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Abstract 
 
Network security has become a major part of the network infrastructure 
especially in the area of detection mechanisms for attack and intrusions. Apart 
from general measures for attack detection and prevention, the performance of 
the monitoring architecture employed by the attack detection constitutes an 
important asset for network security. In this paper, we focus of the amount of 
measurement data obtained on a monitoring probe that has to be transmitted to 
and analyzed by an attack detection system. We question the possibility of re-
configuring the monitoring part in order to adapt to the computational resources 
of the analyzer as well as to the current network behavior. In order to cope with 
these goals, we model the overall security environment consisting of monitors, 
detection systems, and firewalls. In a simulation we show the speedup gained by 
adapting the parameters of the monitoring solution. 

1. Introduction 

Today’s communication networks are threatened by an increasing number 
intrusion attempts, worms, and denial of service (DoS) attacks [19, 21]. Apart 
from general measures for attack prevention, the possibility to detect ongoing 
attacks in order to take appropriate countermeasures constitutes an important 
asset for network security. Therefore, the detection of intrusions, violations, and 
attacks is a significant task in nowadays communication networks. A brief 
history and overview to intrusion detection is, for example, given by Kemmerer 
[18] and Bace [1]. Especially, the number of DoS attacks and distributed denial 
of service attacks (DDoS) is increasing every day. Typically, important servers 
from government or industrial systems are attacked, yet we already see similar 

attacks against primary systems at universities. In addition, the effectiveness 
and malignance of such attacks is increasing [17]. 
 

 
Fig 1. Network security environment. Besides of routers, a network 
contains monitoring probes, intrusion detection systems, and packet 
filters (firewalls) 

 
Intrusion or attack detection only one part of a global network security 
environment. In Fig 1, an overview to a complete network security environment 
is provided. Intrusion detection systems build the intelligent core of a reactive 
system that is monitoring, analyzing, and counteracting ongoing attacks and 
intrusions. Obviously, the functionality depends on the quality of the interaction 
between involved parts. 
In this paper, we focus on this interaction and especially on the performance 
aspects of the monitoring and analyzing part. In a simulation model we 
reconstructed a monitoring environment. In order to obtain meaningful results 
from the analysis, we used a packet trace from our lab server as input for the 
simulation. We modeled the complete environment by inspecting the traffic 
flow and configuring adequate firewall rules (blacklist). Additionally, a 
whitelist was employed that describes the traffic flows detected as legitimate 
traffic by the intrusion detection system. Finally, we analyzed the behavior of 
the system by modifying several parameters, such as some filters and sampling 
parameters, in order to show the possibilities of a self-configuring and self-
optimizing network security environment. 
The described adaptive solution can be adequately employed in an existing 
system, CATS (cooperating autonomous detection systems, [11]). Its goal is to 
identify ongoing attacks using autonomously working detection system that are 



able to improve their detection performance through cooperation in a group of 
multiple detection systems. 
The rest of the paper is organized as follows. The primary issues of network 
monitoring are discussed in section II. The complete network security 
environment is described in section III. Based on the shown basis mechanisms, 
the adaptive and self-organizing architecture is presented and discussed in 
section IV. This section also contains the simulation results obtained in 
comparative experiments. Finally, the conclusions are provided in section V. 

2. Network Monitoring 

Network monitoring has become a major research issue. This is because the 
available bandwidths grow much faster than the processing speed of the 
monitoring probes. Solutions have been developed that allow to reduce the 
processing requirements at the analysis. The primary idea behind all these 
concepts is to split the monitoring and the subsequent analysis into two 
independent tasks. This became possible because not all packet information are 
required for network analysis (whether for accounting or security reasons). 
The first concept is the netflow accounting. The key idea is to store information 
about netflows and the corresponding statistics instead of individual packets. In 
this context, a netflow is defined as a unidirectional connection between two 
end systems as defined by the IP 5-tupel (protocol, source IP address, 
destination IP address, source port, destination port). Doing this, a single 
measurement data set contains information of one up to several thousands of 
individual packets. For the transmission of the monitoring data to an analyzing 
system, a special protocol was developed called netflow.vX, where X stands for 
the version number. Netflow.v9 is the latest version and standardized by the 
IETF [6]. Its successor is IPFIX (IP flow information export). It was developed 
by the corresponding IPFIX working group at the IETF and provides sufficient 
information for a distributed deployment [8, 24]. First implementations are 
available that support netflow.v9 as well as IPFIX, e.g. nprobe [9] and Vermont 
[13]. 
Even if this methodology works well under normal conditions (usual 
connections consist of about 7.7 packets per flow [20]), there is a major 
problem during DDoS attacks. Usual attacks forge the IP address of the attack 
packets, which results in the creation of individual flows per packet. Thus, in 
attack situations, netflow accounting or IPFIX do not scale well, i.e. they 
overflow the connection between the monitoring probe and the intrusion 
detection system (regardless of the computational expense at the analysis). To 
cope with this problem, recently an aggregation mechanism was introduced [12] 

that allows to aggregate individual flows into so called metaflows. This 
aggregation mechanism allows a free scaling of the amount of monitoring data 
and provides the basic functionality to build adaptive self-optimizing netflow 
accounting solutions. 
The remaining problem is based on the principle of netflow accounting: the lost 
of payload data. For intrusion detection reasons, this information is often 
required and, therefore, the applicability of netflow accounting and IPFIX is 
limited (nevertheless, it offers sufficient information for anomaly detection 
based on network statistics). To support the selection of single but complete 
packets and transporting them to an analyzer, PSAMP (packet sampling) was 
developed in the PSAMP working group at the IETF. It allows the free 
combination of filters and samplers [16, 25]. Filters are used for 
deterministically selection packets based on matching field in the IP packet. 
Samplers are statistical algorithms that select packets using a given sampling 
algorithm, e.g. count based, and the corresponding parameters. The measured 
packets are exported to the analyzer using a protocol similar to IPFIX [7, 10]. 
In conclusion it can be said, that PSAMP allows to monitor and to export 
complete packets providing sufficient information for subsequent intrusion 
detection. Additionally, the sampling algorithms, filters, and parameters can be 
freely defined and re-configured allowing a full-adaptive behavior. The 
monitoring can be optimized to provide all required data to the analyzer and no 
more than it is able to process. 
 

 
Fig 2. Vermont monitoring architecture [13]. Packets are monitored 
using standard network interfaces or dedicated hardware. Netflow 
accounting and packet sampling functionality is provided 

 



In Fig 2, the Vermont architecture is shown. It allows two ways to capture 
packet data from the network: by using a directly connected NIC, and by 
employing IPFIX exporters, which send the collected information using the 
IPFIX protocol. The packet monitoring and sampling layer is responsible for 
capturing of received packet data. Moreover this layer may preprocess the 
packet data. Filters or sampling algorithms may be applied to reduce the amount 
of packets being further processed. 

3. Network Security Architecture 

The primary goal of this section is to show all required parts of the complete 
network security architecture as shown in Fig 1. First, the most impressing 
threats, in our discussion we focus on denial of service attacks, are briefly 
described followed by some information about intrusion detection systems, 
countermeasures, and a quick overview to the CATS architecture. 

3.1. Denial of Service Attacks 

Denial of service attacks focus on the prevention of an offered service. This can 
be done in two ways: first, by exhausting network resources on the path towards 
the target server and, secondly, by exhausting resources of the victim server. 
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Fig 3. Typical denial of service scenarios. A) ICMP flood using a 
reflector network; B) TCP SYN flood using intermediate systems, e.g. 
compromised / malicious systems 

 
An example for the first scenario is a distributed ICMP flood attack. A TCP 
SYN flood attack is an example for the second scenario. Both scenarios are 

depicted in figure 4. Further information on distributed denial of service attacks 
can be found in [4, 21]. Both scenarios are described in the following. 
Obviously, we concentrate on the behavior of the attack concerning a successful 
monitoring. 

ICMP flood attack 
An ICMP flood attack can take place in two ways. First, so called broadcast 
pings can be employed utilizing an unsecured reflector network for forwarding 
the ICMP echo request messages towards a victim network as shown in Fig 3 
A). Secondly, IP address spoofing can be used by sending ICMP echo requests 
to multiple stations in the network with the IP address of the victim inserted in 
the source IP address of each packet. All the receivers of these ICMP request 
will answer by sending an appropriate response to the victim, from which they 
think the request was coming from. The result of this attack is an overload of 
the network paths near the victim. Therefore, normal service requests suffer 
from the artificial network congestion and cannot be served in an adequate time. 
The working principle of such ICMP flood attacks leads to packet flows 
containing a single packet each (unique IP destination address but containing 
different IP source addresses).  

TCP SYN flood attack 
The goal of a TCP SYN flood attack as shown in Fig 3 B) is to exhaust local 
resources at the victim. TCP is a connection oriented transport protocol. Thus, 
in order to transmit data, a connection has to be established first. This is done by 
sending a TCP SYN packet which is answered by an SYN+ACK. After the 
reception of the SYN packet, a half-open connection remains until it is timed 
out or the SYN+ACK is being answered. 
Benefiting form this working principle of TCP, TYP SYN flood attacks employ 
compromised computers as a relay for a particular attack. All the relay hosts are 
commanded to send as many TCP SYN packets as possible to the victim. 
Resources required for state information of half-open connections are exhausted 
quickly, preventing the victim from receiving legitimate service requests. 

3.2. Intrusion Detection 

Intrusion or attack detection systems work on monitored packet data. The 
capability of a detection system to detect anomalies and concrete attacks in a 
local context is evident. The capability of the detection system to detect 
anomalies and attacks in a global context is also important. The key properties 
of detection mechanisms are listed in the following. 



Local context – Attack detection in a local context, i.e. based on information 
from packet data received at the detection system only (or a directly connected 
monitoring probe) is a straightforward process integrated in almost all detection 
systems. This capability requires no intercommunication or interaction with 
other detection systems. Both types of attacks (see Fig 3) can be detected by a 
system near the victim. Nevertheless, only a system near the attacker is able to 
detect the source of the attack if IP address spoofing techniques are used. 
Additionally, traceback mechanisms can be deployed to identify the source of a 
spoofed IP packet. Unfortunately, such mechanisms have significant resource 
requirements. 
Global context – Using a global context, i.e. information gathered at multiple 
points in the network, allows improved detection of ongoing attacks in the 
network. Both scenarios described before can be detected with a global context. 
Therefore, this capability is an essential requirement. The communication 
overhead introduced by the different interacting detection systems is an 
important performance measure of the complete system. Distributed monitoring 
is also a basis for such a global context. The described monitoring architecture 
allows such an operation. The focus of this paper is to question if the 
performance of such a complex system can be tuned in an adaptive way leading 
to a self-organizing monitoring and attack detection system. 
Knowledge-based detection – Knowledge-based detection was the first kind of 
attack detection deployed in the Internet. While statistical conclusions are not 
possible, well-known attacks can be detected efficiently using this 
methodology. Sufficient information about the packet payload is required to 
give the detection algorithm all the required information. 
Anomaly detection – The capability to employ anomaly detection mechanisms 
is a further requirement for highly accurate attack detection. With the increasing 
capacities of network links, pure knowledge-based detection systems suffer 
from their inability to process every single data packet. By employing statistical 
methods for anomaly detection, high-speed detection engines can be realized. 
Anomaly detection also allows to detect new kinds of attacks, or slightly 
modified variants of known ones, that cannot be detected by knowledge-based 
systems. 

3.3. Countermeasures 

Finally, a successful network security environment must contain appropriate 
mechanisms for counteracting ongoing attacks or for preventing them. 
Primarily, packet filters, or firewalls, are employed for preventing unwanted 
traffic entering a network domain. Regarding the performance of the network 

monitoring and the subsequent attack detection, such firewalls have a large 
impact. Based on the detected attack packets and the resulting filtering rules, 
much less traffic will arrive at the monitoring probes and, therefore, much less 
traffic must be handled by the intrusion detection system. In this paper, we 
summarize all detected attacks in a blacklist that, finally, represents the firewall 
system. 

3.4. CATS – Attack Detection using Cooperating Autonomous 
Detection Systems 

The objective of this section is to describe an approach for attack detection 
using cooperative autonomous detection systems. This system, CATS [11], is 
one of the first approaches that provide an architecture clearly split into the 
mentioned three parts: monitoring, analysis, counteracting. Additionally, 
aspects of distributed operation are included into the monitoring part as well as 
into the analyzing part. 
The architecture of an individual detection system is depicted in Fig 4. It 
consists of an outer part for network monitoring and an inner part for detection. 
The network monitoring part is responsible for capturing packets and flow 
statistics from the network, either directly using a connected network interface, 
or by employing monitoring probes and the standardized protocols IP flow 
information export (IPFIX) [5, 23] and packet sampling (PSAMP) [7, 15]. This 
part also performs necessary preprocessing of the gathered data, such as packet 
filtering or generation of statistical flow measurements needed by the detection 
part. It is further divided into a layer for packet monitoring and sampling and a 
layer for statistical measurements. The detection part is divided into two 
detection engines, one providing statistical anomaly detection and the other 
applying knowledge-based detection mechanisms. The required packet data and 
statistical measures are provided by the network monitoring part. 
The main reason for separating the network monitoring part and the detection 
part is to allow for a multi-hierarchy monitoring environment for capturing 
packets and flow statistics. The metering NSLP protocol [14] can be employed 
for the configuration of the monitoring environment. This allows for deploying 
one detection system that analyzes data monitored at different points of the 
network. Furthermore, a detection system can become itself a source of 
information to other detection systems by exporting monitoring data. 
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Fig 4. Architecture of our novel autonomous detection system 

 
In the following subsections, the network monitoring part and the detection part 
of the detection system are described in more detail. This and additional 
information on CATS can be found in [11]. 

Packet monitoring and sampling layer 
The architecture of our detection system allows two ways to capture packet data 
from the network: by using a directly connected NIC, and by employing 
PSAMP exporters, which send the collected information in a standardized way. 
The packet monitoring and sampling layer is responsible for capturing of packet 
data received via NICs or PSAMP. Moreover this layer may preprocess the 
packet data. Filters or sampling algorithms may be applied to reduce the amount 
of packets being further processed. 
Within the detection system, the collected packet data is used for two purposes. 
First, it can be directly passed on to the detection part in order to look for 
known attack signatures. Secondly, it can be forwarded to the statistical 
measurement layer that generates flow statistics from the packet data. 
Additionally, the detection system can export packet data to other detection 
systems using PSAMP. 

Statistical measurement layer 
The statistical measurement layer generates statistical flow measures based on 
the packet data received by the packet monitoring and sampling layer, and the 
flow statistics received via IPFIX. Examples for statistical measures are the 
number of bytes and packets per flow or per aggregate, the number of 
connections per time, and the number of similar connections. The resulting 
statistical measures build the basis for further anomaly detections. For instance, 
an unusually high connection rate may indicate a distributed denial of service 
attack where typically each connection consists of only a single packet. 
The statistical measurement layer does not only provide the data for the local 
detection mechanisms. It may also export the generated flow statistics via 
IPFIX. Using the terms of IPFIX [7], this corresponds to the functionality of an 
exporter or concentrator. 

Attack detection 
In the detection system, we integrate two separate, independently working 
detection engines – an anomaly detection engine and a knowledge-based 
detection engine – in order to achieve high detection rates. The detection of an 
attack results in the generation of an event that is combined with additional 
information for characterizing the attack. This information can be exchanged 
with other detection systems in order to improve the detection performance. On 
the other hand, it can be used to trigger appropriate countermeasures. 
The anomaly detection works on statistical data received from the lower 
statistical measurement layer. This detection process is looking for unusual 
behavior without any precognition. It compares long-time behavior to short-
time behavior and maintains different profiles, e.g. per destination, aggregate, 
and others. Potential techniques are statistical tests, neural networks, and Bayes 
networks. The architecture of our autonomous detection system allows to 
integrate a variety of other detection algorithms. 
The knowledge-based approach represents the second main pillar of our 
detection engine. This engine searches the packet stream for known signatures 
and misbehaviors. Open-source tools such as snort [2, 3] and Bro [22], which 
are widely used in the Internet community, build the basis for this part of the 
detection. 

Cooperation of multiple autonomous detection systems 
So far, an individual, autonomously operating detection system can achieve a 
good detection rate by incorporating features from different approaches: 
knowledge-based detection and anomaly analysis. Additionally, the possibility 
to use a nearly unlimited monitoring network allows to gather packet data from 



multiple points in the network. In this section we show how the detection 
quality can be enhanced further by loosely coupling multiple autonomous 
detection systems to cooperating ones, which additionally improves the overall 
detection quality. 
In multi-gigabit networks, the capacity of monitoring probes and detection 
systems is limited. Frequently, sampling algorithms are employed for coping 
with the high data rates, which also drop packets belonging to an attack. We 
address the problem by creating state information for all suspicious data flows. 
Starting from a first assumption of an ongoing attack, the detection system has 
to refine the analysis in order to confirm or reject the assumption. In a first step, 
the aggregation level will be decreased until the potential attack flows can be 
isolated and a corresponding filter rule can be formulated. Subsequently, the 
filters at the monitoring probe and the detection systems can then be 
programmed in order to capture and analyze all packets belonging to the 
suspicious flows. Ideally, sampling algorithms are applied only on packets that 
do not belong to suspicious flows. In case that deeper analysis confirms an 
initial assumption, the state information is sent to other detection systems. Other 
systems that have not yet detected the same attack flow proceed as if the state 
information was a local assumption, trying to confirm or reject it by refining the 
analysis. As a result, the detection system can either affirm that it observes the 
same attack flow, or it dismisses the state information. Therefore, the 
cooperation of detection systems allows to improve the detection rate 
significantly and helps to identify the path of the attack flows through the 
network. In summary it can be said, that CATS allows an adaptive monitoring 
and subsequent analysis. In the following section, we show the advantages of 
such an self-organizing system by evaluating the number of packets at the 
monitoring probe and at the detection system. 

4. Adaptive Re-Configuration 

In the context of this section, we discuss the possibility of an adaptive re-
configuration of the monitoring environment dependent on the current situation 
in the network. The final goal is to show the possibility of a self-organizing 
monitoring architecture that still fulfills its role to collect as much as possible 
packets concentrating on the really necessary data sets. First, the problem is 
described including the primary objectives. Secondly, a model is provided 
which fulfills the requirements and builds a basis for the simulative verification 
which is presented as the final part in this section. 

4.1. Problem Description and Objectives 

It is important to prevent the attack detection system from being overloaded by 
the monitoring probes in order to prevent the detection system from becoming a 
target itself and to increase the availability of the overall system. Even though 
each subsystem can perform attack detection autonomously, an overloaded 
single system might miss the important packets that build a primary attack 
accompanied by a large amount of meaningless packets. To achieve this goal, 
an autonomous behavior is considered with the following capabilities:  
Self-Configuration – A first requirement for autonomous behavior is the 
capability of self-configuration. Starting from a master configuration, or even 
starting from scratch, the system must be capable to set all required 
configuration parameters, such as the current location of the probe or the type 
and number of neighboring entities to which communication relationships are to 
be applied. 
Self-Maintenance – Self-maintenance is the process of adapting the 
configuration parameters to the current situation. Autonomously working 
entities must be capable to adapt to a changing environment. This adaptation, 
typically realized by reconfiguration of runtime parameters, comprises of 
changes in the resource management and in the configuration of tasks and 
processes. 
Self-Healing – Self-healing is an important function of autonomously working 
entities. In the case of problems, mechanisms must be available which 
determine the kind of problem and initiate a healing process. For example, if the 
system faces memory shortages, the attack detection must be modified by 
selecting algorithms and parameters which require less memory (while typically 
resulting in a lower detection rate). 
Self-Optimization – Finally, self-optimization is an important requirement for 
autonomous systems. In this context we understand self-optimization as the 
ability to optimize the detection quality. This can be achieved by exchanging 
information about already identified attacks or suspicious network connections 
and also by statistically forwarding parts of collected data packets and network 
statistics to neighboring probes. 

4.2. Model and Solution 

In Fig 5, a model is shown that represents the considered architecture including 
all necessary components. While focusing on the monitoring part, we want to 
reduce, or more precisely, to adapt the rate of packets sent to the attack 



detection system. This can be done in at least three ways as shown in the 
following. 
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Fig 5. Model for Simulations. Shown are the main components 
(monitor, attack detection, firewall) and the control and data flows 

 
Compression/encoding – Monitored packet data can be encoded in a way 
reducing the number of transmitted bytes to the absolute minimum. Netflow 
accounting / IPFIX as mentioned before can help at this place. Nevertheless, 
during a DDoS attack, nearly every packet represents a separate flow and, 
therefore, the speedup is questionable in this case. Additionally, payload 
information is lost using such techniques which is necessarily required for most 
detection techniques. Therefore, methodology based approaches are required. 
Blacklists / whitelists – Blacklists in packet filtering systems, i.e. firewalls, 
represent a functionality having two advantages. First, the packets are prevented 
from reaching the systems under attack and, secondly, these packets no longer 
reach the monitoring system and, therefore, the data rate from the monitoring 
systems to the attack detection systems is reduced. Additionally, whitelists can 
be used at the monitoring probes to not to reduce the amount of monitored data 
but to reduce the amount of data transmitted to the analyzers. In summary, 
blacklists represent hosts involved in an attack and whitelists represent 
legitimate traffic. 
Feedback – What finally can be done is a methodological approach that is based 
on a parameterization that must be adapted to the current situation in the 
network. The attack detection system can communicate its current load to the 
monitoring probes. These can adapt sampling algorithms based on the number 
of packets received from the network, the number of packets reported to the 
detection systems, and the current load of the analyzers. In order to show the 
potentials of this feedback, we executed a set of simulations showing the 

reduction of packet data that is to be received and processed by the attack 
detection systems. 

4.3. Simulation Results 

The model shown in the last subsection was implemented in a simulation 
environment using AnyLogic. For simulating the input packet data, we used a 
packet trace taken in front of out workgroup server. In Fig 6, an overview is 
provided comparing the input and output rates of the monitor. The monitor is 
executing a sampling algorithm that selects 50% of the packets (count-
based).Obviously, the output packet rate is about one half of the input packet 
rate and the output byte rate represents the reduction due to keeping only parts 
of the packet (IP header including transport protocol information). 
 

 
Fig 6. Comparison between input packet rate / input byte rate at a 
monitoring system and the corresponding output rate using an count-
based sampling algorithm 

 
In the following, we used an implemented blacklist and a whitelist representing 
the detected attack and legitimate flows. The parameters to look for are: 
• Timout – A timeout value associated to each entry in the blacklist and 

whitelist. This defined how long an entry as determined by the attack 
detection system will be valid in the firewall system and the monitoring 
probe, respectively. 

• Detection ratio – We assume a constant detection ratio resulting in new 
blacklist / whitelist entries. This is a presumption that does not correctly 



correspond with the behavior in a real network. Nevertheless, it reflects the 
behavior of the global system pretty well due to the proper configuration of 
the blacklist / whitelist. 

 
In the following simulation results, we always display the output packet rate as 
issued by the monitoring probe and the input rate as a reference, because this 
reflects the corresponding amount of data that is to be processed by the 
detection system. 
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Fig 7. Simulation results: modified timeout, fixed detection ratio (10% 
whitelist, 1% blacklist). Shown are two magnified parts of the complete 
measurement  

 

In the first simulations, we examined the effect of the timeout value associated 
with the single entries in the blacklist and whitelist. For analyzing this behavior, 
we statically configured a detection ratio of 10% for new whitelist entries and 
1% for new blacklist entries. These values seem to be adequate to reflect the 
behavior in real networks because about ten times as mush flows can be 
detected as legitimate traffic that as attack traffic and most of the network 
packets are not directly categorizable. 
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Fig 8. Simulation results: modified detection ratio, fixed timeout (10s). 
Shown are two magnified parts of the complete measurement 

 
In Fig 7, the simulation results are shown. Obviously, the adaptive configuration 
has a large impact on the amount of output packets. Additionally, it can be seen 



that a large timeout, which results also in large blacklist / whitelist tables and 
therefore, exhaustive search operations, does not lead to a massive reduction of 
the output packet rate. The reason for this behavior is the relatively short time a 
flow is lasting in the network. 
In Fig 8, a second simulation run is shown. This time, the timeout was fixed at 
10 seconds and the detection ration was modified. Interestingly, especially the 
whitelist has not that large impact on the amount of packets sent to the detection 
system as expected by the percentage of “white” packets (up to 20%). 
Additionally, it can be seen that the amount of data presented by the monitoring 
probe to the attack detection system can be adapted using an information 
exchange between all involved systems. 
An optimal adaptation to the behavior of the network seems to be very 
important and will lead to an optimized global system. This optimization step 
can be executed independently by each participating entity in the network by 
two meanings: local parameterization and communication / interoperation of 
neighboring entities. Therefore, we have shown that it is possible to self-
organize the complete monitoring and analyzing environment for network 
security enhancement focusing on the monitoring part. 

5. Conclusions 

In this paper we have shown that the monitoring data can easily be adapted to 
the available resources at an analyzing attack detection system. The monitoring 
environment already has all required facilities to ensure this kind of operations 
which just have to be enabled and tuned to the current network behavior. The 
shown feedback mechanism is part of the CATS system and is expected to be 
employed in large network security environments. In this paper we focused on 
the analysis of the possibilities of reducing / adjusting the packet rate that is to 
be processed at the detection system. It was shown that this amount can be 
easily reduced by parameterizing the algorithm parameters. In summary it can 
be said, that we the results of the simulation be used for a first configuration of 
the monitoring part of any network security environment that is based on a 
differentiated monitoring and analyzing part. 
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