Literature Database Entry

mariano2015solution


Allan Mariano de Souza and L. Aparecido Villas, "A new Solution based on Inter-Vehicle Communication to Reduce Traffic jam in Highway Environment," IEEE Latin America Transactions, vol. 13 (3), pp. 721–726, March 2015.


Abstract

Traffic congestion is an urban mobility problem, which generates stress to drivers and economic losses. In 2012, greenhouse gas emissions from transportation accounted for about 28% of total U.S. greenhouse gas emissions. Intelligent transportation systems can assist in the identification and reduction of vehicular traffic congestion. In this context, this work proposes an intelligent traffic information system based on inter-vehicle communication to avoid vehicle traffic congestion. The main goal of the proposed solution is to decrease CO2 emissions, the average trip time and fuel consumption by avoiding congested roads. Simulation results show that our proposed solution can reduce the average trip time, and the overall CO2 emission and fuel consumption. In particular, the trip time was decreased approximately 86%, the fuel consumption 40% and the CO2 emission 55%. This shows the potential of the proposed solution.

Quick access

Original Version DOI (at publishers web site)
BibTeX BibTeX

Contact

Allan Mariano de Souza
L. Aparecido Villas

BibTeX reference

@article{mariano2015solution,
    author = {de Souza, Allan Mariano and Aparecido Villas, L.},
    doi = {10.1109/TLA.2015.7069097},
    title = {{A new Solution based on Inter-Vehicle Communication to Reduce Traffic jam in Highway Environment}},
    pages = {721--726},
    journal = {IEEE Latin America Transactions},
    issn = {1548-0992},
    publisher = {IEEE},
    month = {3},
    number = {3},
    volume = {13},
    year = {2015},
   }
   
   

Copyright notice

Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.

The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

The following applies to all papers listed above that are in submission to IEEE conference/workshop proceedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at www.springerlink.com.

This page was automatically generated using BibDB and bib2web.