
Adaptive network monitoring for self-organizing
network security mechanisms

Falko Dressler
Autonomic Networking Group, Dept. of Computer Sciences

University of Erlangen, Martensstr. 3, 91058 Erlangen, Germany
Phone: +49 9131 85-27914

dressler@informatik.uni-erlangen.de

Abstract

Network security has become a major part of the network infrastructure
especially in the area of detection mechanisms for attack and intrusions. Apart
from general measures for attack detection and prevention, the performance of
the monitoring architecture employed by the attack detection constitutes an
important asset for network security. In this paper, we focus of the amount of
measurement data obtained on a monitoring probe that has to be transmitted to
and analyzed by an attack detection system. We question the possibility of re-
configuring the monitoring part in order to adapt to the computational resources
of the analyzer as well as to the current network behavior. In order to cope with
these goals, we model the overall security environment consisting of monitors,
detection systems, and firewalls. In a simulation we show the speedup gained by
adapting the parameters of the monitoring solution.

1. Introduction

Today’s communication networks are threatened by an increasing number
intrusion attempts, worms, and denial of service (DoS) attacks [19, 21]. Apart
from general measures for attack prevention, the possibility to detect ongoing
attacks in order to take appropriate countermeasures constitutes an important
asset for network security. Therefore, the detection of intrusions, violations, and
attacks is a significant task in nowadays communication networks. A brief
history and overview to intrusion detection is, for example, given by Kemmerer
[18] and Bace [1]. Especially, the number of DoS attacks and distributed denial
of service attacks (DDoS) is increasing every day. Typically, important servers
from government or industrial systems are attacked, yet we already see similar

attacks against primary systems at universities. In addition, the effectiveness
and malignance of such attacks is increasing [17].

Fig 1. Network security environment. Besides of routers, a network
contains monitoring probes, intrusion detection systems, and packet
filters (firewalls)

Intrusion or attack detection only one part of a global network security
environment. In Fig 1, an overview to a complete network security environment
is provided. Intrusion detection systems build the intelligent core of a reactive
system that is monitoring, analyzing, and counteracting ongoing attacks and
intrusions. Obviously, the functionality depends on the quality of the interaction
between involved parts.
In this paper, we focus on this interaction and especially on the performance
aspects of the monitoring and analyzing part. In a simulation model we
reconstructed a monitoring environment. In order to obtain meaningful results
from the analysis, we used a packet trace from our lab server as input for the
simulation. We modeled the complete environment by inspecting the traffic
flow and configuring adequate firewall rules (blacklist). Additionally, a
whitelist was employed that describes the traffic flows detected as legitimate
traffic by the intrusion detection system. Finally, we analyzed the behavior of
the system by modifying several parameters, such as some filters and sampling
parameters, in order to show the possibilities of a self-configuring and self-
optimizing network security environment.
The described adaptive solution can be adequately employed in an existing
system, CATS (cooperating autonomous detection systems, [11]). Its goal is to
identify ongoing attacks using autonomously working detection system that are

able to improve their detection performance through cooperation in a group of
multiple detection systems.
The rest of the paper is organized as follows. The primary issues of network
monitoring are discussed in section II. The complete network security
environment is described in section III. Based on the shown basis mechanisms,
the adaptive and self-organizing architecture is presented and discussed in
section IV. This section also contains the simulation results obtained in
comparative experiments. Finally, the conclusions are provided in section V.

2. Network Monitoring

Network monitoring has become a major research issue. This is because the
available bandwidths grow much faster than the processing speed of the
monitoring probes. Solutions have been developed that allow to reduce the
processing requirements at the analysis. The primary idea behind all these
concepts is to split the monitoring and the subsequent analysis into two
independent tasks. This became possible because not all packet information are
required for network analysis (whether for accounting or security reasons).
The first concept is the netflow accounting. The key idea is to store information
about netflows and the corresponding statistics instead of individual packets. In
this context, a netflow is defined as a unidirectional connection between two
end systems as defined by the IP 5-tupel (protocol, source IP address,
destination IP address, source port, destination port). Doing this, a single
measurement data set contains information of one up to several thousands of
individual packets. For the transmission of the monitoring data to an analyzing
system, a special protocol was developed called netflow.vX, where X stands for
the version number. Netflow.v9 is the latest version and standardized by the
IETF [6]. Its successor is IPFIX (IP flow information export). It was developed
by the corresponding IPFIX working group at the IETF and provides sufficient
information for a distributed deployment [8, 24]. First implementations are
available that support netflow.v9 as well as IPFIX, e.g. nprobe [9] and Vermont
[13].
Even if this methodology works well under normal conditions (usual
connections consist of about 7.7 packets per flow [20]), there is a major
problem during DDoS attacks. Usual attacks forge the IP address of the attack
packets, which results in the creation of individual flows per packet. Thus, in
attack situations, netflow accounting or IPFIX do not scale well, i.e. they
overflow the connection between the monitoring probe and the intrusion
detection system (regardless of the computational expense at the analysis). To
cope with this problem, recently an aggregation mechanism was introduced [12]

that allows to aggregate individual flows into so called metaflows. This
aggregation mechanism allows a free scaling of the amount of monitoring data
and provides the basic functionality to build adaptive self-optimizing netflow
accounting solutions.
The remaining problem is based on the principle of netflow accounting: the lost
of payload data. For intrusion detection reasons, this information is often
required and, therefore, the applicability of netflow accounting and IPFIX is
limited (nevertheless, it offers sufficient information for anomaly detection
based on network statistics). To support the selection of single but complete
packets and transporting them to an analyzer, PSAMP (packet sampling) was
developed in the PSAMP working group at the IETF. It allows the free
combination of filters and samplers [16, 25]. Filters are used for
deterministically selection packets based on matching field in the IP packet.
Samplers are statistical algorithms that select packets using a given sampling
algorithm, e.g. count based, and the corresponding parameters. The measured
packets are exported to the analyzer using a protocol similar to IPFIX [7, 10].
In conclusion it can be said, that PSAMP allows to monitor and to export
complete packets providing sufficient information for subsequent intrusion
detection. Additionally, the sampling algorithms, filters, and parameters can be
freely defined and re-configured allowing a full-adaptive behavior. The
monitoring can be optimized to provide all required data to the analyzer and no
more than it is able to process.

Fig 2. Vermont monitoring architecture [13]. Packets are monitored
using standard network interfaces or dedicated hardware. Netflow
accounting and packet sampling functionality is provided

In Fig 2, the Vermont architecture is shown. It allows two ways to capture
packet data from the network: by using a directly connected NIC, and by
employing IPFIX exporters, which send the collected information using the
IPFIX protocol. The packet monitoring and sampling layer is responsible for
capturing of received packet data. Moreover this layer may preprocess the
packet data. Filters or sampling algorithms may be applied to reduce the amount
of packets being further processed.

3. Network Security Architecture

The primary goal of this section is to show all required parts of the complete
network security architecture as shown in Fig 1. First, the most impressing
threats, in our discussion we focus on denial of service attacks, are briefly
described followed by some information about intrusion detection systems,
countermeasures, and a quick overview to the CATS architecture.

3.1. Denial of Service Attacks

Denial of service attacks focus on the prevention of an offered service. This can
be done in two ways: first, by exhausting network resources on the path towards
the target server and, secondly, by exhausting resources of the victim server.

victim

victim

attacker

attacker

…

…

A) B)

reflector network

intermediate systems

Fig 3. Typical denial of service scenarios. A) ICMP flood using a
reflector network; B) TCP SYN flood using intermediate systems, e.g.
compromised / malicious systems

An example for the first scenario is a distributed ICMP flood attack. A TCP
SYN flood attack is an example for the second scenario. Both scenarios are

depicted in figure 4. Further information on distributed denial of service attacks
can be found in [4, 21]. Both scenarios are described in the following.
Obviously, we concentrate on the behavior of the attack concerning a successful
monitoring.

ICMP flood attack
An ICMP flood attack can take place in two ways. First, so called broadcast
pings can be employed utilizing an unsecured reflector network for forwarding
the ICMP echo request messages towards a victim network as shown in Fig 3
A). Secondly, IP address spoofing can be used by sending ICMP echo requests
to multiple stations in the network with the IP address of the victim inserted in
the source IP address of each packet. All the receivers of these ICMP request
will answer by sending an appropriate response to the victim, from which they
think the request was coming from. The result of this attack is an overload of
the network paths near the victim. Therefore, normal service requests suffer
from the artificial network congestion and cannot be served in an adequate time.
The working principle of such ICMP flood attacks leads to packet flows
containing a single packet each (unique IP destination address but containing
different IP source addresses).

TCP SYN flood attack
The goal of a TCP SYN flood attack as shown in Fig 3 B) is to exhaust local
resources at the victim. TCP is a connection oriented transport protocol. Thus,
in order to transmit data, a connection has to be established first. This is done by
sending a TCP SYN packet which is answered by an SYN+ACK. After the
reception of the SYN packet, a half-open connection remains until it is timed
out or the SYN+ACK is being answered.
Benefiting form this working principle of TCP, TYP SYN flood attacks employ
compromised computers as a relay for a particular attack. All the relay hosts are
commanded to send as many TCP SYN packets as possible to the victim.
Resources required for state information of half-open connections are exhausted
quickly, preventing the victim from receiving legitimate service requests.

3.2. Intrusion Detection

Intrusion or attack detection systems work on monitored packet data. The
capability of a detection system to detect anomalies and concrete attacks in a
local context is evident. The capability of the detection system to detect
anomalies and attacks in a global context is also important. The key properties
of detection mechanisms are listed in the following.

Local context – Attack detection in a local context, i.e. based on information
from packet data received at the detection system only (or a directly connected
monitoring probe) is a straightforward process integrated in almost all detection
systems. This capability requires no intercommunication or interaction with
other detection systems. Both types of attacks (see Fig 3) can be detected by a
system near the victim. Nevertheless, only a system near the attacker is able to
detect the source of the attack if IP address spoofing techniques are used.
Additionally, traceback mechanisms can be deployed to identify the source of a
spoofed IP packet. Unfortunately, such mechanisms have significant resource
requirements.
Global context – Using a global context, i.e. information gathered at multiple
points in the network, allows improved detection of ongoing attacks in the
network. Both scenarios described before can be detected with a global context.
Therefore, this capability is an essential requirement. The communication
overhead introduced by the different interacting detection systems is an
important performance measure of the complete system. Distributed monitoring
is also a basis for such a global context. The described monitoring architecture
allows such an operation. The focus of this paper is to question if the
performance of such a complex system can be tuned in an adaptive way leading
to a self-organizing monitoring and attack detection system.
Knowledge-based detection – Knowledge-based detection was the first kind of
attack detection deployed in the Internet. While statistical conclusions are not
possible, well-known attacks can be detected efficiently using this
methodology. Sufficient information about the packet payload is required to
give the detection algorithm all the required information.
Anomaly detection – The capability to employ anomaly detection mechanisms
is a further requirement for highly accurate attack detection. With the increasing
capacities of network links, pure knowledge-based detection systems suffer
from their inability to process every single data packet. By employing statistical
methods for anomaly detection, high-speed detection engines can be realized.
Anomaly detection also allows to detect new kinds of attacks, or slightly
modified variants of known ones, that cannot be detected by knowledge-based
systems.

3.3. Countermeasures

Finally, a successful network security environment must contain appropriate
mechanisms for counteracting ongoing attacks or for preventing them.
Primarily, packet filters, or firewalls, are employed for preventing unwanted
traffic entering a network domain. Regarding the performance of the network

monitoring and the subsequent attack detection, such firewalls have a large
impact. Based on the detected attack packets and the resulting filtering rules,
much less traffic will arrive at the monitoring probes and, therefore, much less
traffic must be handled by the intrusion detection system. In this paper, we
summarize all detected attacks in a blacklist that, finally, represents the firewall
system.

3.4. CATS – Attack Detection using Cooperating Autonomous
Detection Systems

The objective of this section is to describe an approach for attack detection
using cooperative autonomous detection systems. This system, CATS [11], is
one of the first approaches that provide an architecture clearly split into the
mentioned three parts: monitoring, analysis, counteracting. Additionally,
aspects of distributed operation are included into the monitoring part as well as
into the analyzing part.
The architecture of an individual detection system is depicted in Fig 4. It
consists of an outer part for network monitoring and an inner part for detection.
The network monitoring part is responsible for capturing packets and flow
statistics from the network, either directly using a connected network interface,
or by employing monitoring probes and the standardized protocols IP flow
information export (IPFIX) [5, 23] and packet sampling (PSAMP) [7, 15]. This
part also performs necessary preprocessing of the gathered data, such as packet
filtering or generation of statistical flow measurements needed by the detection
part. It is further divided into a layer for packet monitoring and sampling and a
layer for statistical measurements. The detection part is divided into two
detection engines, one providing statistical anomaly detection and the other
applying knowledge-based detection mechanisms. The required packet data and
statistical measures are provided by the network monitoring part.
The main reason for separating the network monitoring part and the detection
part is to allow for a multi-hierarchy monitoring environment for capturing
packets and flow statistics. The metering NSLP protocol [14] can be employed
for the configuration of the monitoring environment. This allows for deploying
one detection system that analyzes data monitored at different points of the
network. Furthermore, a detection system can become itself a source of
information to other detection systems by exporting monitoring data.

Packet monitoring & sampling

Statistical measures
- bit rate, packet rate, # of connections,...
- gathered per aggregate or single flow

Knowledge-based
detection
 looking for known

signatures and
misbehavior

Potential Tools:
- Snort & Plugins
- Bro

Raw Packet
Data

IPFIX
Data

PSAMP
Data

IPFIX
Data

Events &
Characterization

Events &
Characterization

PSAMP
Data

Anomaly detection
 looking for unusual behavior

without any precognition
- comparing long-time behavior

to short-time behavior
- maintaining different profiles

(per destination, aggregate,...)
Potential Techniques:
- statistical tests, neural networks,

Bayes networks

Fig 4. Architecture of our novel autonomous detection system

In the following subsections, the network monitoring part and the detection part
of the detection system are described in more detail. This and additional
information on CATS can be found in [11].

Packet monitoring and sampling layer
The architecture of our detection system allows two ways to capture packet data
from the network: by using a directly connected NIC, and by employing
PSAMP exporters, which send the collected information in a standardized way.
The packet monitoring and sampling layer is responsible for capturing of packet
data received via NICs or PSAMP. Moreover this layer may preprocess the
packet data. Filters or sampling algorithms may be applied to reduce the amount
of packets being further processed.
Within the detection system, the collected packet data is used for two purposes.
First, it can be directly passed on to the detection part in order to look for
known attack signatures. Secondly, it can be forwarded to the statistical
measurement layer that generates flow statistics from the packet data.
Additionally, the detection system can export packet data to other detection
systems using PSAMP.

Statistical measurement layer
The statistical measurement layer generates statistical flow measures based on
the packet data received by the packet monitoring and sampling layer, and the
flow statistics received via IPFIX. Examples for statistical measures are the
number of bytes and packets per flow or per aggregate, the number of
connections per time, and the number of similar connections. The resulting
statistical measures build the basis for further anomaly detections. For instance,
an unusually high connection rate may indicate a distributed denial of service
attack where typically each connection consists of only a single packet.
The statistical measurement layer does not only provide the data for the local
detection mechanisms. It may also export the generated flow statistics via
IPFIX. Using the terms of IPFIX [7], this corresponds to the functionality of an
exporter or concentrator.

Attack detection
In the detection system, we integrate two separate, independently working
detection engines – an anomaly detection engine and a knowledge-based
detection engine – in order to achieve high detection rates. The detection of an
attack results in the generation of an event that is combined with additional
information for characterizing the attack. This information can be exchanged
with other detection systems in order to improve the detection performance. On
the other hand, it can be used to trigger appropriate countermeasures.
The anomaly detection works on statistical data received from the lower
statistical measurement layer. This detection process is looking for unusual
behavior without any precognition. It compares long-time behavior to short-
time behavior and maintains different profiles, e.g. per destination, aggregate,
and others. Potential techniques are statistical tests, neural networks, and Bayes
networks. The architecture of our autonomous detection system allows to
integrate a variety of other detection algorithms.
The knowledge-based approach represents the second main pillar of our
detection engine. This engine searches the packet stream for known signatures
and misbehaviors. Open-source tools such as snort [2, 3] and Bro [22], which
are widely used in the Internet community, build the basis for this part of the
detection.

Cooperation of multiple autonomous detection systems
So far, an individual, autonomously operating detection system can achieve a
good detection rate by incorporating features from different approaches:
knowledge-based detection and anomaly analysis. Additionally, the possibility
to use a nearly unlimited monitoring network allows to gather packet data from

multiple points in the network. In this section we show how the detection
quality can be enhanced further by loosely coupling multiple autonomous
detection systems to cooperating ones, which additionally improves the overall
detection quality.
In multi-gigabit networks, the capacity of monitoring probes and detection
systems is limited. Frequently, sampling algorithms are employed for coping
with the high data rates, which also drop packets belonging to an attack. We
address the problem by creating state information for all suspicious data flows.
Starting from a first assumption of an ongoing attack, the detection system has
to refine the analysis in order to confirm or reject the assumption. In a first step,
the aggregation level will be decreased until the potential attack flows can be
isolated and a corresponding filter rule can be formulated. Subsequently, the
filters at the monitoring probe and the detection systems can then be
programmed in order to capture and analyze all packets belonging to the
suspicious flows. Ideally, sampling algorithms are applied only on packets that
do not belong to suspicious flows. In case that deeper analysis confirms an
initial assumption, the state information is sent to other detection systems. Other
systems that have not yet detected the same attack flow proceed as if the state
information was a local assumption, trying to confirm or reject it by refining the
analysis. As a result, the detection system can either affirm that it observes the
same attack flow, or it dismisses the state information. Therefore, the
cooperation of detection systems allows to improve the detection rate
significantly and helps to identify the path of the attack flows through the
network. In summary it can be said, that CATS allows an adaptive monitoring
and subsequent analysis. In the following section, we show the advantages of
such an self-organizing system by evaluating the number of packets at the
monitoring probe and at the detection system.

4. Adaptive Re-Configuration

In the context of this section, we discuss the possibility of an adaptive re-
configuration of the monitoring environment dependent on the current situation
in the network. The final goal is to show the possibility of a self-organizing
monitoring architecture that still fulfills its role to collect as much as possible
packets concentrating on the really necessary data sets. First, the problem is
described including the primary objectives. Secondly, a model is provided
which fulfills the requirements and builds a basis for the simulative verification
which is presented as the final part in this section.

4.1. Problem Description and Objectives

It is important to prevent the attack detection system from being overloaded by
the monitoring probes in order to prevent the detection system from becoming a
target itself and to increase the availability of the overall system. Even though
each subsystem can perform attack detection autonomously, an overloaded
single system might miss the important packets that build a primary attack
accompanied by a large amount of meaningless packets. To achieve this goal,
an autonomous behavior is considered with the following capabilities:
Self-Configuration – A first requirement for autonomous behavior is the
capability of self-configuration. Starting from a master configuration, or even
starting from scratch, the system must be capable to set all required
configuration parameters, such as the current location of the probe or the type
and number of neighboring entities to which communication relationships are to
be applied.
Self-Maintenance – Self-maintenance is the process of adapting the
configuration parameters to the current situation. Autonomously working
entities must be capable to adapt to a changing environment. This adaptation,
typically realized by reconfiguration of runtime parameters, comprises of
changes in the resource management and in the configuration of tasks and
processes.
Self-Healing – Self-healing is an important function of autonomously working
entities. In the case of problems, mechanisms must be available which
determine the kind of problem and initiate a healing process. For example, if the
system faces memory shortages, the attack detection must be modified by
selecting algorithms and parameters which require less memory (while typically
resulting in a lower detection rate).
Self-Optimization – Finally, self-optimization is an important requirement for
autonomous systems. In this context we understand self-optimization as the
ability to optimize the detection quality. This can be achieved by exchanging
information about already identified attacks or suspicious network connections
and also by statistically forwarding parts of collected data packets and network
statistics to neighboring probes.

4.2. Model and Solution

In Fig 5, a model is shown that represents the considered architecture including
all necessary components. While focusing on the monitoring part, we want to
reduce, or more precisely, to adapt the rate of packets sent to the attack

detection system. This can be done in at least three ways as shown in the
following.

blacklist

whitelist

Firewall

Monitoring Probe

Attack Detection System
Control Information

Packet Data

Fig 5. Model for Simulations. Shown are the main components
(monitor, attack detection, firewall) and the control and data flows

Compression/encoding – Monitored packet data can be encoded in a way
reducing the number of transmitted bytes to the absolute minimum. Netflow
accounting / IPFIX as mentioned before can help at this place. Nevertheless,
during a DDoS attack, nearly every packet represents a separate flow and,
therefore, the speedup is questionable in this case. Additionally, payload
information is lost using such techniques which is necessarily required for most
detection techniques. Therefore, methodology based approaches are required.
Blacklists / whitelists – Blacklists in packet filtering systems, i.e. firewalls,
represent a functionality having two advantages. First, the packets are prevented
from reaching the systems under attack and, secondly, these packets no longer
reach the monitoring system and, therefore, the data rate from the monitoring
systems to the attack detection systems is reduced. Additionally, whitelists can
be used at the monitoring probes to not to reduce the amount of monitored data
but to reduce the amount of data transmitted to the analyzers. In summary,
blacklists represent hosts involved in an attack and whitelists represent
legitimate traffic.
Feedback – What finally can be done is a methodological approach that is based
on a parameterization that must be adapted to the current situation in the
network. The attack detection system can communicate its current load to the
monitoring probes. These can adapt sampling algorithms based on the number
of packets received from the network, the number of packets reported to the
detection systems, and the current load of the analyzers. In order to show the
potentials of this feedback, we executed a set of simulations showing the

reduction of packet data that is to be received and processed by the attack
detection systems.

4.3. Simulation Results

The model shown in the last subsection was implemented in a simulation
environment using AnyLogic. For simulating the input packet data, we used a
packet trace taken in front of out workgroup server. In Fig 6, an overview is
provided comparing the input and output rates of the monitor. The monitor is
executing a sampling algorithm that selects 50% of the packets (count-
based).Obviously, the output packet rate is about one half of the input packet
rate and the output byte rate represents the reduction due to keeping only parts
of the packet (IP header including transport protocol information).

Fig 6. Comparison between input packet rate / input byte rate at a
monitoring system and the corresponding output rate using an count-
based sampling algorithm

In the following, we used an implemented blacklist and a whitelist representing
the detected attack and legitimate flows. The parameters to look for are:
• Timout – A timeout value associated to each entry in the blacklist and

whitelist. This defined how long an entry as determined by the attack
detection system will be valid in the firewall system and the monitoring
probe, respectively.

• Detection ratio – We assume a constant detection ratio resulting in new
blacklist / whitelist entries. This is a presumption that does not correctly

correspond with the behavior in a real network. Nevertheless, it reflects the
behavior of the global system pretty well due to the proper configuration of
the blacklist / whitelist.

In the following simulation results, we always display the output packet rate as
issued by the monitoring probe and the input rate as a reference, because this
reflects the corresponding amount of data that is to be processed by the
detection system.

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60
time [s]

pa

ck
et

s

non-adaptive
timeout 10s
timeout 30s
input rate

0

50

100

150

200

250

300

350

310 315 320 325 330 335 340 345 350
time [s]

pa

ck
et

s

non-adaptive
timeout 10s
timeout 30s
input rate

Fig 7. Simulation results: modified timeout, fixed detection ratio (10%
whitelist, 1% blacklist). Shown are two magnified parts of the complete
measurement

In the first simulations, we examined the effect of the timeout value associated
with the single entries in the blacklist and whitelist. For analyzing this behavior,
we statically configured a detection ratio of 10% for new whitelist entries and
1% for new blacklist entries. These values seem to be adequate to reflect the
behavior in real networks because about ten times as mush flows can be
detected as legitimate traffic that as attack traffic and most of the network
packets are not directly categorizable.

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60
time [s]

pa

ck
et

s

input rate
w=0.1, b=0.05
w=0.1, b=0.1
w=0.2, b=0.05
w=0.2, b=0.1

0

50

100

150

200

250

300

350

310 315 320 325 330 335 340 345 350
time [s]

pa

ck
et

s

input rate
w=0.1, b=0.05
w=0.1, b=0.1
w=0.2, b=0.05
w=0.2, b=0.1

Fig 8. Simulation results: modified detection ratio, fixed timeout (10s).
Shown are two magnified parts of the complete measurement

In Fig 7, the simulation results are shown. Obviously, the adaptive configuration
has a large impact on the amount of output packets. Additionally, it can be seen

that a large timeout, which results also in large blacklist / whitelist tables and
therefore, exhaustive search operations, does not lead to a massive reduction of
the output packet rate. The reason for this behavior is the relatively short time a
flow is lasting in the network.
In Fig 8, a second simulation run is shown. This time, the timeout was fixed at
10 seconds and the detection ration was modified. Interestingly, especially the
whitelist has not that large impact on the amount of packets sent to the detection
system as expected by the percentage of “white” packets (up to 20%).
Additionally, it can be seen that the amount of data presented by the monitoring
probe to the attack detection system can be adapted using an information
exchange between all involved systems.
An optimal adaptation to the behavior of the network seems to be very
important and will lead to an optimized global system. This optimization step
can be executed independently by each participating entity in the network by
two meanings: local parameterization and communication / interoperation of
neighboring entities. Therefore, we have shown that it is possible to self-
organize the complete monitoring and analyzing environment for network
security enhancement focusing on the monitoring part.

5. Conclusions

In this paper we have shown that the monitoring data can easily be adapted to
the available resources at an analyzing attack detection system. The monitoring
environment already has all required facilities to ensure this kind of operations
which just have to be enabled and tuned to the current network behavior. The
shown feedback mechanism is part of the CATS system and is expected to be
employed in large network security environments. In this paper we focused on
the analysis of the possibilities of reducing / adjusting the packet rate that is to
be processed at the detection system. It was shown that this amount can be
easily reduced by parameterizing the algorithm parameters. In summary it can
be said, that we the results of the simulation be used for a first configuration of
the monitoring part of any network security environment that is based on a
differentiated monitoring and analyzing part.

Acknowledgements

This work is part of collaborative research work conducted together with Prof.
Georg Carle and Gerhard Münz from University of Tübingen, Germany. CATS
was developed in the research project DIADEM funded by the European
Commission.

References

[1] R. Bace and P. Mell, "Intrusion Detection Systems," National Institute of
Standards and Technology, NIST Computer Security Special Publication
SP 800-31, November 2001.

[2] J. Beale and B. Caswell, Snort 2.1 Intrusion Detection, 2nd edition ed,
Syngress, 2004.

[3] B. Caswell and J. Hewlett, "Snort Users Manual," The Snort Project,
Manual, May 2004. (http://www.snort.org/docs/snort_manual.pdf)

[4] R. K. C. Chang, "Defending against Flooding-Based Distributed Denial-
of-Service Attacks: A Tutorial," IEEE Communications Magazine, vol.
10, pp. 42-51, October 2002.

[5] B. Claise, M. Fullmer, P. Calato, and R. Penno, "IPFIX Protocol
Specifications," draft-ietf-ipfix-protocol-03.txt, February 2004.

[6] B. Claise, "Cisco Systems NetFlow Services Export Version 9," RFC
3954, October 2004.

[7] B. Claise, "Packet Sampling (PSAMP) Protocol Specifications," draft-ietf-
psamp-protocol-01.txt, February 2004.

[8] B. Claise, "IPFIX Protocol Specification," Internet-Draft, draft-ietf-ipfix-
protocol-08.txt, February 2005.

[9] L. Deri, "nProbe: an Open Source NetFlow Probe for Gigabit Networks,"
Proceedings of TERENA Networking Conference (TNC 2003), Zagreb,
Croatia, May 2003.

[10] T. Dietz, F. Dressler, G. Carle, and B. Claise, "Information Model for
Packet Sampling Exports," Internet-Draft, draft-ietf-psamp-info-02.txt,
July 2004.

[11] F. Dressler, G. Münz, and G. Carle, "Attack Detection using Cooperating
Autonomous Detection Systems (CATS)," Proceedings of 1st IFIP TC6
WG6.6 International Workshop on Autonomic Communication (WAC
2004), Berlin, Germany, October 2004.

[12] F. Dressler, C. Sommer, and G. Münz, "IPFIX Aggregation," Internet-
Draft, draft-dressler-ipfix-aggregation-00.txt, January 2005.

[13] F. Dressler and G. Carle, "HISTORY - High Speed Network Monitoring
and Analysis," Proceedings of 24th IEEE Conference on Computer
Communications (IEEE INFOCOM 2005), Miami, FL, USA, March
2005.

[14] F. Dressler, G. Carle, J. Quittek, C. Kappler, and H. Tschofenig, "NSLP
for Metering Configuration Signaling," Internet-Draft, draft-dressler-nsis-
metering-nslp-01.txt, February 2005.

[15] N. Duffield, "A Framework for Packet Selection and Reporting," draft-
ietf-psamp-framework-05.txt, December 2003.

[16] N. Duffield, "A Framework for Packet Selection and Reporting," Internet-
Draft, draft-ietf-psamp-framework-10.txt, January 2005.

[17] M. Handley, "Internet Denial of Service Considerations," draft-iab-dos-
00.txt, January 2004.

[18] R. Kemmerer and G. Vigna, "Intrusion Detection: A Brief History and
Overview," IEEE Computer, pp. 27-30, April 2002.

[19] R. B. Lee, "Taxonomies of Distributed Denial of Service Networks,
Attacks, Tools, and Countermeasures," Princeton University, Technical
Report, 2004.

[20] T.-H. Lee, W.-K. Wu, and T.-Y. W. Huang, "Scalable Packet Digesting
Schemes for IP Traceback," Proceedings of IEEE International
Conference on Communications, Paris, France, June 2004.

[21] J. Mirkovic and P. Reiher, "A Taxonomy of DDoS Attack and DDoS
Defense Mechanisms," ACM SIGCOMM Computer Communication
Review, vol. 34, pp. 39-53, April 2004.

[22] V. Paxson, "Bro: A System for Detecting Network Intruders in Real-
Time," Comuter Networks, vol. 31, pp. 2435-2463, 1999-12-14 1999.

[23] J. Quittek, T. Zseby, B. Claise, and S. Zander, "Requirements for IP Flow
Information Export (IPFIX)," RFC 3917, October 2004.

[24] J. Quittek, S. Bryant, and J. Meyer, "Information Model for IP Flow
Information Export," Internet-Draft, draft-ietf-ipfix-info-06.txt, February
2005.

[25] T. Zseby, M. Molina, N. Duffield, S. Niccolini, and F. Raspall, "Sampling
and Filtering Techniques for IP Packet Selection," draft-ietf-psamp-
sample-tech-06.txt, February 2005.

Biography
Dr. Dressler is an Assistant Professor leading the Autonomic Networking Group at the Department
of Computer Sciences at the University of Erlangen-Nuremberg, Germany. He received his M.Sc. in
Computer Science and his Ph.D. in 1998 and 2003, respectively.
In 2003, Dr. Dressler joined the Networking Group at the Wilhelm-Schickard-Institute for
Computer Science at the University of Tuebingen. In 2004, he joined the Computer Networks and
Communication systems Group at the Department of Computer Sciences at the University of
Erlangen-Nuremberg.
Dr. Dressler is a member of ACM, IEEE, ACM SIGCOMM, and GI (Gesellschaft für Informatik).
His primary research interests are focused on the research area of self-organizing autonomous
systems. Currently, his group is working in projects on sensor networks and robotics, bio-inspired
network technology, autonomic networking, network security, and network monitoring. He is author
or co-author of more than 40 publications in these areas.

	1. Introduction
	2. Network Monitoring
	3. Network Security Architecture
	3.1. Denial of Service Attacks
	ICMP flood attack
	TCP SYN flood attack

	3.2. Intrusion Detection
	3.3. Countermeasures
	3.4. CATS – Attack Detection using Cooperating Autonomous Detection Systems
	Packet monitoring and sampling layer
	Statistical measurement layer
	Attack detection
	Cooperation of multiple autonomous detection systems

	4. Adaptive Re-Configuration
	4.1. Problem Description and Objectives
	4.2. Model and Solution
	4.3. Simulation Results

	5. Conclusions
	Acknowledgements
	References

