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Abstract—Position sensing systems for indoor environments
have one common problem: The setup effort of the whole system.
GPS-supported localization is simple and fast to implement and
the reference grid is ubiquitous. However, in locations where
the signals of GPS are not available, e.g. indoor, or where the
technique is not accurate enough, other position sensing systems
have to be used. Usually, a reference grid will be provided
by an administrator: Reference points must be deployed and
programmed with the correct location information. Especially
for temporary installations and dynamic surroundings the setup
costs are very high. In our work, we developed a robotic platform,
which is capable of deploying itself autonomously and which
can operate as a mobile reference point equipped with ultra
sound transmitters. Relying on a combination of two controllers
and an odometry system, the platform is able to drive on a
complex spline-like trace using only a few supporting points. We
also investigated the problem for the localization system itself.
The detection field of our ultra sound based system is a full
hemisphere. Within this domain, we can measure the distances
between nodes exploiting the time of flight technique as well as
the angle of arrival. Finally, the system can also be used as a
sonar system for passive obstacles detection.

Index Terms—Indoor localization, sensor network, ultrasound,
autonomous robot

I. INTRODUCTION

Sensor network applications can benefit in many ways from
the knowledge of their current physical position. For outdoor
scenarios, this can be accomplished in an easy and fast manner
by using the global positioning system (GPS). However, for
indoor scenarios positioning has to be based on other methods.
In general, two different techniques are possible. First, a device
can enter an unprepared environment and localize itself relying
on (passive) observations and an a priori provided map [1].
Secondly, a device can localize itself by relying on interactions
with other devices – which is similar to GPS. We focus
on the latter solution to enable the operation in unknown
environments. Although a considerable amount of academic or
commercial systems are available, there is no widely accepted
approach available so far. Based on the complexity of the
various scenarios, the available systems are normally designed
for a specific application and not applicable for general usage.

In most cases, the biggest hurdle limiting the wide propaga-
tion of the various localization systems is the preparation of
the localization grid itself. As a persistent localization system
is usually not desired, the grid assembly and disassembly effort
is not negligible. For example, the GPS grid is maintained
by the US government and is available worldwide. Each
GPS client can determine its position referring to this grid

Fig. 1. Mobile sensor node including localization hardware

without any additional administrative effort. However, for
indoor position sensing this is, of course, not easily applicable.
Before such a system can be used, infrastructure support must
be provided a priori. Based on this localization infrastructure,
the mobile devices can determine their positions. This grid
usually consists of a number of detection systems, which
are called reference points or anchor nodes. Their main task
is to provide information of their location to the mobile
inquirer. Either the mobile device itself or the anchor node (or
even both) perform a measurement which returns a physical
measure, which is typically a distance or an angle. This quantity
represents the correlation between the mobile node and the
reference point and is subsequently used for the position
calculation.

In early indoor localization systems developed around 1990,
all the anchor nodes were wired to a central server [2]. The
hardware installation of such a grid was very expensive. Further-
more, changes in the environment could not be compensated.
Nowadays, the reference points are wireless and organized
in a decentralized way. Obviously, this is a good application
domain for sensor nodes. Yet, still efforts must be made for the
installation of the grid. The anchor nodes must by accurately
placed in the environment and the physical position must be
provided, i.e. programmed. A few systems also have built-in
hardware supporting self-localization. This means, that their
hardware is not restricted to detect only the mobile devices
but is also capable of detecting the neighboring anchor nodes.
This allows to automatically determine the physical position
of each node. However, the effort of the initial anchor node
placement still remains. Furthermore, if this placement is not



done properly, the self-localization algorithm for individual
nodes may fail and, therefore, the whole grid may become
unstable. Again, changes in the environment need to be handled
manually.

In this paper, we present an approach to replace the stationary
anchor nodes by mobile nodes capable to autonomously drive
around and to establish a reference grid. We rely on ultra
sound measurements – for this type of localization system,
the reference points are usually mounted to the ceiling in
buildings, because there far less none-line-of-sight effects and,
therefore, far less measurement errors are to be expected. As
autonomous movement on ceilings is complicated, we are
using mobile robots driving on the floor of the room. The
mobility of these systems can also compensate none-line-of-
sight effects. Furthermore, these nodes are transformed into a
robotic platform and can explore arbitrary environments fully
autonomously for setting up a global localization grid.

Our scenario, which we also established in our lab, is as
follows: A four rotor-flying robot (quadrocopter) is relying on
an external positing system to continuously update its system
parameters – otherwise it would not be possible to maintain a
given position or course. To support the indoor navigation of
that drone, an coordinate system must be established first. This
can be done autonomously by the mobile sensor nodes depicted
in Figure 1. The reference points can distribute themselves
uniformly over the environment and span up a grid using a self-
localization algorithm. Thereby, a fully stand-alone localization
system can be demonstrated. This scenario was chosen because
it intuitively shows the challenges and requirements in terms
of real-time and accuracy of the whole system.

The rest of the paper is organized as follows. Section II
surveys the state of the art of position sensing and mobile
systems. In Section III, we present the developed platform.
Then, Section IV presents some insights into the performance,
features and capabilities of the system. Finally, Section V
concludes the paper.

II. RELATED WORK

In this section we briefly survey relevant work described
in the literature. We divide this section into two subsections
discussing the position sensing and the actuators separately.

A. Position Sensing

Previous research has addressed various versions of the
self-localization problems. With respect to the hardware imple-
mentation, we distinguish the approaches solving this problem
into three different classes. Besides two classes for direct and
indirect self-localization capable equipments, we also categorize
a more theoretical class, simulative self-localization.

1) Simulative self-localization: A lot of basic approaches
have been developed and verified from a theoretical point of
view using simulation techniques. Besides the low costs and
the negligible hardware effort, the main advantage is that the
variables for the environment can be defined as desired covering
a wide spectrum of settings. Measurement errors, side effects,
and real hardware restrictions can be totally ignored. However,

for a migration to real hardware, considerable refinement must
be provided. A typical example for this strategy has been
described by Kuo-Feng et al. [3]. In their work, they provide
a range-free localization procedure. Thus, no distances or
angles are required for the position estimation. Thereby, no
extra components except an already available radio interface
are required. A mobile assisting node, equipped with GPS,
moves into the radio sensing field of different sensor nodes
and periodically broadcasts its current position as obtained
from GPS. The sensor nodes receiving the information are able
to compute their location.

2) Indirect self-localization: Most physically constructed
localization systems have one deficiency: For a variety of
reasons that include obstructions and lack of reliable omni-
directional transmissions, the inter-neighbor (node-to-node)
distances or angles cannot by measured directly. Thus, a manual
configuration of each reference node with its position has to be
ensured or, again, a mobile assisting node is needed to solve
the issue. The latter case has been for example investigated by
Nissanka et al. [4]. Here, the mobile node is moving within the
entire area and collects measurements until all required inter-
nodes distances can be computed. This method is not applicable
for our stand-alone exploration scenario. The mobile assisting
node would be the flying robot. But it cannot autonomously
fly without relying on the not yet spanned localization grid.
As a result a direct inter-node detection capable hardware is
required.

3) Direct self-localization: Fukuju et al. developed DOL-
PHIN [5], a platform that is capable of detecting its nearby
neighbors directly. Their basic idea is to build a sensor array
consisting of a set of sensors, so that a hemisphere can be
covered. They also provide an algorithm, which needs at least
three initial reference points with known positions to determine
the positions of all other anchor nodes. However, a closer
analysis of the used hardware shows that this architecture is
not appropriate for our described indoor application. The sensor
bar does not support a full hemisphere for mid and far ranges.
Concerning our objective to mobilize the nodes, the hardware
itself is too big and heavy for our flying object. Finally, the
necessary three reference points with known position will not
be available for autonomous space exploration.

B. Actuator

The tracking controller of wheeled mobile robots is often
realized in two steps. First, a desired trajectory is planed and,
secondly, a controller is used to maneuver the robot onto this
trace and to finally follow it. We assume already prepared
trajectories and focus on the lower level implementation in
this paper. Chwa et al. are using a sliding mode tracking
controller [6] to stabilize the nonlinear problem. This and
similar nonlinear controller types are frequently used. However,
we aim to implement the controller on a low-cost micro-
controller and, therefore, computation intensive control theory
cannot be applied.



III. MOBILE SENSOR NODE PLATFORM

In this section, we present our basic idea as well as the
implementation of our platform. According to the multilayer
structure of the hardware, this section is segmented into an
actuator and a sensor subsection.

The central unit (CU) of our platform is a sensor node
mounted to a robot chassis. We use the SunSpot system [7]
running JavaME as the host operating system. This node has
direct access to all components of the system. The actuator layer
(Section III-A) is exclusively connected to the CU via a serial
interface. The sensor array (Section III-B) and additionally
attached parts can communicate with the CU using a two
wire interfaces (I2C). This bus can easily be accessed by the
connector. The I2C system has been chosen because of its multi
master capability. Thus, not only passive systems (slaves) can
be accessed but also active systems (masters) can be attached to
the same bus and, for example take control of the robot. Even
though our hardware has been developed for indoor usage, it
can, with slight modifications, as well be used for outdoor
environments.

A. Actuator layer

For the movement of the system, the actuator layer is used. To
enable complex pretty exact maneuvers, most of the necessary
computations have to be migrated from the CU to the controller
of that layer, leaving only minimal computational coast for
the sensors node. The chassis (10 cm× 10 cm) consists of two
motors and six infra-red (IR) distances sensors. Both motors are
equipped with position encoders. By evaluating them, this so-
called odometry system can determine the passed trajectory of
the robot. Knowing exact physical dimensions and continuously
analyzing this data allows to infer a position. Those necessary
computations are based on kinematic equations. However, this
iterative location system is arbitrarily inaccurate. Mathematical
approximations and surface irregularities falsify the results.
Odometry systems accumulate the errors from step to step.
Thus, a correction of the position information is necessary.

As odometry data are always available, a position controller
can be implemented based on this information. The CU only
has to specify a desired position and heading to the actuator
layer. The position is determined stand-alone by the controller
of this layer. In order to achieve a certain required accuracy,
the position of the odometry needs to be improved, e.g. using
the localization hardware on top of the robot. A possible trace
of the robot is depicted in Figure 2. The robot is currently
at the position P1 and shall drive to the position P2. In this
example the target position has the same alignment as the
source position. To achieve the heading and to avoid complex
splines computations, the controller attempts not to reach the
target point P2 but the point P ′2. This virtual point P ′2 is the
intersection of a circle around the target point with half of
the distance between the points (target and current point) as a
radius and extending a line from the target point directed to the
negative direction of its orientation. This point is recomputed
every cycle and, therefore, the point P ′2 is moving towards the
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Fig. 2. Calculation of the virtual target position

point P2 as the distance is getting smaller. Thereby, the robot
is driving on a trace similar to a spline.

The position problem (Section II-B) can actually not be
solved using linear control theory. By replacing the trajectory
by supporting points and by introducing the virtual point, it
is also possible to get a relatively exact and yet unrestricted
mechanism for movement. Figure 3 shows the control loop
for the movement. The blue blocks represent real hardware
components, the white blocks are linear control elements, and,
finally, the red blocks depict non-classical control elements.
The odometry is generating a current position −→xy from two
presented velocities yr, yl and available status information. The
position controller computes the virtual point using the position
error −→xe and returns a distance d̂ and an angle α̂ to that point.

Additionally, the chassis is equipped with three near-field
IR distance sensors on each side. This allows the detection
of instantaneous obstacles to avoid collisions. More detailed
information on the actuator layer is provided in a technical
report [8].

B. Sensor layer

The sensor layer, which provides information about the
environment, is similarly important for the system as the
actuator layer. Despite the near-field sensors on the lower
layer, an obstacle detection system for mid- and far-ranges
is needed. Additionally, in order to reduce weight, size, and
energy costs, the same system must have the ability to use
accurate position sensing techniques. Whereas most available
systems are only capable of detecting special targets, our aim
is to make the system capable of localizing its neighbors and
detecting passive objects or obstacles using the same hardware.

We decided to make use of the time-of-flight (TOF) and angle-
of-arrival (AOA) techniques. The TOF technique describes a
distance calculation, which measures the time between the
departure and the arrival of a signal. AOA represents the
detected angle at the arrival of a signal. After an initial cost-
benefit analysis, we decided to build the system based on
ultrasound (US) transmitters. The main benefit of this usually
unused acoustic band is that the rate of propagation is relatively
slow (cSound � cLight). This results in a high accuracy even
using low-cost hardware.
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Fig. 3. Control Loop of the actuator: Two inner PID controller cascaded by an outer linear position controller

In our scenario, it is necessary to enable the detection
and the dispatch of the signals within the whole hemisphere.
However, neither commercial transmitters nor receivers fulfill
this requirement. We are using US transmitters and receivers
with the largest available beam width (255-400S[T/R]12M-
ROX, Kobitone) of about 90◦. The radiation pattern is depicted
in the data sheet [9]. To completely cover the hemisphere,
at least four units of each type have to be used. These
units are placed horizontally orthogonal to each other. In the
literature, a vertical angle of 45◦ is described to build an
ideal hemisphere. However, in our indoor scenario, the needed
altitude is limited to 3 m. By lowering the angle, the detection
field can horizontally be extended (oval hemisphere). Therefore,
we recommend a vertical angle of 30◦. Furthermore, in order to
reduce the dimensions, we phase-shifted the transmitting array
by 45◦ of the receiving array and we lowered the transmitting
array. This results in two advantages: First, the detection radius
increases for about 20 %. The receiving sensors on every
ground robot are mounted above the transmitters. Thereby, the
detection field is better placed in the upwards facing emission-
cone from other robots. Secondly, the transmitters have the
maximum distance to the receivers on the same unit. Thus, the
false-positive detection times at an active chirp can be faster
decomposed. Thereby the US unit is earlier ready to receive
and to detect its own echo signal. This also allows to measure
smaller distances. The complete US sensor bar is depicted in
Figure 1. The lower US ring is composed of the transmitters,
the upper of the receivers.

The transmitters’ operating voltage is up to 20 V. At the
center frequency of 40 kHz, they can generate a sound level of
up to 115 dB (0 dB re 0.0002 µbar). To obtain 20 V for the
maximum sound level out of the 5 V board voltage, we used
two different techniques: First, the voltage is doubled by an DC-
to-DC converter. Secondly, both pins of each transmitter are
toggled simultaneously with alternating logical signs (ground
or supply voltage). This effectively quadruples the voltage.
The detection of the ultrasound chirps is done with a double
inverting and offset compensating amplifier and an attached
comparator for digitalizing the values. Based on experiments,
we determined a total gain of 3× 103 suitable (uniformly
distributed to both amplifier stages). This gain factor allows
the coverage of the whole hemisphere with a radius of 6 m.

Fig. 4. Sensor bar mounted on a quadrocopter

But it also requires a very smooth operating voltage and
no physical vibrations during the measurement. Due to the
unsprung mounting of the printed circuit board (PCB) on
the ground nodes (see Figure 1), node movement during a
measurement will result in measurement errors.

The flying objects consume about 80 W during operation.
Stopping the rotors for a measurement is not possible. Thus, the
flying object cannot support a smooth supply voltage. Moreover,
a lot of vibrations on the frame occur and the air turbulences
heavily affect the detection capability. Without mechanical
decoupling reliable measurements would not be possible.
Although we uncoupled the sensor PCB from the rest of the
quadrocopter using small cords (depicted in Figure 4), those
physical characteristics force the amplifier gain to be adjusted
down to at least 2× 103 to guarantee correct measurement
results. This reduces the self-localization capabilities of the
flying objects to a radius of 2 m. The localization capability of
the ground nodes is mostly unaffected because they are better
placed in the detection field of the sensors. However, we do
not aim for inter-flying-object distance measurements.

IV. MEASUREMENTS AND EVALUATION

In this section, we describe the measurements and discuss
the achieved results. For the odometry, no general accuracy can
be derived. It strongly depends on the assembly tolerances, the
desired trace, and the subsurface. Extreme driving maneuvers,
like tight curves or frequent start-stops, affect the total error
more significantly than straight movement. Depending on the
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Fig. 5. Recorded odometry trace of an anchor node

favored accuracy, a position correction rate must be set.
For the verification of our control theory, we prepared the

following experiment: We constructed a course from point
P1 to P3 via P2. Figure 5 depicts the path driven as well
as the required supporting points and their heading. The
depicted coordinates do not represent physical coordinates
but the coordinates provided by the odometry system. In
this experiment, we only focus on the (motor and position)
controllers: 6 cm before the platform reaches the point P2,
the point P3 is stated as the new desired endpoint. Thereby,
the robot does not exactly reach the first supporting point but
continuously proceeds towards the next point.

As mentioned before, the sensor bar has to fulfill two tasks:
On the one hand, it shall detect obstacles and passive objects
in mid- and far-field ranges and, on the other hand, it shall
detect neighbor and target nodes using the same hardware
components. Those tasks can be fulfilled performing two
different measurements, either relying on an active or on a
passive chirp. In the first case, the sensor bar is performing
an active chirp using all four US transmitters. This uniformly
emitted ping is reflected by passive objects in the proximity and
re-detected by the sensor bar. The elapsed time between sending
and receiving can be exploited to determine the distance.
Neighboring nodes can be detected using the latter case. All
US systems need to be (at least pairwise) synchronized. In our
case, they all are globally synchronized with a tolerance of
±7 µs using a radio beacon. The detection works as follows:
One node is emitting an active chirp. All the neighbors know
the exact departure time (start of a slot) and, therefore, can
determine the travel time of the signal after the detection. That
active chirp can simultaneously be used as a obstacle detection
measurement.

Independent of the measurement type, up to four signal flight
times can be measured and translated into distance measures.
Thus, the distance to an object and the type of object itself
can be determined. However, even more information can be
gained from the gathered data. The placement of the sensors
allows to conclude to a horizontal AOA. If (in the worst case)
only one sensor detected the chirp, the detection scope can be
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Fig. 6. Accuracy histogram plot for the distance measurement

delimited into a segment of ±45◦. If more than one sensor
triggers, a more precise segmentation can be found. However,
the likelihood of triggering more than one sensor decreases
with the distance. Priyantha et al. already investigated this
problem for their US compass [10]: they tried to conclude an
AOA only relying on different distance measurements. The
relative arrival time can be determined more accurately than the
absolute arrival time. This also holds for the distances as they
rely on the measured timings. Equation 1 is taking advantage
from that fact:

Θ = cos−1

(
d1 − d2

L

)
(1)

Θ denotes the AOA. d1, d2 are two available distance measure-
ments (from the same time slot) and L is the distance between
the two used US sensors. Only a relative and, therefore, more
exact measurement is used. However, in practice the detection
of US signals is delayed if they do not arrive at an angle of 0◦

(this effect is described in the data sheet [9]). The ability to
absorb the signal is dependent on the AOA. A chirp, dependent
on its AOA and strength, needs a distinct amount of time to
be detected. For the Cricket compass [10], the sensors are
seeded in parallel. Each sensor has the same AOA for one
chirp. The ability to absorb the signal does not effect the
relative time measurement. In our case this is serious due to
the orthogonal arranged sensors, which are essential for the
hemisphere detection range. We tackle the miscalculations of
the relative distance by doubling the constant value L. 2 ·Lreal
is roughly the mean value of the measured inter-sensor distance
regarding different angles. If the computation node is a low-
power micro-controller or if the mathematical function is not
available then the arc cosine function can be replaced with a
linear approximation function. The covered domain and co-
domain ranges are: (−0.7..0.7) →

(
π
4 ..

3·π
4

)
. Within these

ranges the function can be linear approximated very accurate.
Figure 6 depicts the accuracy for the distance measurements.

For our lab experiment, we arranged worst case settings. Two
anchor nodes were placed on the floor. Thus, the emitters of
one anchor node is near the border of the hemisphere like
detection field of the other node. In addition, we arranged the
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Distance Mean absolute error
1m 5.5◦

2m 6.15◦

3m 10.26◦

4m 16.39◦

5m 13.42◦

6m 22.64◦

TABLE I
MEAN ANGLE ERROR

inter-robot alignment in a way that the receivers are arranged
orthogonally w.r.t. the transmitters. In the boxplot, the error
between the real and the measured position is depicted. For
statistically correct evaluation, we measured every position
103 times. An absolute accuracy of ±20 mm can be achieved.
In the worst case, the relative deviation is below 0.9 %.

Figure 7 shows the accuracy for the angle measurements.
Again, we placed two reference points on the floor of our lab.
The chirping robot has the worst case alignment in relation to
the listening robot: The second platform was rotated. In the
plot, the real vs. measured angle is plotted. This experiment
was repeated six times using different inter-node distances. As
mentioned before, the angle accuracy is decreasing with the
distance. For distances above 5 m, only four different angles
can be stated. Therefore, the maximum error can be limited to
±45◦. Table I outlines how the mean absolute measurement
error is increasing with the distance. For our lab experiment,
we distributed the angle measurements uniformly in the full
angle range (0◦ to 360◦). The theoretical maximum mean error
is 22.5◦. Due to measurements errors the practical value is
slightly higher than the theoretical value.

V. CONCLUSION

In our work, we developed a cost efficient and lightweight
hardware platform based on sensor nodes. The sensor-actuator
combination enables the capability of autonomous spanning of
a localization grid. For the mobility we cascaded two different
controllers and a odometry system to enable the movement
on complex traces only relying on a few supporting points.
The introduction of the virtual point and the avoidance of a

trajectory made a linear controller for the actually none linear
problem possible. Even though it is not that accurate as a
sliding mode controller, we get sufficient results.

For mid- and far-range obstacle detection as well as for
neighbor detection, we employ an US based sensor. The gain
of the US amplifier detection stages is chosen as a trade-
off between signal and noise ratio. Our goal was to enable
self-localization capabilities and passive obstacle detection
within a hemisphere with a radius of 5 m to enable room
wide sensing. The used gain factor allows a 100 % coverage
of the hemisphere with 5.6 m in radius. Within this sphere
we have a maximum distance measurement error of ±20 mm.
Furthermore, the system can determine the AOA of an US
chirp. The mean absolute error within our desired range is
below 17◦. However, due to the limited gain factor the detection
hemisphere begins to have gaps at a radius of 6 m.

The combination of the shown hardware components allows
to set up a localization grid in a fully autonomous manner.
The anchor nodes can uniformly deploy themselves in the
environment and measure the distances and the orientations
to each other. This information is subsequently exploited for
the position sensing algorithm. Both components are essential
for autonomous explorations of unknown surroundings. We
currently investigate the autonomous placement and the anchor-
free localization techniques for the nodes.

REFERENCES

[1] J. Leonard and H. Durrant-Whyte, “Mobile robot localization by tracking
geometric beacons,” IEEE Transactions on Robotics and Automation,
vol. 7, no. 3, pp. 376–382, June 1991.

[2] R. Want, A. Hopper, and V. Gibbons, “The Active Badge Location
System,” ACM Transactions on Information Systems, vol. 10, no. 1, pp.
91–102, January 1992.

[3] S. Kuo-Feng, O. Chia-Ho, and C. J. Hewijin, “Localization with mobile
anchor points in wireless sensor networks,” IEEE Transactions on
Vehicular Technology, vol. 54, no. 3, pp. 1187–1197, May 2005.

[4] N. B. Priyantha, H. Balakrishnan, E. D. Demaine, and S. Teller, “Mobile-
Assisted Localization in Wireless Sensor Networks,” in 24th IEEE
Conference on Computer Communications (IEEE INFOCOM 2005),
Miami, FL, March 2005.

[5] Y. Fukuju, M. Minami, H. Morikawa, and T. Aoyama, “DOLPHIN:
An autonomous indoor positioning system in ubiquitous computing
environment,” in IEEE Workshop on Software Technologies for Future
Embedded Systems, Hakodate, Hokkaido, Japan, May 2003, pp. 53–56.

[6] D. Chwa, J. Seo, P. Kim, and J. Choi, “Sliding mode tracking control of
nonholonomic wheeled mobile robots,” in Proceedings of the American
Control Conference, vol. 5, South Korea, 2002, pp. 3991–3996.

[7] R. Smith, “SPOTWorld and the Sun SPOT,” in 6th International
Conference on Information Processing in Sensor Networks, Cambridge,
April 2007, pp. 565–566.

[8] J. Eckert, “Extension of the robocup system architecture for performance
evaluation of mobile embedded systems,” Master’s Thesis, University of
Erlangen-Nuremberg, June 2008.

[9] Mouser-Electronics. (accessed July 6, 2009) 255-400ST12M-ROX
and 255-400SR12M-ROX. [Online]. Available: http://www.mouser.com/
catalog/specsheets/KT-400482.pdf

[10] N. B. Priyantha, A. K. Miu, H. Balakrishnan, and S. Teller, “The cricket
compass for context-aware mobile applications,” in 7th ACM International
Conference on Mobile Computing and Networking (ACM MobiCom 2001),
Rome, Italy, July 2001, pp. 1–14.


