenges,” Elsevier Ad Hoc Networks, vol. 2, pp.
351–367, October 2004.

[6] W. Schröder-Preikschat, R. Kapitza, J. Kleinöder, M. Felser,
K. Karmeier, T. H. Labella, and F. Dressler, “Robust and Efficient
Software Management in Sensor Networks,” in 2nd IEEE/ACM Interna-
tional Conference on Communication System Software and Middleware
(IEEE/ACM COMSWARE 2007): 2nd IEEE/ACM International Work-
shop on Software for Sensor Networks (IEEE/ACM SensorWare 2007).
Bangalore, India: IEEE, January 2007.

[7] C.-C. Han, R. Kumar, R. Shea, and M. Srivastava, “Sensor Network
Software Update Management: A Survey,” ACM International Journal
on Network Management, vol. 15, no. 4, pp. 283–294, July 2005.

[8] C. Margi, “A Survey on Networking, Sensor Processing and System
Aspects of Sensor Networks,” University of California, Santa Cruz,”
Report, February 2003.

[9] D. Culler, J. Hill, P. Buonadonna, R. Szewczyk, and A. Woo, “A
Network-Centric Approach to Embedded Software for Tiny Devices,” in
First International Workshop on Embedded Software (EMSOFT 2001),
Tahoe City, CA, USA, October 2001.

[10] A. Chlipala, J. Hui, and G. Tolle, “Deluge: Data Dissemination for
Network Reprogramming at Scale,” University of California, Berkeley,
Tech. Rep., 2004.

[11] C. Frank and K. Römer, “Algorithms for Generic Role Assignment
in Wireless Sensor Networks,” in 3rd ACM Conference on Embedded
Networked Sensor Systems (ACM SenSys 2005), San Diego, CA, USA,
November 2005.

[12] J. Jeong and D. Culler, “Incremental Network Programming for Wireless
Sensors,” in First IEEE International Conference on Sensor and Ad hoc
Communications and Networks (IEEE SECON), June 2004.

[13] R. K. Panta, I. Khalil, and S. Bagchi, “Stream: Low Overhead Wireless
Reprogramming for Sensor Networks,” in 26th IEEE Conference on
Computer Communications (IEEE INFOCOM 2007), Anchorage, AK,
May 2007.

[14] F. Dressler, G. Fuchs, S. Truchat, Z. Yao, Z. Lu, and H. Marquardt,
“Profile-Matching Techniques for On-demand Software Management
in Sensor Networks,” EURASIP Journal on Wireless Communications
and Networking (JWCN), Special Issue on Mobile Multi-Hop Ad Hoc
Networks: from theory to reality, vol. 2007, no. Article ID 80619, p. 10,
2007.

[15] Z. Yao, Z. Lu, H. Marquardt, G. Fuchs, S. Truchat, and F. Dressler,
“On-demand Software Management in Sensor Networks using Profiling
Techniques,” in 7th ACM International Symposium on Mobile Ad Hoc
Networking and Computing (ACM Mobihoc 2006): 2nd ACM Interna-
tional Workshop on Multi-hop Ad Hoc Networks: from theory to reality
2006 (ACM REALMAN 2006), Demo Session. Florence, Italy: ACM,
May 2006, pp. 113–115.

[16] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in 29th IEEE
International Conference on Local Computer Networks (LCN), Tampa,
FL, USA, November 2004, pp. 455–462.

[17] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A dynamic
operating system for sensor nodes,” in 3rd ACM International Con-
ference on Mobile Systems, Applications, and Services (ACM MobiSys
2005). Seattle, WA, USA: ACM Press, June 2005, pp. 163–176.

[18] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-time dynamic
linking for reprogramming wireless sensor networks,” in 4th ACM
Conference on Embedded Networked Sensor Systems (ACM SenSys
2006). Boulder, Colorado, USA: ACM, November 2006, pp. 15–28.

[19] M. Felser, R. Kapitza, J. Kleinöder, and W. Schröder-Preikschat,
“Dynamic Software Update of Resource-Constrained Distributed Em-
beddedSystems,” in IFIP International Embedded Systems Symposium
(IESS’07), vol. 231/2007, Irvine, CA, USA, May 2007, pp. 387–400.


