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Abstract—Bio-inspired networking techniques have been in-
vestigated since more than a decade. Findings in this field have
fostered new developments in networking, especially in the most
challenging domains such as handling large scale networks, their
dynamic nature, resource constraints, heterogeneity, unattended
operation, and robustness. Even though this new research area
started with highly theoretical concepts, it can be seen that there
is also practical impact. This article aims to give an overview
to the general field of bio-inspired networking, introducing the
key concepts and methodologies. Selected examples that outline
the capabilities and the practical relevance are discussed in
more detail. The presented examples outline the activities of a
new community working on bio-inspired networking solutions,
which is converging and becomes visible in term of the provided
astonishingly efficient solutions.

I. INTRODUCTION

After a decade of bio-inspired networking research, we see
many very successful application examples that either directly
improve specific networking-related operations or simply fos-
ter novel research projects to reinvestigate what we thought
of being common knowledge in engineering. In fact, when
we look carefully into nature, it is clearly observed that the
dynamics of many biological systems and laws governing them
are based on a surprisingly small number of simple generic
rules which yield collaborative yet effective patterns for re-
source management and task allocation, social differentiation,
synchronization (or de-synchronization) without the need for
any externally controlling entity. For example, by means of
these capabilities, billions of blood cells which constitute
the immune system can protect an organism from pathogens
without any central control of the brain [1]. Similarly, an entire
organism is autonomously maintained in a relatively stable
equilibrium state via a major functionality, i.e., homeostasis,
for the operation of vital functions without any need for a
central biological controller [2]. The task allocation process in
the insect colonies is collaboratively decided and performed
according to the willingness of an individual such that the
overall task is optimized with a global intelligence comprised
of simple individual responses [3].

At the same time, communication and management aspects
in networking are becoming even more challenging in future
networking domains ranging from nanoscale communication
networks [4] to InterPlaNetary Internet [5]. Technical chal-
lenges include the management of thousands and millions of
inter-networking devices that have to be organized using scare
resources and disruptive communication channels. In spite of
these limitations, the networking community is developing
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Fig. 1. Bio-inspired networking in relation to the entire field of bio-inspired
approaches

astonishing technical solutions, in many cases inspired by self-
organization mechanisms inherently existing in Nature.

This paper is intended to review the state-of-the-art of the
emerging domain of bio-inspired networking and its more
practical relevance that has been established in the last decade.
Using selected application examples, we highlight both the
fascinating simplicity of the underlying rules and mechanisms
as well as the sophisticated overall behavior of such bio-
inspired solutions to networking problems.

The paper is organized into four sections. We first out-
line the main concepts and ideas of bio-inspired networking
solutions including a list of the most prominent challenges
in networking in Section II. Selected examples are discussed
in more detail in Section III. Future research challenges and
directions are outlined in Section IV. We finally draw some
conclusions in Section V.

II. BIO-INSPIRED NETWORKING: OVERVIEW OF
CHALLENGES AND FUNDAMENTAL ANALOGIES

We concentrate on the application domains of bio-inspired
solutions to problems related to communications and network-
ing. As shown in Figure 1, three main areas of bio-inspired
research can be distinguished:
• Bio-inspired computing represents a class of algorithms

focusing on efficient computing, e.g., for optimization
processes and pattern recognition.

• Bio-inspired systems constitute a class of system architec-
tures for massively distributed and collaborative systems,
e.g., for distributed sensing and exploration.

• Bio-inspired networking is a class of strategies for effi-
cient and scalable networking under uncertain conditions,
e.g., for autonomic organization in largely distributed
systems.

Even though bio-inspired computing and system design
have already become widely visible, for example, neuronal
networks have been thoroughly studied and successfully ap-
plied in many places, the application domain of bio-inspired
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TABLE I
CATEGORIZATION OF BIOLOGICAL PHENOMENA AND NETWORKING ALGORITHMS MIMICKING THESE CONCEPTS

Biological principle Application fields in networking
Swarm Intelligence and
Social Insects

distributed search and optimization; routing in computer networks, especially
in MANETs, WSNs, and overlay networks; task and resource allocation

Firefly Synchronization robust and fully distributed clock synchronization
Activator-Inhibitor
Systems

(self-) organization of autonomous systems; distributed coordination; continuous
adaptation of system parameters in highly dynamic environments

Artificial Immune
System

network security; anomaly and misbehavior detection

Epidemic Spreading content distribution in computer networks (e.g. in DTNs); overlay networks;
analysis of worm and virus spreading in the Internet

Cellular Signaling
Networks

coordination and control in massively distributed systems; programming of
network-centric operating sensor and actor networks

networking is a rather new one that is emerging from early
studies into well-understood and carefully investigated solu-
tions.

There exist many challenges for the realization of the exist-
ing and the envisioned next generation network architectures.
Among others, three examples should be named: The dynamic
nature of mobile ad hoc networks and cognitive radio networks
in terms of node behaviors, traffic and bandwidth demand pat-
terns, channel and network conditions need to be handled using
completely new approaches. Thus, communication techniques
that are inherently adaptive to the highly dynamic network
conditions must be developed for the next-generation network
architectures.

A second major challenge is the demand for infrastructure-
less and autonomous operation. As network dimensions are
amplified both spatially and in terms of the number of nodes,
centralized control of communication becomes impractical. On
the other hand, some networks are by definition free from
infrastructure such as wireless ad hoc networks, Delay Tolerant
Networks (DTNs), Wireless Sensor Networks (WSNs). At the
same time, communication networks are subject to failure ei-
ther by device and link malfunction or misuse of their capacity.
Considering the dynamic nature and lack of infrastructure,
networks must have capabilities of self-organization [6], self-
evolution, and survivability to be able to continuously provide
their services.

Furthermore, communication and networking in micro and
nano scales are imperative to enable micro and nano devices to
cooperate, and hence, collaboratively realize certain common
complex tasks which cannot individually be handled. On the
other hand, conventional communication technologies such as
electromagnetic wave, acoustic, are inapplicable at these scales
due to antenna size and channel limitations. Furthermore, the
communication medium and channel characteristics also show
important deviations from the traditional cases due to the
rules of physics governing these scales. Effective, practical,
and naturally existing communication paradigms must be
researched and adopted for networking at these scales.

These challenges may ultimately be addressed by bio-
inspired solutions since similar problems and their naturally
evolved biological solution approaches also exist for these
networking paradigms. In fact, as a result of millions of years
of evolution, biological systems and processes have intrinsic
appealing characteristics [7]. Among others [8], they are

• adaptivity to the varying environmental circumstances,
• robustness and resilient to the failures caused by internal

or external factors,
• ability to achieve complex behaviors on the basis of a

usually limited set of basic rules,
• ability to learn and evolve itself when new conditions are

applied,
• effectiveness management of constrained resources with

an apparently global intelligence larger than the superpo-
sition of individuals,

• ability to self-organize in a fully distributed fashion,
collaboratively achieving efficient equilibrium,

• and survivability despite harsh environmental conditions
due to its inherent and sufficient redundancy.

These characteristics constitute the basis for different levels
of inspiration by biological systems towards the development
of different approaches and algorithms at each of the network-
ing layers for efficient, robust and resilient communication
and information networks [8]. Therefore, in order to keep
pace with the evolution in networking technologies, many
researchers, members of this very young research commu-
nity, are currently engaged in developing innovative design
paradigms inspired by biology in order to address the network-
ing challenges of the existing and envisioned next-generation
information systems as outlined above.

The common rationale behind this effort is to capture
the governing dynamics and understand the fundamentals of
biological systems in order to devise new methodologies and
tools for designing and managing communication systems and
information networks that are inherently adaptive to dynamic
environments, heterogeneous, scalable, self-organizing, and
evolvable. Looking from biological principles, several appli-
cation domains in networking can be distinguished. Table I
summarizes the biological domains that are, together with
specific examples of successful application to networking,
detailed in Section III.

III. SELECTED EXAMPLES: SIMPLE CONCEPTS, COMPLEX
SOLUTIONS

The objective of this section is to discuss the concepts
and application domains of selected examples of bio-inspired
networking approaches. As can be seen from these examples,
most of the solutions – if appropriately modeled – are built
on simple concepts and rules. The underlying mathematical
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models or architectural concepts can easily be understood and
implemented. However, the resulting behavior of the overall
system composed of many of such simple components, due
to its nonlinear coupling, quickly becomes much too complex
for analytical evaluation.

In the following, selected examples are discussed that rep-
resent well understood biological mechanisms, even though
some aspects might need to be further elaborated in detail. This
list is not meant to be comprehensive and to completely repre-
sent all approaches in the domain of bio-inspired networking.
However, we selected a number of techniques and methods
for more detailed presentation that clearly show advantages
in fields of communication networks. Further examples and
references can be found in [8].

A. Modeling and Engineering

The modeling and systematic development of new ap-
proaches slightly deviate from classical engineering processes.
In early papers on bio-inspired solutions (unfortunately, even
in some recent publications), bio-inspired networking has
been considered as attempts to present (engineering) techni-
cal solutions solely based on some similarities to biological
counterparts without actually investigating the key advantages
or objectives of the biological systems.

In fact, a careful look at the more mature studies in the
field reveals that three common steps are always necessary
for developing bio-inspired methods that have a remarkable
impact in the domain under investigation, i.e.,

1) Identification of analogies – which structures and meth-
ods seem to be similar,

2) Understanding – detailed modeling of realistic biologi-
cal behavior,

3) Engineering – model simplification and tuning for tech-
nical applications.

These primary principles of investigating and exploiting
biological inspirations are depicted in Figure 2. First, analogies
between biological and technical systems such as computing
and networking systems must be identified. It is especially
necessary that all the biological principles and their governing
dynamics are understood properly, which is often not yet the
case in biology. Secondly, models that capture the biological
behavior must be created to be later used to develop the
technical solution. The translation from biological models to
the model describing bio-inspired technical systems is a pure
engineering step. Finally, the model must be simplified and
tuned for the technical application.

B. Ant Colony Optimization

Ant Colony Optimization (ACO) is one of the best ana-
lyzed and most frequently applied branches in the field of
swarm intelligence. ACO is based on the observation of the
collective foraging behavior of ants [3]. This can be modeled
as a massively distributed self-organized system, which is
typically made up of a population of simple agents interacting
locally with one another and with their environment [6]. It is
well known that ants are able to solve quite complex tasks

Problem domain 

• Identification of analogies in biology / 
nature 

Understanding 

• Modeling of realistic biological behavior 

Engineering 

• Model simplification and tuning for ICT 
applications 

Fig. 2. Modeling and engineering process

by simple local means, relying only on indirect interaction
between individuals. For example, pheromone trails are used
for efficient foraging. Ants are “grand masters” in search and
exploration.

Conceptually, ants perform a random search (random walk)
for food. The way back to the nest is marked with a pheromone
trail. If successful, the ants return to the nest (following
their own trail). While returning, an extensive pheromone
trail is produced pointing towards the food source. Further
ants are recruited that follow the trail on the shortest path
towards the food. The ants, therefore, communicate based on
environmental changes (pheromone trail). This communication
type is also known as stigmergy.

The complete ACO algorithm is described in [9]. The most
important aspect is the transition probability pij for an ant k
to move from i to j. This probability represents the routing
information for the exploring process, i.e.,

pkij =


[τij(t)]

α × [ηij ]
β∑

l∈Jk
i

[τil(t)]
α × [ηil]

β
, if j ∈ Jki

0, otherwise

(1)

Each move depends on the following parameters:
• Jki is the tabu list of not yet visited nodes, i.e., by

exploiting Jki , an ant k can avoid visiting a node i more
than once.

• ηij is the visibility of j when standing at i, i.e., the inverse
of the distance.

• τij is the pheromone level of edge (i, j), i.e., the learned
desirability of choosing node j and currently at node i.

• α and β are adjustable parameters that control the relative
weight of the trail intensity τij and the visibility ηij ,
respectively.

After completing a tour, each ant k lays a quantity of
pheromone ∆τkij(t) on each edge (i, j) depending on the
length of the tour done by ant k at iteration t.

Dynamics in the environment are explicitly considered by
the ant foraging scheme. The pheromone slowly evaporates.
Thus, if foraging ants are no longer successful, the pheromone
trail will dissolve and the ants continue with their search pro-
cess. Additionally, randomness is also a strong factor during
successful foraging. A number of ants will continue the ran-
dom search for food. This adaptive behavior leads to an opti-
mal search and exploration strategy. This effect is provided by
the pheromone update rule, where ∆τij(t) =

∑m
k=1 ∆τkij(t)

(the decay is implemented in form of a coefficient ρ with
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Fig. 3. ACO-based task allocation with integrated route optimization [11]

0 ≤ ρ < 1), i.e.,

τij(t)← (1− ρ)× τij(t) + ∆τij(t) (2)

According to [9], the total number of ants m is an important
parameter of the algorithm. Too many ants would quickly
reinforce suboptimal tracks and lead to early convergence
to bad solutions, whereas too few ants would not produce
enough decaying pheromone to achieve the desired cooperative
behavior. Thus, the decay rate needs to be carefully controlled.

Perhaps the best known application example of ACO in
networking is the AntNet [10] routing protocol. In particular,
so called agents are used to concurrently explore the network
and exchange collected information in the same way as
ants explore the environment. The communication among the
agents is indirect, following the stigmergy-based approach, and
mediated by the network itself.

Based on the same concepts, integrated task allocation and
routing in Sensor and Actor Networks (SANETs) has been
investigated [11]. The proposed architecture is completely
based on probabilistic decisions. During the lifetime of the
SANET, all nodes maintain and adapt a probability P (i) to
execute a task i out of a given set. Reinforcement strategies
are exploited to optimize the overall system behavior. Het-
erogeneity is inherently supported. Therefore, the task lists
of different agents will be different. The probability to chose
a task P (i) can now be calculated according to the shown
ACO formulas. Furthermore, routing is performed similar to
AntNet except for one major difference. In order to support the
task specific communication, the routing table is extended to
cover different forwarding probabilities for the defined tasks.
Figure 3 shows results from selected simulations. A number of
tasks were injected into a 25 nodes network. As can be seen,
the nodes optimize themselves for particular tasks (left figure)
and the routing layer enforces paths optimal for the current
task allocation (right figure).

C. Artificial Immune System

The term Artificial Immune System (AIS) belongs to a
terminology that refers to adaptive systems inspired by theo-
retical and experimental immunology with the goal of problem
solving [12]. The primary goal of an AIS, which is inspired
by the principles and processes of the mammalian immune
system, is to efficiently detect changes in the environment or
deviations (non-self) from the normal system behavior (self)
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Fig. 4. Conceptual model of AIS properties

TABLE II
RELATIONSHIP BETWEEN IMMUNE SYSTEM AND WIRELESS SENSOR

NETWORKS (WSN) [15].

Immune System Wireless Sensor Networks (WSN)
B-cells Sensor nodes

Antibody Sensor data
Antibody density Reporting frequency rate f

T-cells Rate control parameter
Pathogen Event source
Antigen Estimation distortion

Natural extinction Packet loss

in complex problems domains, and to automatically memorize
these characteristics. An AIS basically consists of three parts,
which have to be worked out in the immune engineering
process [12]:
• Representations of the system components, i.e., the map-

ping of technical components to antigens and antibodies.
• Affinity measures, i.e., mechanisms to evaluate interac-

tions (e.g., stimulation pattern and fitness functions) and
the matching of antigens and antibodies.

• Adaptation procedures to incorporate the system’s dy-
namics, i.e., genetic selection.

The underlying concepts are outlined in Figure 4. Detectors
are randomly generated to statistically cover the entire mea-
surement range. These new detectors can basically identify
either system characteristics (self) or possible deviations (non-
self). In order to eliminate the self detectors, an early toler-
ization process is used. All others enter the detection system
until their lifespan has been reached. Successful detections are
memorized allowing an accelerated response the next time.

Early approaches showing the successful application of
an AIS in computer and communication systems have been
presented in [13]. Meanwhile, a number of frameworks are
available. Focusing on the design phase of an AIS, an immune
engineering framework is proposed in [12]. A similar concep-
tual frameworks for Artificial Immune Systems for generic
application in networking has been presented in [14]. Again,
the three design steps have been emphasized: representation,
selection of appropriate affinity measures, and development of
immune algorithms.

An application of an immune system based distributed node
and rate selection in sensor networks has been proposed in
[15]. Sensor networks and their capabilities, in particular their
transmission rate, are modeled as antigens and antibodies as
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outlined in Table II. The distributed node and rate selection
(DNRS) algorithm for event monitoring and reporting is real-
ized by means of B-cell stimulation, i.e., appropriate source
node and rate selection.

Inspired by the B-cell stimulation mechanism, the source
node selection is provided by the following influences: (1)
the affinity between a sensor node (B-cell) and event source
(pathogen), (2) the affinity between the sensor node and its
uncorrelated neighbor nodes (stimulating B-cells), and (3) the
affinity between the sensor node and its correlated neighbor
nodes (suppressing B-cells). DNRS selects each sensor node
for which the summation of these three influences is greater
than a predefined threshold as a source node.

After the selection of source nodes considered as stimulated
B-cells in immune system, DNRS also enables these source
nodes to separately determine their reporting frequency rates.
Similar to stimulated B-cells that secrete antibody molecules to
eliminate antigen molecules in immune system, source nodes
makes data transmission to minimize event signal distortion at
the sink. Based on a rate control parameter, Fi(t), derived from
the principles of antibody secretion mechanism in immune
system, the new reporting frequency rate of source node i at
time t+ 1, i.e., fi(t+ 1), is determined as

fi(t+ 1) =
1

1 + e[0.5−Fi(t)]
(3)

DNRS allows each source node i to separately determine
fi(t + 1) by computing Fi(t) based on the interaction with
its environment. This makes DNRS highly adaptive and dis-
tributed algorithm that does not need any central controller or
any predefined static frequency update rules.

D. Cellular Signaling Cascades

The term signaling describes the interactions between single
signaling molecules [16]. Such communication, also known as
signaling pathways [17], is an example for very efficient and
specific communication. Cellular signaling occurs at multiple
levels and in many shapes. Briefly, cellular interactions can be
viewed as processing in two steps. Initially, an extracellular
molecule binds to a specific receptor on a target cell, convert-
ing the dormant receptor to an active state. Subsequently, the
receptor stimulates intracellular biochemical pathways leading
to a cellular response [17].

A key challenge for biology is to understand the structure
and the dynamics of the complex web of interactions that
contribute to the structure and function of a living cell. In
order to uncover the structural design principles of such
signaling networks, network motifs have been defined as
patterns of interconnections occurring in complex networks at
numbers that are significantly higher than those in randomized
networks [18].

A number of approaches have been discussed using arti-
ficial signaling networks for networking applications. Most
of this work is targeting programming schemes for massively
distributed systems such as sensor networks. An example is
the Rule-based Sensor Network (RSN) concept, a light-weight
programming scheme for SANETs [19]. It is based on an
architecture for data-centric message forwarding, aggregation,
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Fig. 5. Modeling of cellular signaling cascades and application to program-
ming sensor and actor networks [19]

and processing, i.e., using self-describing messages instead of
network-wide unique address identifiers. It has been shown
that quite complex systems can be successfully programmed
using this system supporting also concepts of light-weight
reprogramming resource-restricted sensor nodes [19].

Figure 5 outlines the working behavior of a single RSN
node. On the left hand side, the signaling process within a
single cell is depicted. Several transformations of received
information particles, e.g., proteins, finally lead to the cel-
lular response. Similarly, RSN stores received messages in
a buffer. A rule interpreter is then started periodically (af-
ter a fixed ∆t) or after the reception of a new message.
An extensible and flexible rule system is used to evaluate
received messages and to provide the basis for the node
programming scheme. The specific reaction on received data is
achieved by means of predicate-action sequences of the form
if PREDICATE then { ACTION }.

First, all messages matching the predicate are stored in so
called working sets. Finally, the specified action is executed
on all the messages in the set. Using such rule-sets, complex
and dynamic behavior can be modeled. Examples are event
monitoring applications in sensor networks or target tracking
under energy constraints. In biological systems such behavior
can be modeled (or studied) using signaling networks and
repetitive patterns, or motifs.

The period of RSN execution ∆t has been identified as a key
parameter for controlling the reactivity vs. energy performance
of the entire RSN-based network. Basically, the duration of
messages stored in the local node introduces an artificial per-
hop delay. The optimal value for ∆t affects the aggregation
quality vs. real-time message processing. A promoter-inhibitor
system has successfully been applied to solve this issue [20].

Another approach for a metabolistic execution model for
communication protocols was named Fraglets [21]. Similar
to RSN, this model is also based on the concept of data-
centric communication. Furthermore, the execution relies on
the unification of code and data, featuring a single unit called
“fraglets” that are operands as well as operators. Fraglets
have surprising strong ties to formal methods as well as to
molecular biology. At the theory level, fraglets belong to string
rewriting systems. In particular, fraglets are symbol strings
[s1 : s2 : . . . tail] that represent data and/or logic, where tail
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is a (possibly empty) sequence of symbols. Each node in the
network has a fraglet store to which incoming fraglets are
added. The node continuously examines the fraglet store and
identifies which fraglets need to be processed. Simple actions
lead to transformations of a single fraglet. More complex
actions combine two fraglets. If several actions are possible
at a time, the system randomly picks one action, atomically
removes the involved fraglets from the store, processes them,
and puts potential results back into the store [21].

Using the fraglet system, network-centric operations can be
specified to be executed by participating nodes after reception
of a specific fraglet. A simple example of a fraglet program is
the following confirmed-delivery protocol (CDP) that transfers
received [cdp : data] fraglets from A to B, with per packet
acknowledgments [21]:

A[matchP : cdp : send : B : deliver]
B [matchP : deliver : split : send : A : ack : ∗]

IV. DISCUSSION AND SOME OPEN RESEARCH
DIRECTIONS

In this section, we summarize the presented concepts of
bio-inspired networking by discussing some open research
challenges.

A. Investigation of Artificial Models

It needs further to be mentioned that our bio-inspired sys-
tems are already being studied by the biologists to learn more
about the behavioral patterns in nature. Thus, the loop closes
from technical applications to biological systems as well. This
constitutes a very promising and largely unexplored research
field. Two examples are briefly outlined in the following to
highlight both the relevance and the potentials of this research
field:
• Learning robots are frequently programmed using some

cognitive capabilities and social group behavior. On the
other hand, robots can be used as models of specific
animal systems to test hypotheses regarding the control
of behavior. Implementing selected learning and control
techniques, and testing those against real environments
can reveal interesting aspects of the used control systems.
This often also provides insight into the true nature of the
problem and may lead to novel hypotheses for animal
behavior [22].

• Investigations of Artificial Immune Systems not only
allow to develop more sophisticated technical solutions
but also helps to improve the underlying theoretical
models of the immune system. The results can be directly
applied to study yet unknown aspects of auto-immune
reactions and other dysfunctions. Also, the influence of
specific proteins and their influence can be predicted [23].

B. Bio-inspired Nanonetworking

Besides bio-inspired networking solutions, communication
on the nano-scale is being investigated. Despite the similarity
between communication and network functional requirements
of traditional and nano-scale networks, nanonetworks bring a

set of unique challenges. In general, nano-machines can be cat-
egorized into two types: one type mimics the existing electro-
mechanical machines and the other type mimics nature-made
nano-machines, e.g., molecular motors and receptors. In both
types, the dimensions of nano-machines render conventional
communication technologies such as electromagnetic wave,
acoustic, inapplicable at these scales due to antenna size and
channel limitations. In addition, the available memory and
processing capabilities are extremely limited, which makes
the use of complex communication algorithms and protocols
impractical in the nano regime [4].

Recent advances in this field have been essentially sup-
ported by findings in the bio-inspired networking domain.
For example, molecular communication channels that have
been modeled to study the concepts of this communication
paradigm was first proposed as a result of an inspiration from
cellular signaling networks. The derived results have also been
shown to be directly used to investigate artificial molecular
communication channels between nano-machines. This very
young and vastly unexplored trans-disciplinary research field
is an important artifact of bio-inspired networking. Further
research is necessary to come up with more complete and real-
istic models describing the overall communication process, to
analytically evaluate the performance of such communication
channels, and to devise practical communication techniques
following the main design principles of bio-inspired network-
ing as outlined above.

V. CONCLUSION

In this article, the common fundamental networking chal-
lenges and the current status of research efforts to address them
from the perspective of bio-inspired networking is captured.
Through the existing research results, it has been shown that
the inspiration from biology is, indeed, a powerful source of
innovative network design. Despite the considerable amount
of ongoing research, projects, journal special issues, con-
ferences in this field, the bio-inspired networking research
community is quite young, and there still remain significantly
challenging tasks for the research community to address for
the realization of many existing and most of the emerging
networking architectures. With this regard, we outlined some
open research questions that need to be targeted in the next
years to foster both innovative and methodologically sound re-
search. We believe that some of the most challenging questions
in networking can only be solved in interdisciplinary teams
tied to basic knowledge in engineering but also investigating
unorthodox methods.

REFERENCES

[1] J. Timmis, M. Neal, and J. Hunt, “An Artificial Immune System for
Data Analysis,” Biosystems, vol. 55, pp. 143–150, 2000.

[2] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraula,
and E. Bonabeau, Self-Organization in Biological Systems. Princeton
University Press, 2003.

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, 1999.

[4] I. F. Akyildiz, F. Brunetti, and C. Blázquez, “Nanonetworks: A New
Communication Paradigm,” Elsevier Computer Networks, vol. 52, pp.
2260–2279, 2008.



7

[5] I. F. Akyildiz, O. B. Akan, C. Chen, J. Fang, and W. Su, “The state
of the art in interplanetary Internet,” IEEE Communications Magazine,
vol. 42, no. 7, pp. 108–118, July 2004.

[6] F. Dressler, Self-Organization in Sensor and Actor Networks. John
Wiley & Sons, December 2007.

[7] M. Eigen and P. Schuster, The Hypercycle: A Principle of Natural Self
Organization. Springer, 1979.

[8] F. Dressler and O. B. Akan, “A Survey on Bio-inspired Networking,”
Elsevier Computer Networks, vol. 54, no. 6, pp. 881–900, April 2010.

[9] M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant System: Optimiza-
tion by a colony of cooperating agents,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 26, no. 1, pp. 1–13, 1996.

[10] G. Di Caro and M. Dorigo, “AntNet: Distributed Stigmergetic Con-
trol for Communication Networks,” Journal of Artificial Intelligence
Research, vol. 9, pp. 317–365, December 1998.

[11] T. H. Labella and F. Dressler, “A Bio-Inspired Architecture for Division
of Labour in SANETs,” in 1st IEEE/ACM International Conference on
Bio-Inspired Models of Network, Information and Computing Systems
(BIONETICS 2006). Cavalese, Italy: IEEE, December 2006.

[12] L. N. de Castro and J. Timmis, Artificial Immune Systems: A New
Computational Intelligence Approach. Springer, 2002.

[13] S. A. Hofmeyr and S. Forrest, “Architecture for an Artificial Immune
System,” Evolutionary Computation, vol. 8, no. 4, pp. 443–473, 2000.

[14] S. Stepney, R. E. Smith, J. Timmis, A. M. Tyrrell, M. J. Neal,
and A. N. W. Hone, “Conceptual Frameworks for Artificial Immune
Systems,” International Journal of Unconventional Computing, vol. 1,
no. 3, pp. 315–338, July 2005.

[15] B. Atakan and O. B. Akan, “Immune System Based Distributed Node
and Rate Selection in Wireless Sensor Networks,” in 1st IEEE/ACM In-
ternational Conference on Bio-Inspired Models of Network, Information
and Computing Systems (BIONETICS 2006). Cavalese, Italy: IEEE,
December 2006.

[16] G. Weng, U. S. Bhalla, and R. Iyengar, “Complexity in Biological
Signaling Systems,” Science, vol. 284, no. 5411, pp. 92–96, April 1999.

[17] T. Pawson, “Protein modules and signalling networks,” Nature, vol. 373,
no. 6515, pp. 573–80, February 1995.

[18] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network Motifs: Simple Building Blocks of Complex Net-
works,” Nature, vol. 298, pp. 824–827, April 2002.

[19] F. Dressler, I. Dietrich, R. German, and B. Krüger, “A Rule-based
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