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Abstract: In this paper, the BATS project is presented which aims to track the behavior of bats via1

an ultra-low power wireless sensor network. An overview about the whole project and its parts2

like sensor node design, tracking grid and software infrastructure is given and the evaluation of the3

project is shown. The BATS project includes a lightweight sensor node that is attached to bats and4

combines multiple features. Communication among sensor nodes allows tracking of bat encounters.5

Flight trajectories of individual tagged bats can be recorded at high spatial and temporal resolution6

by a ground node grid. To increase the communication range the BATS project implemented a7

long-range telemetry system to still receive sensor data outside the standard ground node network.8

The whole system is designed with the common goal of ultra-low energy consumption while still9

maintaining optimal measurement results. To this end, the system is designed in a flexible way and10

is able to adapt its functionality according to the current situation. In this way it uses the energy11

available on the sensor node as efficient as possible.12

Keywords: wireless sensor networks; animal tracking; adaptive sensor network13

1. Introduction14

Biologging or the remote tracking of animals by means of attached tags is motivating15

interdisciplinary research for more than 50 years and has been strongly technology-driven ever16

since. While biologists have mainly focused on individual movement patterns during the first decades17

of biologging research, applications have become much broader recently by the availability of digital18

transceivers and manifold sensors for designing animal borne tags. Advances in biologging technology19

have motivated innovative research in the fields of movement ecology, sociobiology or conservation20

biology, which relies on detailed information on the behavior of individual animals [1–3]. For example,21

biologging studies have revealed how movement rates of mammals respond to anthropogenic impact22

[4] or how social groups of primates make decision on where to move [5].23
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Advanced biologging devices such as GPS-tags automatically collect data and enable remote24

download, which allows for the observation of large numbers of individuals at a time, maximizes data25

recovery rates and minimizes the impact on study objects. Generated datasets become increasingly26

rich since integrated sensors collect precise information on physiological or environmental conditions27

in addition to the location of the tagged animals. However, researchers always face the trade-off28

between performance and device weight since more complex functionalities come at the cost of29

higher energy expense which translates into higher tag weight by the demand for a bigger battery.30

Energy harvesting solutions, such as solar cells, recharge the battery while the animal is on the move31

and extend battery life. However, applications are mainly restricted to diurnal taxa which range32

in sun-exposed environments and its recharging efficiency may depend upon weather or seasonal33

conditions [6]. In turn, tag weight dictates the spectrum of animal species which can be studied34

because tags constitute a burden to the animal, which may induce unintended changes in behavior or35

even reduce fitness or survival rates [7]. Considerations for tag to body weight ratio vary across taxa36

suggesting tags not to exceed 3-5% or for short-term studies a maximum of 10% of the body weight37

[8–11]. Due to these limitations and the considerably large size and weight of most fully automated38

tracking devices, around two thirds of avian and mammalian species still cannot be studied [2]. For39

this reason older techniques which originated between the 60s and 90s of the last century, which rely40

on smaller but less powerful animal-borne devices such as VHF-transmitters, geolocators or PIT tags41

still represent the state-of-the-art for studying smaller vertebrates like songbirds, rodents or bats.42

The most diverse part of the mammalian and avian range of species is at a body mass of43

around 10-20 g [2] and can therefore only be studied with tags that weigh 2 g or less. Hence, the44

further miniaturization of biologging technologies, which are capable of fully automated tracking45

of miniaturized tags at high spatial and temporal resolution, collecting complementary sensor data46

and remote access for download and reconfiguration would represent a quantum-leap for biologging47

research. Wireless sensor networks (WSNs) may be an ideal solution to meet the aforementioned criteria48

if hardware, software and communication protocols are designed with the goal of ultra-low-power49

consumption in order to ensure an acceptable runtime of at least 1-2 weeks. We present an adaptive50

and reconfigurable ultra-low-power WSN for biologging which enables ground-based localization at51

high temporal and spatial resolution, communication among animal-borne tags for direct encounter52

detection and remote data access, optionally via long-range telemetry. We verify our developments53

by tracking free-ranging bats, an animal group which is particularly difficult to observe due to its54

nocturnal activity, high mobility and small body weight of most species.55

2. Related Work56

Most available advanced animal tracking systems rely on relatively big mobile nodes. These57

of course comprise broader functionality, however, they cannot be used for tracking small-bodied58

animals like most bat species. Here the strict size and weight constraints limit the scope of suitable59

tracking methods. In the past a common approach was to use VHF-Tags which periodically send a60

modulated signal that can be used to track the animal. Due to the nature of these tags it requires a61

lot of manual work to track the animals and the number of track-able individuals at the same time62

is limited. Also these tags do not provide any additional information about the individual besides a63

rough geographic position.64

In the following some advanced systems that allow automated tracking of multiple individuals65

and are focusing on small-bodied species are shortly described.66

2.1. Ground based tracking67

The ATLAS [12] system (’Advanced Tracking and Localization of Animals in real-life Systems’)68

bases on a time-of-arrival principle for reliable localization of digital transceivers, which weigh around69

1 g, over distances of up to 15km. The initial real-world deployment of the ATLAS system consisted of70

9 base stations covering an area of several km2 in the Hula Valley in Israel. The runtime of the nodes is71
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highly weight depended. A 1.5 g heavy tag can reach a runtime of 10 days. A 10 g heavy node already72

reached a runtime of 100 days. The system can track the transceivers with a standard deviation of 5 m,73

which is comparable in terms of accuracy to GPS-tracking devices and allows studying space use at a74

high spatial resolution.75

The MOTUS wildlife tracking system [13] benefits from the light weight of traditional VHF tags76

by tracking animals over large geographic scales in a collaborative approach. Arrays of automated77

receivers, which are curated by different research groups, detect digital radio-telemetry transmitters78

emitting signals at a single frequency. This way all participants obtain data from collaboratively79

maintained infrastructure. The VHF-tags used in the MOTUS project, which are relatively simple in80

terms of functionality, weigh 0.2 to 2.6 g at lifetimes of 10 days to 3 years. The tags send out an unique81

signal, respectively, and that way an unique ID can be assigned to each tag. The system supports up to82

500 unique IDs. The reception range of the used base stations is between 500 m to 15 km depending on83

the antenna setup. The location of the tag gets derived from which station receives the signal. So while84

the system covers a large geographic scale the resolution in this area is limited, making the setup an85

ideal instrument for tracking large-scale movement of animals.86

Encounternet [14] is an approach for automated encounter logging to study social behavior in87

wild animals. Other than previous encounter tracking implementations it does not require retrieving88

the sensor nodes but includes ground stations which are downloading the recorded data from the89

mobile nodes. The Encounternet tags have a runtime of about 7.5 days when used only as transmitters90

and 21 hours in real proximity logging mode with transmitting and receiving enabled while having91

a weight of 1.3 g. This allows the encounter tracking of lightweight species but has highly limited92

runtime and does not include absolute location tracking. Previous versions of the Encounternet sensor93

nodes still had a weight of 10 g and have been used for proximity logging over a time period of ca.94

2 months in a single deployment [15].95

2.2. Satellite based tracking96

Traditional GPS trackers are widely used for animal tracking. These contain a GPS module which97

is periodically woken up to perform a GPS fix to record its location. Depending on the system it98

is required to recover the tags to download the recorded fixes from the internal memory or the tag99

contains a mobile network modem to automatically upload the data. The smallest versions of simple100

loggers can be as light as 1 g, but they can only record around 100 fixes over several days. If long-term101

high-resolution tracking and an option for remote download are required, tag weight rapidly increases102

[2]. While these tracker reach high spatial resolution in free space (like tracking migrating birds while103

flying), data quality may suffer when animals are located in places with poor GPS reception such as104

thick forests or inside roosts (e.g. cavern or tree holes).105

The ICARUS project [16] (’International Cooperation for animal Research Using Space’) has106

the goal to enable tracking of small objects such as migratory bats or birds. This is achieved via an107

antenna attached to the International Space Station (ISS), which receives data from animal-borne108

tags. The mobile tags document their location via GPS and contain accelerometer, magnetometer and109

temperature sensors. Whenever the ISS is in range the recorded positions and sensor data will be110

uploaded to the ISS and from there stored in a database. The big advantage of the ICARUS project is111

the relatively low orbit of the ISS. Thus uploading of data can be realized even with low energy and112

therefore tags can be smaller than conventional GPS trackers with remote access. The ISS uplink of the113

ICARUS project allows nearly global coverage. The current state of the project uses sensor tags with a114

weight of 5 g and volume of 2 cm2. Thanks to supporting solar cells, the runtime can be extended over115

the one supported by the battery capacity as long as diurnal species are investigated. There are plans116

to further reduce the weight of the sensor nodes by reducing the functionality to support tracking of117

even smaller animals.118
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Figure 1. Conceptional overview about the abilities of the BATS system: Trajectory tracking (red dotted
line), Encounter Detection (node to node communication in solid blue and download in solid black)
and Long Range Telemetry (dotted green)

3. BATS System overview119

The BATS Project1 aims to solve the challenges described in Section 1. The project is split into120

multiple sub-projects, each working on specific details of the whole system. An overview of the121

application of the BATS project is given in Fig. 1. The system allows a so called encounter detection,122

meaning that the sensor tags can notice that another tagged bat is close and record the duration of the123

meeting as well as estimate a rough distance based on RSSI values (blue solid line). The encounter124

detection works independent of any ground station network and can record the encounter data till a125

base station is in range again and downloads the data (black solid line). While being in the ground126

station tracking network, in addition to simple encounter detection, the BATS system also allows the127

localization of the bats in reference to the ground network and the recording of flight trajectory. This128

is achieved by calculating an expected position of the bat based on the signal received by multiple129

base stations (red tightly dotted line). To be less dependent on the bat staying in the ground network,130

we also implemented a long range telemetry system that can receive data of the bats over a high131

range (green light dotted line). The long range however results in a limited data rate. This makes it132

impossible to transmit the same data as in the ground node network but still we are able to get some133

information about the investigated individuals.134

The implementation of all functions of the BATS project focuses on minimizing the energy135

consumption of the mobile node. Systems for node to node communication like Bluetooth 5 [17]136

and long range telemetry like LoRa are already available. However, using them is not feasible here137

since it would require to implement multiple protocols with their corresponding overhead in order138

to realize the complete set of functionalities of the BATS system. Even though Bluetooth 5 allows139

efficient energy management for wireless sensor networks [18], we would not consider Bluetooth140

or other already existing systems a suitable solution for node to node communication in the BATS141

project since the research object "bat" poses a set of new challenges compared to industrial sensor142

networks. This is mostly due to the behavior and habitat of bats as well as the strict weight and143

1 http://www.for-bats.org/

http://www.for-bats.org/
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Figure 2. Front and back of mobile node
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Figure 3. Overview of mobile node design

size limit. By implementing our own radio protocols we can keep the overhead low and allow fast144

switching between the different operating modes.145

The following chapters will give an insight about how the single parts of the BATS system are146

build. The mobile sensor node with the embedded software is the central part of the sensor network147

and gets attached to the bats. Depending on the desired application mode and the location of the bat148

a different set of ground network nodes communicates with the sensor tag on the bat for encounter149

detection data download, localization or long range telemetry. As final step we developed methods150

to sort the vast amount of collected data to allow researches to investigate the biologic questions this151

system was developed to answer.152

3.1. Mobile Node153

3.1.1. Overall Functionality154

For the monitoring the activity of bats, these have to be tagged with a wireless sensor node. The155

current version of the BATS sensor node is shown in Figure 2. Attached to the bat the mobile node156

serves multiple functions which are depending on the current location of the bat. We introduced so157

called zones that change the actual behavior of the tag. If in range of the ground tracking grid (chapter158

3.3), two beacons are sent out at 868/915 MHz and 2.4 GHz 8 times per second. Otherwise these159

beacons are omitted to save energy. The current zone respectively operating mode is set by beacons160

sent from a ground station. In the current implementation the encounter detection is active regardless161

of the current location and beacons are periodically sent out for other mobile nodes to receive.162

3.1.2. Hardware Setup163

An overview about the architecture of the BATS mobile node is shown in Fig. 3. A Silabs EFR32164

Flex Gecko System-on-Chip (SoC) is the central component in the design. It combines a Cortex M4165

processor core with two radio frontends, one for the 2.4 GHz ISM Band and one subGHz transceiver.166

Depending on the desired location for the sensor network the frequency of the subGHz transceiver is167

set to the 868 MHz (Europe) or 915 MHz (America) band. The wake-up functionality is implemented168

with an AMS AS3933 wake-up receiver put behind an envelope detector. The envelope detector is169

used to extract the low frequency wake-up pattern from the high frequency radio signal. To increase170

the data storage capacity a Ferroelectric Random Access Memory (FRAM) is used as Non-Volatile171

Random Access Memory (NVRAM). The advantages of FRAM compared to standard flash memory172

are the highly reduced power consumption and fast read and write access. A detailed description of173

the selected hardware can be found in [19].174

The system can easily be expanded with additional functionality like new sensors. An175

accelerometer could be used for activity detection of bats and in combination with a magnetometer176

and gyroscope the inclination and heading direction could be calculated. However, the focus in the177
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Figure 4. Wake-up receiver based communication scheme

proposed design was on a ultra light weight and ultra low power system. Thus, no additional sensors178

are used in the current version of the BATS mobile node.179

3.1.3. Wake-Up Receiver Based Communication Approach180

The key part of the proximity sensing is the node to node communication. Especially with a high181

number of supported nodes it is not feasible anymore to turn on the radio in predefined time slot to182

receive potential packages. Instead it would be necessary to constantly listen to incoming packages.183

To still be able to keep the power consumption to a minimum the BATS mobile node makes use of a184

wake-up receiver based approach. This ultra low power receiver is constantly in receiving mode and185

wakes up the remaining circuit upon reception of a special beacon. The downside of the low power186

consumption is the relatively low sensitivity of -43 dBm and thus a limited range of a few meters. For187

proximity logging however this is the preferred behavior. This way only close encounters will activate188

the system and it is not necessary to implement a software Received Signal Strength Indicator (RSSI)189

threshold. This way the amount of unnecessary wake-ups can be greatly reduced since bats that are190

more than 5 m away don’t trigger wake-ups anymore. The 5 m range of the wake-up receiver has been191

evaluated during field tests (see chapter 4) in mature forest environment by measuring the distance192

between which the nodes still have reception.193

The mobile node periodically sends out its own On-Off-Keying (OOK) modulated wake-up194

beacons composed of the wake-up pattern and payload data like the own node ID as seen in red195

as "TX ID" in Fig. 4 with a transceiver power of 10 dB. Upon receiving such beacon from another196

node the system wakes up (yellow lightning bolt), receives the remaining part of the beacon via the197

conventional receiver (orange) and triggers the data processing as described in section 3.2. If a false198

wake up would be triggered the following communication based on the conventional receiver would199

fail and no encounter is detected.200

Since beacons are usually sent out every two seconds the channel has a relatively low utilization201

even if multiple bats are present. Channel utilization is further optimized by automated reduction of202

the beaconing frequency in the roost which is the location with the highest probability of encounters.203

Thus interference between nodes is not seen as a problem. If a packet collision should still occur, the204

beacon reception will fail an no encounter will be recorded. To increase the system robustness against205

package loss during meetings (due to beacon collision or other reasons) up to 5 beacons can get lost206

without interrupting the corresponding meeting. Depending on the current use case of the system207

these values (beaconing frequency depending on location as well as maximum beacon loss) can be208

adapted flexibly.209

While for the proximity sensing the short reception range of the wake-up receiver is an advantage,210

the usually high distance between the base station and the bats prevents the wake-up receiver to detect211

signals from the base station. Thus, to be able to receive the base station data the node periodically212

turns on the conventional receiver to check for base stations in range. Other than the mobile nodes the213

base station doesn’t have any strict energy constraints and the base stations are placed so that they214
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Figure 5. Measurement of the energy consumption of a BATS mobile node. The subplots next to the
peaks marked A©, B©, C© show the detailed current consumption during these peaks.

can’t interfere with each other. This allows the base station to transmit during all available time slots.215

This way, the time the receiver is turned on doesn’t have to be synchronized with the base station,216

allowing the receiver to be active only a short period of time. Even though a conventional receiver217

is being used here, this way the energy consumption can be kept at a minimum. If a base station in218

range has been detected (marked dark orange in Fig. 4) the Base-Station Handler described in section219

3.2 handles the communication.220

3.1.4. Power Management221

Despite the limited weight and battery capacity, the sensor node should be powered for as long as222

possible. A lithium polymer battery with 25 mAh and a weight of 0.66 g has been chosen as power223

supply. Apart from a relatively high capacity in regards to its weight and size, the battery supports a224

peak current of around 25 mA. This is necessary to be able to power the radio to transmit/receive data.225

Compared to the used lithium polymer battery, coin prime cells are available in even higher capacities226

while still fitting the weight constraints. However, they only allow a low current draw. Since the active227

time of the node depends on received wake-up packages the current consumption can not be predicted.228

Thus a buffer solution that would smoothen the current peaks to suitable low levels can’t be used.229

While the used NVRAM already has a much lower current consumption as comparable flash230

memory it still draws the highest current on the mobile node. To further decrease the current231

consumption the NVRAM can be cut off from the DCDC converter by an internal control pin of232

the DCDC converter. Thanks to the memory being non-volatile, it only has to be turned on during233

access and can kept turned off otherwise. A memory handling system which uses the SoC RAM234

whenever possible and only when necessary accesses the NVRAM is implemented in software to allow235

minimum on-time for the NVRAM.236

Figure 5 shows a current measurement of the BATS mobile node. The measurement has been237

conducted in the lab without other mobile nodes or ground stations being present. The current was238

recorded with a Keysight N6705B power analyzer equipped with a precision source.239

The peaks marked A© occur every two seconds. They show the current consumption during240

calculating and transmitting the encounter data. This includes sending the OOK modulated wake up241

pattern as well as the FSK modulated transmission of the node ID. During all this the system is active242

for 8 ms. B© corresponds to the mobile node turning on its receiver to listen if a base station is in range.243

If one is in range the node transmits stored data to the station. Otherwise (like seen in the plot), if244
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no base station is in range the mobile node returns to a sleep mode after 5 ms. The current peak C© is245

caused by the Real Time Clock (RTC) periodically waking up the mobile node to increment the local246

time and perform various system tasks like checking for expired time-outs.247

3.1.5. Weight248

To be able to measure the real behavior of bats and not influence the animal it is crucial to keep249

the physical size and weight as low as possible. The overall weight constraint including the sensor250

node, battery and housing is below 2 g [20] and the size should be below 1 cm2 while keeping the hight251

as flat as possible to reduce the impact on the bat.252

To keep the PCB light enough, a 175 µm thin flex PCB substrate has been used. In addition, the253

size of the node is kept as small as possible and wherever feasible low weight components have been254

used. However here it is important to find the right trade off between weight and power consumption255

to allow a long enough runtime. The weight of the fully populated PCB is 0.510 g. The whole node256

including housing and battery has a total weight of around 1.3 g and thus undercuts the weight limit257

of 2 g by far. This enables the opportunity for a future integration of more functionalities in the sensor258

node hardware while still being usable on the investigated bat species. The low weight of the current259

system also enables expanding the scope of researched animals since now even lighter individuals can260

be tagged. By using a smaller 12 mAh battery the total sensor node weight can even be reduced to 1 g.261

3.2. Software on mobile node and its static analysis262

3.2.1. Software Overview263

The hardware platform requires a specialized software, which orchestrate all peripherals in an264

energy efficient way. Therefore, minimizing overheads in terms of energy and computational effort265

is one of our most important goals. For an eased use and while also keeping overheads for context266

switches as low as possible, a custom fixed-priority alike scheduler is used. The biggest difference to a267

traditional fixed-priority scheduling is, that no preemption is supported. Due to a minimal context268

switch effort and no priority inversion problem, scheduling is as energy aware as possible.269

The software can be divided into six modules, which are operating independently from each other270

due to buffering. In Figure 6 all modules are shown in an overview and is explained in the following.

Hardware

Software

Erasure-
Coding

Buffer
Base-Station

Handler

Encounter-
Detection

FIFO

Memory-
Subsystem

Configuration
Handler

+
Status 

Collection

Interleaver

Figure 6. Overview of all submodules of the BATS application, running on the mobile node. Each
submodule is decoupled by buffers to ensure an almost independent operation of all modules. The
main data path is marked with yellow arrows and starts at the encounter detection and ends at the
base-station handler.

271

The encounter detection derives data when an encounter took place and with whom. Furthermore,272

data how long a meeting lasts and if the meeting is predominated with a bat which was resting is273
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also collected. For better interpretations, a rough estimation on the distance in between both bats, the274

maximum RSSI value is logged. All nodes are sending out a so-called Mobile Node Beacon (MNB)275

periodically which contains an wakeup-sequence and an unique identifier. In order to detect the276

presence of another bat in communication range, the wakeup-receiver is used. Once a MNB is received,277

the Encounter-Detection is invoked. This module looks up whether a MNB of this particular bat has278

been received recently and updates the values accordingly if this is the case. If no meeting is detected,279

the Memory Subsystem is used to allocate new memory to store the new meeting. Every second, the280

Encounter-Detection looks up, if five MNBs in a row were not received. If such kind of meeting is found,281

we consider the meeting as closed and push it into the memory in a first-in first-out memory, which282

then awaits transmission.283

The Memory Subsystem is used to manage two different memory types, the internal Static Random284

Access Memory (SRAM) and the external NVRAM. If memory should be allocated, the internal SRAM285

is used to store data. This reduces overheads in terms of energy, as the NVRAM can be turned off as286

long as possible. However, if data should be stored on NVRAM, software transactions are used to287

prevent any corruptions of stored data due to transient failures like resets or power outages. This gives288

us the opportunity to store data among system resets.289

If enough meetings were logged, the Erasure-Code module is invoked. The purpose of this module290

is to increase reliability of transmitted data by adding redundancy. In our case, we use a fixed code rate291

in which two meetings are encoded. Due to the erasure coding and our chosen code rate, 2 redundant292

packets are generated. The two redundant and two original packets are transmitted to a base station293

eventually. These four packets are later on called chunks, as a chunk plays a central role. Out of four294

packets in a chunk, all data can be reconstructed if at least two packets were received. Regardless of295

the pattern of received packets, using erasure-codes offers a better performance compared to simple296

duplication in terms of reliability.297

The Interleaver is used to increase energy efficiency of the transmitted data. As the Erasure-Code298

adds redundancy, we interleave packets from different chunks to decrease overheads like starting299

the transmitter to a minimum. Thus, up to 35.14 % of energy can be saved by an increased data rate300

while only negligible reliability is sacrificed. This module, has been tested intensively theoretically301

and practically in multiple field tests, which is beyond of scope in this paper.302

The last module inside the data path is the Base-Station Handler and decides whether a data303

transmission should be initiated and when. Depending on the current location of the bat or the node,304

the medium access is altered. This is, because if a bat is flying past a base-station, data transmission305

should be initiated with low latency to ensure a reliable communication. On the contrary, inside306

the roost many nodes may send data to a base-station. As the bats are not moving inside the roost307

and due to the high communication effort it is beneficial to send data in a Time Divison Multiple308

Access (TDMA)-alike scheme. In order to detect the presence of a base-station, so-called Base Station309

Beacon (BSB)s are sent in a high frequency to the mobile node. Therefore, turning on the receiver can310

be done only for short times, which saves energy on the mobile node. The BSB contains data like the311

current configuration, the location and synchronization parameters which enables the mobile node to312

synchronize to the base-station.313

The last module inside the application is the Configuration Handler and Status Collection. In order to314

ensure to alter a configuration only when no data is invalidated, the Configuration Handler keeps track315

of the whole application. With the reconfiguration, we are able to alter communication parameters like316

RSSI thresholds or timeouts. Furthermore, to monitor the whole system after deployment, we also317

collect statistics of the system like memory utilization or time of activity. This gives us the opportunity318

to alter the configuration, if unpredictable issues arises like exhausted memory. If nodes are acting319

inappropriate, changing the configuration is the only way, as no reprogramming is possible after320

deployment.321
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Figure 7. To determine upper bounds on the energy consumption of operations (i.e, execution of tasks)
on the mobile node, temporarily activate devices and interferences of interrupts need to be considered.

3.2.2. Static Resource Analysis322

Energy management on the battery-operated mobile node is crucial in order to enable a sufficient323

lifetime for biological experiments. In order to estimate the lifetime, we developed analysis techniques324

to determine the worst-case energy consumption (WCEC) of operations (e.g., execution of specific325

tasks) [21,22]. These estimates are not only useful for the node’s lifetime estimation, but also to326

guarantee the completion of tasks, for example, when storing data to the available NVRAM.327

The core challenges for the determination of WCEC estimates in the BATS scenario are twofold,328

that is, 1) dealing with temporarily activate devices and 2) considering interferences by concurrent329

activities in the analysis (i.e., possible interrupts, tasks with higher priority). Figure 7 exemplary330

outlines these challenges: a task of lower priority temporarily activates a device (e.g., the transceiver)331

and thereby leads to an increase of the node’s power consumption. In this scenario, an asynchronous332

interrupt can interfere the low task’s execution. Depending on whether the interrupt occurs within the333

low task’s duration of the activated device, the energy consumption significantly varies. The right part334

of Figure 7 illustrates these possible scenarios (i.e., high-power phase w/o interrupt). A safe WCEC335

analysis has to consider both scenarios and, in order to avoid unnecessarily pessimistic analysis results,336

has to precisely respect the phases where the device is switched off.337

To solve these problems, we developed an analysis technique that captures phases of temporarily338

active devices and possible interferences in the context of the BATS projects [22]. In the first step of339

the analysis, we decompose the application code into blocks with a common set of active devices340

(see parts A , B , and C in Figure 7). Using these decomposed blocks, we carry out an explicit341

path enumeration of all system-wide program paths that includes all interrupts and possible task342

switches. With knowledge of all possible paths, we formulate an integer linear program, whose343

solution eventually determines the upper on the energy consumption of the analyzed task.344

3.3. Received Signal Strength-based Localization345

Recently, received signal strength (RSS)-based direction-of-arrival (DOA) estimation techniques346

gained more attention in the research community. Several power-based approaches to direction finding347

have been published in literature. These may use multiple directional antennas [23,24], a single rotating348

antenna [25,26] or active reflectors [27]. An alternative opportunity, instead of mechanically moving349

the antenna, is the use of switched beam antennas as presented in [28] and [29]. Another approach is350

applying electronically steerable parasitic array radiator antennas, as presented lately in [30]. Recently,351

multi-mode antennas have been investigated for power-based DOA estimation [31]. Also a variant352

of the MUSIC algorithm for power measurements has been proposed in [32]. Theoretical limits in353

RSS-based direction finding have been discussed in [24].354

For this paper we consider RSS-based DOA estimation applying coupled dipole antennas [33].355

Furthermore, it is assumed that localization takes place in the horizontal plane orthogonal to the two356

dipoles. Presuming a perfect linear dipole array, the radiation of the dipoles in the horizontal plane357
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Figure 8. Radiation power patterns for perfect dipole antennas in horizontal plane for in phase and out
of phase coupling.

(i.e., θ = 90◦) is constant over all impinging signal angles in azimuth φ ∈ [0, 2π]. Hence, the radiation358

pattern for N dipoles is given by the array factor [34] AF = ∑N−1
i=0 ci · exp(−j · 2π sin(θ) · di cos(φ)),359

where di are the corresponding distances of the dipole elements, λ is the wavelength, and ci is the360

coupling factor. Considering only two dipoles at distances d0 = 0 and d1 = d and θ = 90◦ the array361

factor reduces to AF = c0 + c1 · exp(−j · 2π · d cos(φ)).362

For the considered antenna array the dipoles are coupled in phase and out of phase, respectively.
Hence, the radiation patterns are given by [24] g0(φ) = 1 + exp(−j2πd · cos(φ)), andg1(φ) = 1−
exp(−j2πd · cos(φ)). We define the radiation power patterns Ga(φ) (in dB) by Ga(φ) = 10 lg |ga(φ)|2 .
The gain difference function of the described antenna array is expressed by

∆G(φ) = G1(φ)− G0(φ). (1)

The radiation power patterns for the antenna array at hand and the gain difference function are363

depicted in Figure 8.364

The RSS at a receiver a for a transmitted signal with power PTX can be computed as follows
PRX,a = PTX − L + GTX + Ga(φ), with L denoting the bulk path loss. GTX and Ga(φ) are transmit
and receive antenna gain, respectively. When considering a single signal source, i.e., no multipath
propagation, the received signal strength difference is given by

∆PRX = ∆G(φ) + w, (2)

due to the fact that both channels are stimulated by the same transmit power and exhibit equal path365

loss. Thus, the gain difference function does not depend on transmit power and path loss. Hence, it366

may be estimated without prior knowledge of the the path loss exponent and the power emitted by367

the transmitter. This fact is, in contrast to range-based localization based on RSS, a major benefit of368

RSS-based DOA estimation. The above consideration hold for the absence of multipath propagation.369

In case of multiple multipath components (MPCs) the observed difference in signal strength is not370

linked to the DOA of the line-of-sight (LOS) component.371

For an improvement of the localization accuracy every localization sensor node utilizes two372

frequencies. The developed antenna for our application is presented in [33] and has two orthogonal373

antenna pattern for the frequencies 868 MHz and 2.4 GHz. Due to the large frequency distance374

the fading of the two frequencies can be assumed as uncorrelated. In Figure 9 a block diagram375

of a localization sensor node is shown. The antenna array is connected to a RF-frontend which376

receives at 868 MHz and 2.4 GHz simultaneously with two channels. In the Field Programmable377

Gate Array (FPGA) of the processing platform the signal detection is performed by correlation to378

the preamble and sync word of the mobile node signal like presented in [33]. The detected signal is379

processed by the microcontroller where a frequency estimation and correction is performed to decode380



Version September 25, 2018 submitted to Sensors 12 of 31

WiFi

RF-Frontend FPGA µController

Antenna array

Processing platform
Location receiver

Figure 9. Block diagram of sensor node. Figure 10. Localization receiver.

the bat ID and data. In Figure 10 a picture of a localization node is shown. During operation the381

antenna and receiver is covered with a housing.382

3.3.1. Optimal Design of RSS-based DOA Sensors383

As the classical performance measures, such as the Cramer-Rao Lower Bound (CRLB), are not384

capable of considering ambiguities in DOA estimation, power-based DOA estimation sensors are385

reviewed from an information-theoretic view in this section. The basic idea is find a antenna geometry386

that maximizes the information gained from a RSS measurements [35]. Recently, there has been a387

revival of information theory in many fields. Information-theoretic measures, have been utilized, just388

to a name a few of them, to optimize MIMO radar waveforms [36], to quantify the loss in sub-Nyquist389

sampling [37,38], and to compute fundamental limits in compressed sensing [39] and bounds for390

kernel-based time delay estimation [40]. Utilizing the framework of information theory this can be391

achieved maximizing the mutual information. Maximizing the mutual information, i.e., the total392

information gained from a sensor measurement, is by far more generic than local precision measures,393

such as the CRLB. Thus, in contrast to the CRLB, information-theoretic measures are applicable in case394

of multi-modal or non-Gaussian probability densities [35].395

Compared to the most common approach directly inferring DOA from phase differences, such396

as uniform linear antenna arrays, in RSS-based DOA estimation coupling between antenna elements397

is used to realize angle dependent gain patterns. This can be thought of as static beam forming. The398

benefit of this approach is that DOA of the impinging signal results in an RSS change at the receiver.399

Hence, DOA estimation is feasible with non-coherent receive channels. From an economical point of400

view this is very beneficial since non-coherent receiver may be manufactured at low cost compared to401

phase-coherent receivers. A realization of such a low-cost tracking system has been presented in [33].402

The major challenge is the design of the antenna radiation patterns of such a localization system.403

The shape of the antenna pattern is defined by the geometrical arrangement of the antenna elements, the404

gain pattern of the elements and the combination of the signals. In the sequel, the mutual information405

of a DOA measurement considering the BATS antenna is computed. The following setup is considered.406

Localization takes place in the horizontal plane. The antenna array consists of two dipoles that are407

orthogonal to the plane, i.e, ϑ = 90◦. The two dipoles are coupled in phase and out of phase for the408

two antenna ports as described in the section above and the gain pattern as described in Section 3.3.409

Previously a distance between the dipoles of d = λ/2 was considered. In this section, the distance d410

is the design parameter of the antenna array to be optimized. The criterion to be maximized is the411

mutual information. In other words, the distance with the maximum total information gain is sought.412

In a nutshell, the following procedure needs to carried out in order derive the optimal array413

geometry for power-based DOA estimation.414

1. Compute radiation patterns for distance d415
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Figure 11. Radiation power patterns for antenna arrays with different dipole distances.

2. Derive measurement function, i.e., the gain difference function ∆G416

3. Compute posterior probability density function (PDF) and joint PDF417

4. Compute entropy418

Radiation power patterns for different distances between the two dipoles are shown in Figure 11.419

Obviously, the in phase and anti-phase feeding results in orthogonal radiation patterns. Furthermore,420

it is easy to recognize that an increasing number of lobes results in an increasing gradient of the gain421

difference function ∆G. That in turn leads to a decrease in the estimation variance in presence of422

measurement noise. However, on the other hand ambiguities arise.423

We now consider information-theoretic measures to optimize the antenna array described above.
In RSS-based DOA estimation the measurement likelihood is given by p(∆PRX|φ) ∼ N (∆G(φ), σ2

∆PRX
).

It is assumed that there is no prior information on the signal direction available. Hence, a
non-informative prior is chosen p(φ) ∼ U (−π, π). With the prior the entropy before the RSS difference
measurements is given by h(φ) = −

∫
p(φ) log(p(φ))∂φ. The conditional entropy is computed as

follows

h(φ|∆PRX) = −
∫∫

p(φ, ∆PRX) log(p(φ, ∆PRX))∂φ∂∆PRX, (3)

with the posterior PDF given by p(φ|∆PRX) = p(∆PRX|φ)p(φ)/p(∆PRX) and joint PDF expressed by
p(φ, ∆PRX) = p(∆PRX|φ)p(φ) Finally, the mutual information is given by

I(φ; ∆PRX) = h(φ)− h(φ|∆PRX). (4)

The mutual information quantifies the total information gained from a RSS difference measurement.424

In Figure 12 equation (4) is evaluated for different distances between the two dipoles. As with the425

phase-based direction finding the mutual information increases for distances increasing from 0 to426

λ/2. At a distance of λ/2 the mutual information has a maximum. Beyond λ/2 the mutual information427

decreases until it increases again towards a distance of λ. It can be seen that the mutual information428

has local maxima at distances d = n · λ/2. Apparently, all local maxima have the same height. Hence,429

the optimal dipole distance is dopt = n · λ/2. In conclusion, it is possible to trade of ambiguities430

for local precision or vice versa without changing the total information gained from RSS difference431

measurements. In other words, all DOA sensors with d = n · λ/2 provide exactly the same information.432

3.3.2. Multipath-Robust Localization433

In this section a probabilistic multipath mitigation method is presented that makes use of statistical434

prior channel knowledge in order to compensate multipath effects [41]. The presented mitigation435
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technique allows for mean-free DOA estimates on average if prior knowledge of the channel parameter436

angular spread (AS) is available. This is achieved by computing multipath adaptive power patterns437

for the utilized antenna arrays incorporating the AS. As mentioned in Section 3.3, bulk path loss438

and shadowing have no influence on the RSS difference at the receive antenna. However, multipath439

propagation affects the RSS difference significantly. Hence, the measured RSS difference is impaired440

which degrades the DOA estimation.441

In general the impulse response of a wireless channel can be described by a tapped delay line [42]
of L MPCs given by h(t) = ∑L

l=1 al · δ(t− τl), where al is the complex coefficient of the l-th multipath
component and τl its respective delay. Considering the presented antenna array, the RSS difference of
a received signal affected by multipath propagation can be calculated by superposition of the MPCs

∆PRX = 10 lg

∣∣∣∣∣ L

∑
l=1

g1(φl) · al

∣∣∣∣∣
2

− 10 lg

∣∣∣∣∣ L

∑
l=1

g2(φl) · al

∣∣∣∣∣
2

, (5)

where gr(φl) is the complex gain coefficient of antenna r at the arrival angle φl . With (5) the effective
gain of the receive antenna for a particular realization of the multipath channel can be computed.
Obviously, the angular spread significantly impairs the measured RSS at the two antennas and thus
causing a bias in DOA estimation. In presence of multipath propagation equation (2) does not hold
true. In multipath scenarios there is no distinct relation between gain difference and RSS difference in
general, and hence

∆PRX 6= ∆G(φ) + w. (6)

The basic idea of mitigation technique is to derive a modified measurement function , i.e., and
adaptive gain difference function ∆GMPC(φ), that allows for compensation of the multipath induced
bias on the DOA estimates. For the multipath adaptive gain difference function ∆GMPC(φ) the
following equation has to hold true

∆PRX = ∆GMPC(φ) + w. (7)

If a gain difference function ∆GMPC(φ) can be found that fulfills (7) multipath impairments can be442

mitigated in a probabilistic manner. This RSS-based DOA is realized by incorporating the angular443

spread in the description of the antenna patterns. Such a multipath adaptive measurement function444

realizes a DOA estimation that has a zero-mean error on average. Therefore, the circular gain patterns445

are convolved with a scaled normal distribution with a standard deviation of σφAS . Hence, the446

multipath adaptive measurement model is derived as follows |gMPC(φ)|2 = |g(φ)|2 ∗ p(φ), where p(φ)447

is the PDF of the distribution of the angular spread given by p(φ) ∼ N(0, σ2
φAS

), and (∗) denotes a448

circular convolution. Note that the gain function is in non-logarithmic scale here. The resulting gain449

patterns are depicted in Figure 13 for different values of the angular spread. For smaller spreads the450

modified measurement function does not differ much from the gain difference function of the original451
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Figure 12. Mutual information of RSS-based DOA estimation for two orthogonal patterns at different
dipole distances.
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Figure 13. Multipath adaptive models describing the expected RSS difference for different values of
angular spread. Dotted lines denote the original pattern.

0 10 20 30

σφAS
[◦]

0

2

4

6

σ
∆
G

[d
B

]

φ = 45◦

0 10 20 30

σφAS
[◦]

0

10

20

σ
φ

D
O

A
[◦

] φ = 45◦

Figure 14. Standard deviation of RSS difference due to multipath propagation (left). Standard deviation
of the inferred DOA estimate (right).

antenna patters. Larger spreads result in flattened effective gain functions. It can be easily seen that452

the dynamic range of the effective gain difference function is significantly reduced due to a larger AS,453

i.e, the presence of multipath. Under the assumption that the channel parameter AS is known, it has454

been shown that probabilistic multipath mitigation allows for zero-mean DOA estimates.455

The presented approach allows for zero-mean compensation of effects from multipath propagation456

[41]. However, that mitigation does not come for free and leads to an inherently increased variance457

in RSS difference measurements. The dependence of RSS difference standard deviation has been458

determined by Monte Carlo simulations and is depicted in Figure 14 for a LOS angle of 45◦. Observing459

the results presented in Figure 14, the standard deviation for the RSS difference is saturated at mean460

spreads larger than 20◦ and resides constant at a values of ∼ 7 dB. One might conclude that the461

variance of the RSS inferred DOA also does not increase with larger angular spreads. However, that is462

a false conclusion. The multipath adaptive gain difference function flattens with increasing angular463

spread (cf. Figure 13) which results in a decreasing gradient of the function ∆GMPC(φ). Thus, the464

variance of the DOA estimate increases according to the linear transformation of the variance from465

measurement domain to parameter domain σφDOA(φ0) ≈ ∆G−1(φ0) · σ∆P(φ0). Hence, with increasing466

mean angular spread even for a constant variance in RSS difference the variance in DOA estimates467

increases. The proposed multipath mitigation technique enables for unbiased DOA estimation in468

multipath scenarios with known mean angular spread. However, the mitigation comes at an expense469

of an increased variance in DOA estimates.470

3.4. Long Range Telemetry471

As already addressed in Section 3, the ground network enables the download of encounter data,472

so-called meetings and provides a precise localization of bats in the close-up range. However, the473

trackable region is limited to the area covered by the base station network. The usage of additional474
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Figure 15. Combined modulation of long range telemetry data utilizing the wake-up burst showing
the corresponding waveform and encoding scheme.

stations is costly, both in acquisition and operation effort. With the bats flying at high speed, they475

are likely to leave this region within a short period of time, especially when hunting. While no476

high-resolution tracking can be provided outside the ground network, the bats shall still be observable477

by the system even in distances of several kilometers to enable a long-term monitoring. To tackle478

this challenge, a dedicated system of distributed telemetry base stations was established, forming479

a Low Power Wide Area Network (LPWAN). Theoretical analysis [43] as well as field results [44]480

demonstrate, that low rate sensor data like bat identification, air pressure, 3D-acceleration or other481

sensor data can successfully be received kilometers beyond the ground localization network (see482

Section 4). In the following, we briefly illustrate the system components and algorithms implementing483

the long range telemetry transmissions.484

3.4.1. Long Range Telemetry Transmission Scheme485

For low power long range data transmission there are already systems like LoRa or Sigfox486

available. However, LoRa as well as other systems require sending dedicated packages for long range487

communication. The transmitter nodes are limited both in size and weight since the bat is not capable488

to carry larger batteries. Therefore, incorporating a long range telemetry scheme is imposing rather489

contradictory requirements on the system since no additional hardware or energy source should490

be added. However, an additional long range transmission shall be implemented. Therefor the491

BATS project makes use of already transmitted packages rather than adding an additional ones. The492

encounter detection in the BATS project (see Section 3.1.3) is performed utilizing an OOK modulation493

scheme with limited range. When this, so-called wake-up signal (cf Fig. 3, component WuRX), is494

received by another bat near by, it triggers its processor to return from deep sleep mode for an exchange495

of bat IDs and metadata, noted as encounter or meeting.496

In order to embed the telemetry transmission into the existing system, we perform a combined497

modulation of OOK-modulated wake-up bits together with a Binary Phase Shift Keying (BPSK)498

modulation for encoding the telemetry data using two BPSK bits per OOK bit. This way additional499

packages are omitted and the energy efficiency of the developed long range scheme is far more efficient500

than state of the art systems that require their own packages. Figure 15 depicts the encoding scheme501

and waveform for the telemetry transmission proposed, to cope with the harsh restrictions on energy502

and weight.503

As can be seen in the upper part of the Figure, the OOK-modulated signal is alternated in its504

phase at distinct sample instances. This is done during the carrier burst and preamble of the wake-up505

pattern (cf. Fig. 15), as these sequences are common to all bat nodes, fixed in length and structure506

and also the on-times are known. The pulses are Manchester-coded to eliminate any dependency507

between the number of on-times and the data transmitted within the wake-up signal. This allows for508

an efficient exploitation of this OOK scheme for implementing the long range telemetry transmission509
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Figure 16. Simplified block diagram of the long range telemetry base station architecture.

without supplementary hardware or an additional expenditure of energy, as the phase is not used by510

the wake-up itself.511

For a successful decoding even in large distances, a sophisticated encoding must be applied.512

Following the lower part of Fig. 15, the long range payload data is extended by a synchronization word513

and header information carrying the bat ID among other information. Error detection is performed514

by means of a shortened Reed-Solomon Code RS(253,255) in combination with a convolutional code515

(0255,0331,0367) exhibiting a code rate of 1
3 and a constraint length of 8. A Forney interleaver with516

24 branches distributes one payload byte over 24 wake-up bursts, resulting in a time interleaved517

transmission of each long range telemetry packet of almost one minute. This approach adheres518

to the idea of the so-called Telegram Splitting concept as presented in [45,46]. Thereby, information519

is spread within the time (and frequency) plane in a burst-like fashion. As the bat nodes operate520

in the unlicensed Short Range Devices (SRD) band around 868 MHz, this technique is eligible to521

mitigate the influence of the channel and other interferers, as experienced in earlier measurements [47],522

thus assuring an ultra-robust transmission in combination with the Forward Error Correction (FEC)523

algorithms presented. Given this encoding, we obtain a nominal payload data rate of 11.363 kbit/s524

for the telemetry modulation scheme. Accounting for the duty cycle (wake-up burst length of about525

3 ms) along with the error coding overhead, one results in 1 absolute payload byte per burst or a526

rate of about 4 payload bits per second (under the presumed configuration of a 2 s burst interval).527

Thus, a low rate and robust long range telemetry transmission is implemented, capable of transferring528

periodically gathered sensor data without the need for additional energy or any system changes, except529

for software.530

3.4.2. Telemetry Base Station Architecture531

For an optimal system performance also the receiving network has to be properly designed. In532

[43] we presented theoretical analysis of the achievable transmission range related to rate and the533

environment scenario modeling the radio channel. Depending on the height of the transmitting bat534

nodes and the receiving base stations, one has to overcome path losses of more than 150 dB in distances535

of 5 km, while supporting data rates of just a few bit/s for a balanced relation of energy expenditure536

per telemetry bit. This finding is in compliance with our system layout as described in Section 3.4.1.537

To alleviate the influence of shadowing obstacles like trees, the base stations, forming the long range538

telemetry reception network, are located at exposed sites around the habitat of bats. Measurement539

sites on roof tops or towers assure an almost line of sight connection to the bats when flying. Figure 16540

shows a simplified signal processing chain of a telemetry base station.541

The station is equipped with three antennas in total, where one is a directional antenna internally542

consisting of two cross-like antenna arrays rotated against each other (cf ±45◦). These antennas exhibit543

with a high average gain of 14 dBi at a half-power beam width of 66◦ to counteract the high losses to544

be expected. A third omni-directional antenna with 0 dBi assures a gap-less spatial reception coverage.545

This Multiple Input Multiple Output (MIMO) like architecture enables means of stream combining546

and beam forming to mask interferers and further improve the decoding rate. Each reception stream is547
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fed through a Low Noise Amplifier (LNA) and a half-band filter cascade, before being digitized by a548

self-developed radio frontend. A C++ driven Software Defined Radio (SDR) framework [48], hosted by a549

single board computer (SBC), performs signal processing before compressing and storing the In-Phase550

and Quadrature (IQ) data to a local persistent storage. An Universal Mobile Telecommunication551

System (UMTS) modem provides means for remote control, while the Power Management Unit (PMU)552

controls the discharge and recharge process via solar panels of the station’s batteries, allowing for an553

autonomous and self-sustaining operation.554

Figure 17 illustrates the demodulation process of the gathered data. With 3 data streams, each555

exhibiting a sampling rate of 2 MHz and a resolution of 12 bit for in-phase and quadrature component,556

respectively, the resulting transfer rates for streaming the recorded data to a remote storage via the557

internet would be costly and would constitute a bottleneck for the digital signal manipulation. The558

signal processing chain has to cope with these high rates to avoid data loss by buffer overflows.559

Therefore, the demodulation is performed offline. With the vast amount of raw IQ data, a direct560

search for telemetry signal bursts would be both, time and computationally intensive. To alleviate561

this problem, we implemented a so-called Agent (cf Fig. 17). This software module is instantiated for562

each bat signal, detected by a preceding detection algorithm. We exploit the periodicity of bursts2,563

such that when a signal once has been discovered, the Agent can make concise requests to a database,564

rather than loading and traversing complete streams. The database in turn provides metadata, such as565

a precise Coordinated Universal Time (UTC) timestamp, that eases the access, following the periodic566

burst sequences in time intervals of several seconds. Subsequently, a multi-stage timing and frequency567

estimation are carried out, followed by matched filtering, synchronization and the demodulation568

process.569

This section briefly illustrated the long range telemetry functionality. The new transmission570

scheme was successfully integrated into the existing system without the need for additional hardware571

on the sensor nodes or an increased energy consumption. We presented both, the introduced telemetry572

base stations as well as the software components running the transmitter and receiver side. First573

measurement results are given in Section 4, to prove the long range functionality in a practical setup.574

3.5. Data Backend575

Meeting data must be cleansed before analysis. There is an inconsistency between the recorded576

meeting data and domain knowledge. On a semantic level meetings between tracked objects are577

reflexive, i.e. if object 5 has met object 7, object 7 also must have met object 5. However, often the578

counterparts are missing in the recorded data.579

Another issue is a classification issue. If other means are not available, the position can be deduced580

from the number of simultaneous meetings. Trajectories are measured in an a priori determined area581

2 As described in Section 3.4.1, the long range data is structured in packets that are distributed over several wake-up bursts
and encoded within phase changes. Therefore, only after the demodulation of several subsequent bursts, one complete
telemetry packet is retained again (compare Telegram Splitting technique).
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Figure 19. Memory Layout of the Mapping from Time to the Set of Encountered Ids

of interest and are thus not usable to determine positions outside of this area. We often used the ID of582

the base station which received the meeting data to deduce locations. But in some scenarios, it is not583

feasible to install a base station at certain locations, because they are not known a priori, or they are584

simply hard to reach. In the case of bats, one very interesting location is the roost. We expect more585

generally, that locations of assemblies are interesting in most scenarios. Even if we cannot determine586

the exact location of an assembly, it is still valuable to know when a tacked object participated in an587

assembly. To do this, we use the number of simultaneously met objects to decide whether an object588

was at an assembly or not.589

Figure 18 illustrates these computational steps. All steps can be performed in parallel for each ID.590

This is indicated by shadows.591

3.5.1. Implementation592

To solve the inconsistency issue, either meetings lacking their reflexive counterpart must be593

removed or the missing counterparts must be added. As the meeting detection does not create false594

positives, adding missing values is the correct approach.595

However, instead of physically adding missing counterparts to the data set, we make use of the596

fact, that the data must be partitioned for later classification anyway. During partition creation, we use597

all reported meetings involving the current ID of interest regardless of the reporters’ IDs, and thereby598

erase the information of origin. This results in one consistent table of possibly overlapping meetings599

for each ID.600

The next step is to create a mapping from time to the currently encountered ids for each object.601

This implicitly removes the redundancy created by overlapping meetings. We represent this mapping602

by creating an appropriately sized array of bitsets. Each bitset represents a second, each bit in the bitset603

corresponds to an ID of a potential meeting partner (cf. Figure 19).604

As the data set contains a lot of noise, the results are smoothed by considering windows of605

user-specified size centered around each second. The results are stored in a second array which content606

is the union of all bitsets in the corresponding window. This is implemented efficiently by virtually607

shifting the input array by offsets and using the bitwise-or operation to implement the set-union.608
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Figure 20. Union Operations for a Two-Second Window
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Figure 20 illustrates this operation by continuing the example from Figure 19 for a two second window609

around 12:37:01. Finally, the assembly classification is done by comparing the number of set bits to a610

specified threshold.611

3.6. Diversity Combining for Improved Communication612

Whenever a bat equipped with a sensor tag visits the hunting ground, the stored contact613

information needs to be transmitted down to the deployed ground network. As the communication614

takes place in a forest environment, the signal is not only affected by Free Space Path Loss (FSPL) and615

multi-path fading, but, additionally, by shadowing from trees that lie in between. Furthermore, due to616

the fast movement of bats and low transmit power of the sensor tag, there is a need of techniques that617

offer increased communication reliability. Since there are already multiple base stations available in618

the ground network for localization purposes, there is a high probability that the signal transmitted by619

the bat sensor tags will be received by multiple of these base stations. Therefore, we propose to use620

these base stations in the ground network as a distributed antenna array to apply receive diversity621

combining for an improved reception.622

Using spatially separated antennas on the receiver side to perform diversity combining is one623

of the most popular and cheap techniques to combat fading. The most commonly used diversity624

combining techniques include Maximum Ratio Combining (MRC), Equal Gain Combining (EGC), and625

Selection Diversity (SD) [49]. On the one hand, MRC and EGC provide the highest diversity gain but626

that comes with an expense of increased processing demands. For example, to perform constructive627

combining, all branches are weighted (unity for EGC and relative to their received Signal to Noise628

Ratio (SNR) for MRC), aligned, and co-phased before addition. While on the other hand, SD selects a629

branch with the highest SNR and, hence, does not require a complex algorithm but the diversity gain630

achieved is also minimal compared to the others.631

Such a distributed antenna system also helps to make the system becomes more robust against632

not only multi-path fading but also shadowing [50]. This concept is similar to macro-diversity used in633

cellular networks in which multiple base stations connected to each other via optical fiber cooperatively634

decode the same signal to increase the RSS [51]. In our system, nodes in the ground network are635

connected to each other through wireless connections, hence, it imposes limit on the maximum data636

rate that is achievable to exchange the information between nodes to perform diversity combining at a637

single point.638

One option to successfully forward data from all base nodes to a sink node is to process the639

received data at nodes locally and forward soft-bits only [52]. Since soft-bits contain only one float640

value for every single bit, the information that needs to be forwarded reduces dramatically, hence,641

the network is not overloaded. The sink node combines soft-bits instead of signal samples, which642

certainly increases the RSS, however, the diversity gain achieved is not the highest because the system643

loses signal properties while converting the signal into soft bits [53]. As an alternative, we propose the644

concept of selective signal sample forwarding [54]. In the proposed approach, all base nodes detect645

the received signal copy locally by correlating the incoming samples with the known preamble. In646

the case of detection, channel parameters such as phase information is estimated also through the647

preamble and compensated for constructive combining. The local nodes then slice the signal starting648

from preamble equivalent to the known packet length and forward only these relevant I/Q samples to649

the sink. As multiple bats can transmit with a maximum rate of 100 Hz, a packet size of less than 1 ms650

reduces the data rate required in the ground network by more than 10 times and, thus, resulting it in651

the range of few Mbit/s. Finally, the sink node receives all locally detected signal copies and applies652

diversity combining on the received I/Q samples. The performance achieved with the selective signal653

sample forwarding is the same as achieved with the conventional diversity combining and degrades654

only if the local base nodes do not detect the signal successfully [54].655

To analyze the performance of our proposed approach, we implemented the BATS transmitter and656

base nodes receiver in GNU Radio, an open source signal processing tool to implement the software657
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(a) Line-of-sight area. (b) Forest area.

Figure 21. Types of areas to conduct
diversity combining experiments.
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Figure 22. Packet delivery ratio achieved
with different diversity combining
techniques in realistic environments.

part of a radio. We validated our implementation by conducting an extensive set of simulations and658

over-the-air lab measurements. The implementation and validation details are explained in [55]. As a659

step further, to test our model in realistic environments, we performed a series of outdoor experiments660

in LOS and forest areas as shown in Figure 21. To conduct experiments, we use two Ettus B210661

Universal Software Radio Peripherals (USRPs) as receivers and one as a transmitter all connected662

to laptop computers. We placed both receivers 30 m apart and moved the transmitter at a human663

walking speed, i.e., 4 km/h to 5 km/h, between the receivers in such a way that its distance from both664

receivers always remains equal during an experiment in both areas. The maximum transmit power of665

B210 USRP is in the range of 10 dB m, however, since the USRPs are not perfectly calibrated, we fixed666

the transmit power by adjusting the gain in a way that the average Packet Delivery Ratio (PDR) at a667

single receiver stays better than 50 %. We recorded the data of each receiver to apply various diversity668

techniques with exact same channel conditions and processed it offline.669

Figure 22 shows the PDR achieved at each individual receiver, i.e., Rx1 and Rx2, as well as results670

for the different diversity techniques. The error bars depict the 95 % confidence intervals and are671

obtained by repeating the experiments 30 times. As SNR in the resultant signal in MRC is the linear672

combination of SNRs of individual signal copies, it provides the best performance, i.e., achieves a PDR673

of 88 % and 86.5 % in LOS and forest area, respectively. EGC performs only marginally worse than674

MRC despite the fact that EGC involves relatively less processing to calculate the gain values. This675

happens due to the fact that only two receivers or branches are involved with roughly similar SNR.676

The difference between MRC and EGC is more prominent if higher numbers of branches contribute677

for diversity combining. Successful Branch (SB) represents the performance of a system in which a678

reception is considered successful if any of the base nodes decode the signal correctly without any679

combining. SB performs inferior to MRC as well as EGC and achieves a PDR of 86 % and 84 % in LOS680

and forest area, respectively. Nevertheless, the performance of SB is about 2.5 % better than SD in both681

areas. Hence, it can be stated that selecting the highest average SNR branch for SD does not always682

help in decoding the best signal because sometimes the same average SNR of two different signals lead683

to different outcomes because of their different instantaneous SNRs. Regardless of diversity technique684

used, it is clear that using base nodes in the ground network as a distributed antenna array for diversity685

combining improve the communication reliability. Moreover, the performance is analyzed here for a686

two-branch diversity system only and the improvement is still evident. In the final setup, we aim to687

use multiple base nodes for diversity combining and, hence, further improving the diversity gain.688

4. System Verification689

The current system has been thoroughly tested by tracking free-ranging bats of several species.690

During field deployments, researchers may adjust the complexity of the deployed system according691

to their research question, while either the full functionality (e.g., tracking, encounter detection,692

long-range telemetry for studying foraging behavior) may be used or only subsets (e.g., encounter693
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Figure 23. Runtime of each node in hours

detection and long-range telemetry for studying social behavior). These two scenarios have been tested694

in Forchheim, Germany, and Berlin, Germany, respectively, in the following referred to as "Forchheim695

field test" and "Berlin field test".696

4.1. Runtime697

Differences in individual behavior causes significant variation in energy demand and battery life.698

Particularly when individuals spend considerable time within the ground station network, which leads699

to an increase in sampling rate, the power consumption is increased. The runtime of the mobile nodes700

deployed in the Berlin field test is shown in Fig. 23. Here batteries with 15 mAh respectively 25 mAh701

have been used according to the maximum acceptable weight for the corresponding individuals.702

The runtime has been calculated from the first to the last radio contact to each node. This includes703

direct contact to a base station and also encounters between tagged animals. A low runtime can be704

explained by the corresponding animal leaving the covered area and thus preventing the mobile node705

to be received by any other sensor network node or base station. With small (12 mAh) batteries a706

runtime of up to 209 h (nearly 9 days) and with big (25 mAh) batteries a runtime of up to 426 h (nearly707

18 days) has been recorded. On average the sensor tag draws a current of 55 µA. This includes a low708

power sleep state with enabled wake-up receiver as well as periodic wake-ups to send out beacons709

every 2 s and check for base station contact to transmit the stored data. A slower beaconing frequency710

would lead to a reduced energy consumption but would also decrease the time resolution of recorded711

encounters and in turn increase the risk of missing short encounters. During the runtime seen in Figure712

23 a total of 60.000 meetings have been recorded and 2.7 million received pseudo localization beacons713

have been recorded. These pseudo localization beacons are used to give a rough location of the animal714

based on which base station can receive the beacons.715

4.2. Trajectories716

The localization methods presented in section 3.3 were validated during the Forchheim field717

test in summer 2017. The localization network at the test site was operated for 18 days with 17 fixed718

sensor nodes. During the field-test 14 bats where equipped with mobile sensor nodes. For the system719

performance verification a reference path with 4912 waypoints is used. The reference path itself was720

measured by laser equipment during the daytime. In Figure 24 a sensor network with 17 fixed sensor721

nodes is shown. The red trajectory represents the ground truth xk of the reference path. The green722
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Table 1. Average localization error xe of the ML, filtered and smoothed estimated trajectory for the
separate frequencies and the combined results.

method f [MHz] xe,ML[m] xe,fwd[m] xe,fbwd[m]
∆RSSI 868 36.33 7.72 7.02
∆RSSI 2450 14.64 6.42 6.28
∆RSSI 868, 2450 12.93 5.58 5.47

and blue trajectory shows the filtered x̂ f wd and smoothed x̂ f bwd localized trajectory by the grid based723

particle filter presented in [56] for both frequencies. The localization error xe,k is calculated with724

xe,k = x̂k − xk. (8)

where x̂k represents the estimated position at the time-step k. The average localization error is725

calculated by the mean Euclidean distance with726

xe =
1
K

K−1

∑
k=0
‖xe,k‖2 (9)

where ‖ · ‖2 represents the Euclidean norm. In table 1 the average localization error xe,k for727

the different frequencies 868 MHz and 2.4 GHz is shown. Furthermore the average localization error728

for the ML xe,ML filtered xe,fwd and smoothed xe,fbwd localization is shown. The diversity of the729

two frequencies lowers the localization error significant. It also shows that a adaptive localization730

performance can be achieved by using only one frequency if a lower accuracy is acceptable. By adding731

the second frequency a more accurate localization is possible by the drawback of a higher energy732

consumption at the mobile node. For further energy saving the transmit rate can be adapted from 1 Hz733

to 8 Hz.734

4.3. Long Range Telemetry735

The long range functionality as presented in section 3.4 was validated during the Berlin field736

test in 2017. For this purpose, a total number of 32 individual bats were equipped with sensor737

nodes. A wake-up signal was issued every 2 s for encounter detection and telemetry transmission,738

utilizing the combined modulation as described before. Two long range base stations were supplied739

on exposed sites around the bats habitat at the forest of Treptower Park, Plänter Wald and Königsheide.740
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Figure 26. Long range
telemetry base station.
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Figure 27. Received long range packets.

Figure 26 shows a picture of one of the stations, with its directional antenna facing towards the forest,741

the omni-directional antenna on the top and the solar panel for autonomous operation (compare742

Section 3.4.2).743

The field trial was carried out for two weeks. During this time, it was possible to receive over744

7.000 complete long range telemetry packets, accounting for over 168.000 bursts in total. Figure 27745

shows the total number of received long range data packets in dependence of the bat identification746

number. As can be observed, we were able to receive packets from almost every captured bat. The747

base stations were located in distances of about 4 km around the forest, in heights comparable to748

those applied for the simulations performed in [43,44]. The successful receiving and decoding of749

data over this distance shows, that the system layout complies with our simulations on expected750

path loss, channel steadiness and rate. Based on those findings, the implementations also proved751

their functionality. For the measurements, the bat nodes transmitted a time stamp indicating their752

operation time as payload for the long range telemetry, as other data (see section 3.4) was planned,753

but the sensors have not been equipped at that time. For the longest operation time, we encountered754

a value of 320 h of bat with ID 15, obtained by the very last contact to one of the long range base755

stations. When compared to the ground network in Figure 23 with 383 h of operation for ID 15, the756

long range transmission deems to deliver reasonable results, being a worthwhile extension to not only757

observe bats resting under the trees near the ground network, but also bats flying up in the air while758

hunting and outside the tracking range. Summarizing, we showed that we were able to assure a robust759

transmission even under the harsh constraints of a limited transmit power of just about 9 dBm, strong760

path loss and shadowing of over 150 dB as well as unfavorable antenna alignment of the small bat761

node rod antenna relative to our receiving antennas. The measurements substantiated the simulation762

results and practical implementations.763

5. Discussion764

The BATS system for the first time combines two key features of animal logging, i.e. proximity765

sensing among animals and tracking of animals. Proximity information is processed and stored on766

the mobile nodes and transferred to ground stations upon contact. Tracking is aimed to achieve high767

spatial resolution at the cost of covering relatively small areas of usually a few hectares. Nevertheless,768

the overall aim is minimizing the weight of mobile nodes while still achieve a long runtime. Weight769
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is the key parameter for the applicability of a technical animal logging system since low weight770

allows tagging of smaller animals. Minimizing weight comes at the cost of reduced runtime and/or771

functionality. Therefore, during system development we always aimed to allow flexibility in hardware772

(e.g. battery size, number of sensors on a mobile mode) and software settings in order to allow773

adaptations of the BATS system to specific applications.774

A direct comparison of individual parts of the BATS project to other systems is difficult for775

multiple reasons. Each part of the project is highly optimized to perform in perfect harmony with the776

other components. This way the full performance of each sub-project only takes effect when embedded777

in the whole system. This is particularly the case because the ultra low power goal of the overall778

system poses strong limitation in system design. This makes the sub-projects not directly comparable779

to other system that have full control over the whole experimental setup. Detailed literature about780

the performance of individual components of other tracking systems, such as those mentioned in the781

related work section (2), is rare. Therefore, only the performance of the system as a whole can be782

compared. The table 2 gives an overview about selected related system and compares key parameters783

of the systems with each other. Afterwards the systems are compared in more detail.784

Table 2. Comparison of related bat tracking systems

system weight runtime spatial resolution coverage proximity detection
ATLAS [12] 1.5 g 10 days 5 m several km2 no
MOTUS [13] 0.2 to 2.6 g 10 days to 3 years 500 m to 15 km multiple thousand km2 no
Biotrack PinPoint 10
(GPS Tracker)

[57] 1 g up to 130 fixes few meters (GPS) global no

ICARUS [16] 5 g theoretically unlimited
because of solar panels

few meters (GPS) global no

Encounternet [14] 1.3 g (10 g) 21 hours (2 month) presence detection N/A yes
BATS (this work) 1.0 g (1.3 g) 8 days (17 days) 4 m several hectares yes (around 5 m)

For encounter detection the Encounternet project (see chapter 2) has similar goals. However, as785

seen in Figure 23 the mobile node runtime of the nodes developed in the BATS project is surpassing786

the Encounternet node runtime of 21 hours (7.5 days in transmit only mode making them visible for787

other nodes/base stations but they can’t record meetings themselves) while having the same weight of788

around 1.3 g. The BATS system achieves up to 420 hours in full duplex encounter detection. This is789

mostly possible because of the wake up receiver based approach of the BATS project. This way the main790

receiver and the whole circuit can stay in a low power state most of the time. Other factors benefiting791

the long runtime of the BATS sensor nodes is a smart software scheduling and the selection of energy792

efficient components even if this means a slightly degraded performance. Other than Encounternet the793

BATS project also allows precise location tracking in a predefined ground node network.794

The tracking part of the BATS system can best be compared to ATLAS, MOTUS and ICARUS as795

described in chapter 2. However these systems and the BATS project serve different purpose in animal796

research. While the former are focusing on the large scale tracking to for example research migration797

patterns, BATS focuses tracking bats with high spatial resolution in a small area of a few hectares.798

Regarding spatial resolution the ATLAS system and GPS based systems like ICARUS can be799

compared to BATS as long as the tracking is performed under ideal conditions. However, based800

on the system architecture the ATLAS system reacts sensitive to multipath propagation which has801

a negative effect on the precision of the localization. In section 3.3.2 we described how the BATS802

system reduces such negative impact due to a new multipath robust design. This allows precise803

localization results even in multipath propagation affected areas like forests. While the performance of804

GPS based systems can be seen as relatively precise in open areas the precision is reduced in areas805

with diminished reception such as vegetated areas. Especially light low power GPS sensortags may806

suffer a drop in performance under such conditions. Since in the BATS system the ground stations are807

deployed directly in the area which is most relevant to the research, the base station grid can be planed808

in a way that coverage is optimized in this area of interest. However, this of course limits the size of809

the covered area while GPS can be used global and without ground infrastructure.810
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Especially ATLAS and MOTUS make use of relatively simple sensor nodes with the data811

processing mostly on the ground stations. There energy efficiency isn’t that critical anymore. This812

results in relatively long mobile node runtime due to its simplicity. In ICARUS the localization is813

performed via GPS fixes on the node. Increasing the energy demand drastically but also makes the814

sensor nodes independent of a ground station network. ICARUS uses mobile nodes with attached815

solar panels. This way a long runtime can be achieved despite the relatively high current consumption816

of GPS trackers. This approach can not be applied in the BATS projects since the investigated animals,817

bats, are nocturnal species and hide in dark roost during day. Still, the theoretically unlimited runtime818

of the ICARUS nodes is a desirable characteristics of the node. Further research is required to design819

an energy harvesting system to support the BATS mobile node while taking the strict weight limit as820

well as the fact that bats are nocturnal animals into account.821

Similar to ATLAS and MOTUS the BATS project offloads energy-intensive localization to the822

less energy-constrained ground station network but keeps the mobile nodes highly functional. The823

localization of an animal is approximated according to the recording of mobile node beacons received824

by ground nodes that are processed by a central computer proving almost real time information825

of an animal’s location. However, due to the capabilities of the mobile node we can limit sending826

location beacons only to the area where mobile base stations are in range. This way the overall energy827

consumption can be reduced especially for individuals spending only short periods of time in the828

tracking grid.829

The combination of encounter detection and ground system based localization drastically reduces830

the amount of so called "blind spots" where no information on the animal can be obtained. GPS based831

systems for example may have problems getting GPS fixes that determine the current location in thick832

forest environments and places like roosts or caves. In unknown locations the BATS system still allows833

indirectly monitoring the animals’ behavior by collecting encounter data among tagged animals or - if834

such locations are known - fixed sensor nodes may be installed in these places that act as normal bat835

nodes. This way fixed nodes record encounter data and report on the identity of individual tagged836

bats in range. In such scenarios we can precisely assess, e.g., the time an individual left the roost for837

hunting.838

Other than all mentioned systems the BATS system implements a quasi energy neutral long range839

telemetry system that allows receiving data even if the bat leaves the area of high interest where840

a the precise tracking and/or data download takes places. Thanks to embedding the long range841

telemetry signal in the beacons sent out for encounter detection and making use of a newly developed842

transmission scheme (as described in section 3.4.1) the long range telemetry is included at practically843

no extra current consumption on the mobile node. We achieve a high energy efficiency and still can844

receive the signal up to 4 km away from the long range antennas despite high path loss, shadowing845

and generally highly variating channel due to the bats movement speed.846

Being able to adapt its behavior based on the current situation to increase energy-efficiency while847

maintaining full functionality when needed is the key feature of the BATS system. Various functions on848

the mobile node are automatically regulated upon demand by switching between different operation849

levels including a sleep mode. Such adaptive functionality is achieved by introducing so-called zones850

which are set by receiving beacons from ground stations. Similar to only send localization beacons at851

high frequency while being in the tracking grid and not sending them while being outside the grid852

to save energy, for encounter logging the beaconing frequency is reduced as soon as the animal is853

within the roost. Here the environment is rather stable thus the time between encounter beacons is854

much longer. Following this zone principle certain functionalities can be enabled respectively disabled855

and parameters of the tags can be changed depending on the current application of the system. This856

functionality enables the BATS system to track bats inside the tracking grid at high spatial and temporal857

resolution while no localization beacons are sent at all when bats are outside the tracking grid to save858

energy. Comparable systems either transmit beacons continuously or schedule the sending based on859

programmed time slots regardless of the location of the animal. Apart from external control of the860
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nodes behavior with beacons the mobile node can schedule the use of on board peripheral resources,861

like the NVRAM storage, itself. This allows the system to keep components turned off for the majority862

of the time and only power them when required.863

A particularly energy intensive task of the mobile node is the transmission of stored data to the864

ground station network. Combining multiple packages to bursts allowed the reduction of energy by865

40% to 30 µJ per packet. Further reductions may be possible by omitting checksums in the transmitted866

packages. However, this would lead to an increased packet loss and render the recorded data unusable.867

Data retrieval from mobile nodes is a crucial step of the BATS system. It occurs upon contact868

of mobile nodes to ground stations at a distance of up to approximately 150 m depending on the869

environment. Much longer data retrieval distances of up to 4 km were achieved by the implementation870

of long-range telemetry (see chapter 3.4).871

Technical development of the BATS system was subjected to multiple iterations for optimization872

and addition of new features. An overview about a previous version can be found in [58]. Meanwhile,873

it is possible to track 60 animals at the same time instead to 28 previously. The spatial precision of the874

flight trajectory was substantially improved from 7 m average error to 4 m. In addition, the current875

mobile node is characterized by lighter hardware and slimmer dimensions due to improved hardware876

components and a redesign of the board outlay. Low energy-consumption was an important criterion877

in selecting among commercially available components for the mobile nodes. Thanks to the now878

available on board NVRAM the system also allows recording of larger data sets (e.g. more encounters)879

until download upon contact to a ground station. The lower weight of the node without battery and880

lower power consumption allows the use of batteries with higher capacity and generally results into881

an extended runtime.882

6. Conclusion and Future Work883

The wide range of available technical systems for animal logging can largely differ in their884

technical features determining their applicability studying animals in their natural habitat 2. The BATS885

system meets simultaneously the needs for proximity sensing and local high-resolution tracking in a886

single system by optimizing energy use. This unique combination allows a wide range of applications887

in the fields of sociobiology, behavioral ecology, movement ecology or physiological ecology. The888

small size and weight of the mobile nodes and the flexibility of the whole system allow investigating a889

broad spectrum of species.890

Depending on the actual use case individual functionalities of the system can be disables to891

provide a longer runtime and certain functions can flexibly be enabled/disabled in the field based on892

the current location/situation of the tag. The adaptive approach of the BATS system leads to high893

quality data when required while at the same time maintaining an overall long runtime.894

The current system is actively used in biological studies [59,60] and creates rich data sets on the895

studied animals.896

The applicability of the BATS system can be expanded by adding new sensors like an accelerometer897

or magnetometer. Thus, it represents a new modular system that can be redesigned according to the898

needs for a specific application. Both, hardware and software adjustments are important measures899

to reach the minimal weight limits of mobile nodes, which strongly determines the range of animal900

species that can be studied.901

Still, even the current version can be used for multiple further biological studies regarding (social)902

behavior in bats and similar sized (airborne) animals. The paper has shown, that for studies that rely903

on encounter data either with or without localization the BATS system has outstanding performance904

and is capable of generating precise results.905
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