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Abstract—Automated car following, or platooning, is a
promising Inter-Vehicle Communication (IVC) application which
has the potential of reducing traffic jams, improving safety, and
decreasing fuel consumption by forming groups of vehicles which
autonomously follow a common leader. The application works by
sharing vehicles’ data through high frequency periodic beaconing
which, due to channel congestion, might not work in highly dense
scenarios. To address this issue, in this paper we propose a
dynamic approach called Jerk Beaconing which exploits vehicle
dynamics to share data only when needed. The results, compared
to a commonly assumed 10Hz beaconing, show huge benefits
in term of network resource saving. Moreover, our approach
outperforms static beaconing in terms of safety as well, as it is
able to keep inter-vehicle distance closer to the desired gap even
in highly demanding scenarios.

I. INTRODUCTION

Cooperative driving with information exchange via Inter-
Vehicle Communication (IVC) is a promising concept to solve
modern traffic jam problems and increase the safety of vehicles.
The idea is that cooperative systems should make vehicles more
and more autonomous, controlling them in a safe and efficient
way, and should relieve humans from driving. Some steps have
already been taken with the introduction of the Cruise Control
(CC), or the Adaptive Cruise Control (ACC), control systems
which are capable to maintain a desired speed and, with the
help of a radar, automatically keep a safe distance from the
front vehicle. An ACC system, however, is designed to keep a
large safe gap, which is comparable to the one that must be
kept by humans. The research community, particularly large
projects such as PATH and SARTRE, thus started to develop
and test an improved system: The Cooperative Adaptive Cruise
Control (CACC) [1], [2].

A CACC uses information shared by other vehicles through
IVC to reduce system’s reaction time, enabling the possibility
of minimizing the inter-vehicle gap and realize the so called
platooning application. The vision is to form group of vehicles
where only the leader is required to drive. The other vehicles in
the platoon automatically accelerate, brake, and steer to follow
their leader. The benefits of platooning range from improved
road traffic throughput [3] to reduced fuel consumption thanks
to lower air resistance [4]. Moreover, automated car following
can improve safety and reduce driving stress.

The benefits of platooning, however, come at a cost. A
CACC requires frequent data updates to operate safely. Some
studies implementing this system in real cars suggests a

978-1-4673-9411-6/15/$31.00 ©2015 IEEE

beacon rate of 10Hz [5]. Without using an intelligent data
dissemination mechanism, such a high update rate cannot be
sustained by a standard IEEE 802.11p radio interface in a
dense scenario [6]. In a previous work we show that taking
into account the specific requirements of the CACC in the
design of a combined Time Division Multiple Access (TDMA)
and Transmit Power Control (TPC) dissemination mechanism
can provide the application with frequent updates even in
heavily congested scenarios [6]. In this paper we make a
further step to make platooning communications’ footprint on
the channel light exploiting cross layer information to reduce
the required beacon rate when the platoon behavior is smooth
and regular. We develop a dissemination protocol, called Jerk
Beaconing, that exploits vehicle dynamics to determine when
to send a beacon. In practice, if the state of a vehicle remains
unchanged, the protocol does not send updates to its followers
which can predict its current state by using previously received
information. By sending data only when really needed, we
drastically reduce the network load without compromising
passengers’ safety.
Our main contributions can be summarized as follows:

« We develop a protocol that uses vehicle’s state information
to dynamically adapt the beacon rate and send updates
only when needed;

o We couple it with a reliable delivery mechanisms which
ensures correct reception or notifies the application of the
failure with a minimum protocol overhead,;

o We test our protocol against a static 10 Hz beaconing in
a large traffic jam scenario, showing the benefits of our
approach in terms of safety and reduced network load.

II. BACKGROUND AND RELATED WORK

In several years of platooning research, the community
proposed different CACC algorithms [5], [7]-[9], which differ
for their design and characteristics. The first design aspect
is the control topology, i.e., the logical communication links
that exist between vehicles in the same platoon. For instance,
the CACC developed during the PATH project [7] exploits
information received from the leader and the vehicle directly
in front. The controller by Ploeg et. al. [5], instead, uses data
from the front vehicle only. A further example is the CACC
in [8], where the control topology is configurable and can be
changed at runtime, with the possibility of having an all-to-all
communication. The design of the control topology impacts on
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its characteristics: The most important in terms of application
layer benefits is the spacing policy, i.e., the inter-vehicle gap
required to ensure the stability of the platoon. The control
topology used by the PATH CACC guarantees stability for
a fixed gap, independent of the cruising speed, permitting to
have inter-vehicle distances as small as a few meters [7]. For
this reason we consider the PATH CACC for our analysis, as
it is the one that can give the highest benefits in term of road
throughput and fuel saving.

For the sake of completeness, we briefly describe the
control formula. A more detailed description can be found
in [7], [10]. The concept behind all CACC algorithms is
simple: The controller takes inputs from sensors and on board
radio interface, and computes a control input u (a desired
acceleration) to be sent to the electronic control unit for
actuation. In particular, PATH’s CACC computes the control
input u; as follows:

u; = Qui—1 + 0ug + 03 (—dradar +dg)
+ oy (& —xo) + 05 (% — %i—1),

(D

where i is the index of the vehicle in the platoon (1 being the
first follower), x; is the speed, and dy,q,r and d; are the actual
and the desired distance respectively. The ¢ parameters are
controller gains that can be configured to change the behavior
of the controller (see [10] for further details). The objective
of the controller is to maintain a distance d; between each
vehicle in the platoon. The actual distance is measured by the
radar, while desired acceleration and speed of leader and front
vehicle are obtained through wireless communication.

As in [10], to mimic engine actuation delay effects, we use
a first order low pass filter with a time constant 7, i.e., with
the following transfer function:
1
IR EEX !
where X; is the actual vehicle acceleration.

Given that the controller requires data of other vehicles, we
need a radio interface and a communication protocol to share
such information. Clearly, in a dense environment, this poses
a challenge in terms of network congestion. This issue in IVC
has been thoroughly investigated by the community since more
than a decade. Still, researchers and standardization bodyies are
trying to come up with new solutions that are capable to fulfill
applications’ requirements without congesting the network.

Initial works focused on congestion issues caused by the
uncontrolled re-propagation of safety messages, i.e., the so
called broadcast storm problem [11]. In that paper, three
different solutions have been proposed, which exploit the
distance from the sender to decide when and whether to re-
broadcast a packet at all. In particular, a probabilistic, a slotted,
and a combined approach have been considered: The farther the
receiver from the sender, the higher the probability (or the lower
the waiting time) for re-transmitting the message. The results,
compared to a standard 1-persistent mechanism, show huge
benefits in terms of packet reception rate and reduced network
load. In [12], the authors further investigate the probabilistic

i> 2

i(s)

scheme by considering packet aggregation, showing a network
load reduction with no differences in terms of safety benefits.

The broadcast storm problem, however, only occurs in
the case of event-triggered data packets (Decentralized En-
vironmental Notification Messages (DENMs) in the ETSI ITS
standard [13]) that require re-propagation, such as emergency
braking messages. Another envisioned communication mech-
anism for vehicular safety applications is through periodic,
single-hop beacons, known as Cooperative Awareness Messages
(CAMs) or Basic Safety Messages (BSMs). The beacon fre-
quency, however, highly depends on application requirements,
and different applications might need to access the channel
concurrently. For these reasons the community proposed to
dynamically adjust the beacon rate and/or the transmit power
to cope with network congestion [14]-[17].

In [14] the authors propose a distributed algorithm which
dinamically adapts transmit power to keep under control the
load caused by CAMs. Their approach solves an optimization
problem to compute the power assignment for each vehicle that
maximizes the transmit power under a maximum load constraint.
The algorithm takes into account DENMs as well. Sommer
et. al. [15], instead, develop an algorithm called Dynamic
Beaconing (DynB) which maintains the channel load at a
fixed, predefined value. Each vehicle periodically measures
the channel load and decreases/increases its beacon rate if the
load is higher/lower than the desired one. Similarly, in [17],
the authors develop LIMERIC, a linear rate-control algorithm
that makes the channel load to converge to a desired value.
The algorithm is configurable by means of two parameters that
control fairness, stability, and steady state convergence. The
paper formally derives stability conditions and convergence
time. ETSI, instead, developed the Decentralized Congestion
Control (DCC) algorithm as a standard to be used for IVC
in Europe [16]. The algorithm works by simultaneously
adapting rate, transmit power, modulation, and Clear Channel
Assessment (CCA) threshold. DCC periodically measures
channel load but, differently from [15], [17], does not use a
control theoretical approach. The algorithm is based on a state
machine where each state uses a different beacon rate, transmit
power, modulation, and CCA. The current active state is decided
depending on the measured channel load. This approach,
however, is unstable and might lead to oscillations [18]. ETSI
also defined a dynamics-driven protocol [19] which, however,
is not suited for a platooning application [6].

The discussed dynamic approaches are, in general, appli-
cation unaware. They try to deliver enough data to all the
applications by trying to avoid excessive channel load and thus
packet losses. For some particular applications, however, this
is not enough. In a previous work [6], we compare a periodic
beaconing approach combined with a transmit power control
rule against DynB and DCC for a platooning application. DynB
and DCC are capable of keeping the channel load and packet
losses under control, but at the expenses of a large packet
inter-arrival time which is unacceptable for platooning.

For this reason, some works try to focus more on application
rather than network layer performance. One example is the
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work by Huang et. al. [20]. The authors develop an algorithm
that uses a model predictive mechanism which computes a
suspected tracking error and, upon that, derives a probability
of transmission to decide whether to transmit or not at the next
time step. Moreover, the algorithm dynamically changes the
transmit power depending on the sensed channel load. In a high
density scenario, the channel load increases: The algorithm
thus decreases the transmit power to avoid congestion and
to reach only nearby vehicles, which are the most important
from a safety point of view. Conversely, when the network is
sparse, the algorithm uses a high transmit power to reach farther
vehicles. The approach, compared to a standard 10 Hz and 2 Hz

beaconing, shows better tracking accuracy for nearby vehicles.

A similar approach is presented by Bansal et. al. [21]. The
authors couple LIMERIC [17] with a suspected tracking error
as in [20]. Zemouri et. al. [22], instead, take a slightly different
approach. They propose to first converge to a rate that limits
channel busy ratio and collisions, and, if needed, to reduce
the transmit power if a certain update requirement cannot be
met. In a similar approach, Sepulcre et. al. [23] develop a
protocol which considers both congestion and awareness for
deciding when to send a beacon. In particular, each application
can provide the protocol with an update requirement, and
the protocol will consider it when computing the beacon
interval. In another work [24], the authors propose a distributed
optimization problem that adapts the probability of transmission
in a slotted p-persistent approach using an utility function that
considers both the expected delay and the safety benefit.

The approaches in [20]-[22], [24] improve application
awareness in terms of safety, but are thought for standard CAM
or BSM dissemination, which is undirected (broadcast) and
does not consider that some messages might be more important
than others. For the platooning application, messages from the
leader are directed to all followers, and messages from the
followers are directed to the vehicle immediately behind. In
the next section, we thus exploit this to develop a vehicle
dynamics based protocol coupled with a reliability mechanism
that reduces network utilization while ensuring safety of a
CACC application.

III. JERK BEACONING

The idea of having a dynamic message rate for platooning
is based on the observation that if the control quantities do not
change, there is no gain in transmitting the same information
over and over. As briefly mentioned in Section II, the CACC
we consider uses acceleration and speed of leader and front
vehicle, and the distance ahead to compute the acceleration
to apply. If the acceleration of a vehicle X is constant and we
assume that such a vehicle sent its acceleration %(¢;) and speed
X(t5) at time 7y, then the other vehicles can estimate its speed
at time ¢ by simply computing

X(t) = x(ts) +5(ts) - (1 — 1) - 3)

From a purely theoretical point of view, each vehicle can then
“feed” the controller with this information with no performance
loss. In practice, however, we have two problems. The first one

= increasing p
0 \ \ \

-2 -1 0 1 2
acceleration variation A, (m/s?)

message interval Apgg (8)

Figure 1: Apg function for maxy; = 1s, miny; = 0.1s, A =

Umax

2m/sz, and different values of p (0.1, 0.3, 0.5, 1, 3, and 100).

is awareness, i.e., if we completely stop information sharing
we cannot know if this is due to a network failure or to the fact
that the state of a vehicle did not change. This can easily be
solved by introducing a minimum beaconing rate. The second
problem is that we need to decide what it means to have a
constant acceleration. In the real world there exists no constant
acceleration, and sending a beacon for every small variation is
worse than using static beaconing. We thus need to find the
bound that defines when acceleration changes are simply noise
and can be neglected.

We approach the problem by using the concept of jerk. The
jerk, denoted with X, is a physical quantity that measures
the variation of acceleration over time. Exploiting a discrete
estimation of the jerk, the beaconing controller decides whether
to send a new beacon or not. The decision variable is
the difference between the current value of the acceleration
command computed by the controller and the value sent in the
last message: A, = u — ugent, With u and ugene being the current
value and the value sent in the last message respectively. To
map this difference to a target beacon interval, we use the
following formula:

Amsg(Au) = max (efa‘Au‘p . b,mil’lbi) . (4)

Notice that we use the control input u (i.e., the desired
acceleration) instead of the actual acceleration X because u is
what is sent in the beacons. The a, b, and p parameters change
the behavior of the function. a and b control the maximum
(maxpi) and minimum (ming;) desired beacon interval. In
particular, by setting

b =maxp, a=—In <mmbi ) AP (5)

maxp; " Pumax

we obtain Apge(0) = maxpy; and Amgg(Au,,,) = miny;. The p
parameter controls the reactivity of the protocol. For example,
for p — 0, the minimum change in the desired acceleration
causes the function to return the minimum beacon interval. On
the contrary, for p — oo, the function returns the maximum
beacon interval for any A, such that —A, <A, <A,... To
better understand the behavior of the function, refer to Figure 1.

The performance of the protocol, both from a network and
a vehicular perspective, depends on the parameter p. A low
value of p should improve the performance in term of safety
but might overload the network. Conversely, by increasing p
we save network resources, but vehicles may get too close or,
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Figure 2: Flow charts for the main protocol loop, sending, and ack timeout procedures.

in the worst case, crash into each other. We thus need to find a
good compromise that guarantees a minimum safety distance
while using as few network resources as possible.

A. Lower Layer Reliability

We need to consider that, from a control theory point of
view, the protocol tries to dynamically change the sampling
frequency of the system to the minimum allowable. This means
that lost packets can significantly harm system’s safety. For
this reason, we need to couple Jerk Beaconing with a lower
layer protocol that ensures message delivery or informs the
application that the network failed in doing so.

We start by exploiting the findings in our previous work [6].
In particular, we use a slotted approach which, besides reducing
random channel contention among vehicles in the same platoon,
permits us to use chain acknowledgements. In particular, assume
that vehicle O sends a beacon scheduled by Jerk Beaconing.
Upon reception of such message, vehicle’s 1 CACC will
compute a new control action which its follower will be
interested in. Vehicle 1 can thus schedule a beacon which
includes the updated information plus a piggybacked ack that
vehicle 0 can overhear. This mechanism can be propagated
towards the tail of the platoon in a chained fashion.

We further improve the protocol by adding an acknowl-
edgement map. Each vehicle maintains a vector of values
A= (ay,...,ay_1) € NV~1, where q; is the sequence number
of the last packet of vehicle i — 1 acknowledged by vehicle i.
The map A is included in each beacon. This way, for example,
vehicle 0 can get missed acknowledgements of vehicle 1 from
vehicles further behind. Moreover, each vehicle includes the

latest leader information received, because leader data is crucial
for stability reasons [25]. To sum up, each beacon of vehicle
i contains (u;,%;,s;, A, uo,%,50), with s; being the sequence
number associated to vehicle data. By considering 64-bit floats
(for u and x) and 64-bit integers (for sequence numbers), the
MSDU size would be 200 B for a platoon of 20 cars. 32-bit
numbers, however, have enough precision for the purpose, so
with the same MSDU size we can support up to 45 vehicles.

Finally, we exploit transmit power control for non-leading
vehicles [6]. The followers use a reduced transmission power
as they need to reach only the vehicle immediately behind.

Figures 2 and 3 show the flow diagrams of the protocol.
Figure 2a shows the main loop of the protocol. Every 10 ms (the
CACC sampling rate) the protocol invokes the Ay, function
(Equation (4)) and decides whether to schedule a beacon to be
sent or not. When a beacon needs to be sent (Figure 2b), the
protocol sets the number of maximum retries and schedules
an ack timeout. The last vehicle does not need to do so, as
there is no platooning vehicle behind it. Still, other vehicles
behind might be interested in receiving its data for cooperative
awareness reasons.

In the case a vehicle does not receive an ack from vehicles
behind within the timeout (Figure 2c), the number of tries is
decremented and the beacon is re-sent. If the number of tries
reaches zero, it means that the network is not properly working,
and the protocol notifies the emergency to the application layer.
Deciding what is the best action to take in such a situation is
a non trivial task and we explicitly disregard this issue in the
paper. In our evaluation, if a vehicle declares the emergency
state we simply stop the simulation and log the outcome.
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Figure 3: Flow charts for message reception handling.

Upon reception of a beacon from the vehicle directly in
front (Figure 3a), we check whether this packet is already
known. This might happen if a vehicle correctly receives a
beacon, but the ack gets lost. In this case we simply send a
selective ack. If the packet is new, we update the ack map and
we schedule a new beacon to be sent in 10 ms. This beacon
will also acknowledge the one we have just received.

Finally, when we receive a beacon from any of the vehicles
behind (Figure 3b), we first update the ack map and then, if
the packet acknowledges a previously sent beacon, we cancel
the ack timeout.

IV. EVALUATION

We test our proposal in a crowded traffic jam scenario im-
plemented in the PLEXE platooning simulation framework [10].

Table I: Network and road traffic simulation parameters.

Parameter Value

Path loss model Free space (a = 2.0)

Fading model Nakagami (m = 3)
. PHY model IEEE 802.11p
8 MAC model 1609.4 single channel (CCH)
8 Frequency 5.89 GHz
g Bitrate 6Mbit/s (QPSK R = 1/2)
é Access category AC_VI
S MSDU size 200B
Transmit power 20dBm and 0dBm
MaXpi, MiNgi, Aypae 1s, 0.01s, 2m/s?
p 0.1, 0.3, 0.5, 1, and 3
Max speed 130km/h
>  Min speed (harsh/gentle) 30km/h and 110km/h
IE Deceleration (harsh/gentle) 7m/s? and 3m/s?
g Acceleration 1.5m/s?
Platoon size 20 cars
Number of cars 160, 320, and 640
8 Engine lag 7 0.5s
< CACC's Ci, oy, &, dy 0.5,0.2Hz, 1, 5Sm
O  ACCsT, A 125, 0.1

For coherence with our previous work [6], we setup a 4-lane
freeway scenario with 160, 320, and 640 vehicles divided in
platoons of 20 cars. At the head of each lane we add a vehicle
which generates a traffic shockwave by continuously changing
from a low to a high speed and vice versa every 30s. Jamming
vehicles are not perfectly synchronized, so platoons on different
lanes are always close each other but they misalign over time.
Platoon leaders are controlled by a standard ACC. We consider
two jamming scenarios: A harsh and gentle one. In the harsh
scenario, jamming vehicles switch from 130km/h to 30km/h
and back with a deceleration of 7m/s> and an acceleration of
1.5m/s?, simulating a very dangerous and demanding setup. In
the gentle scenario, vehicles’ speed changes between 130 km/h
and 110km/h with a deceleration of 3 m/s? and an acceleration
of 1.5m/s?. Simulations run for 180s (roughly three traffic
jam cycles) and each configuration is repeated 10 times. Notice
that even if the jamming vehicles have almost (due to actuation
lag) “step-like” decelerations, the decelerations of the platoon
leaders will be smoother, as they are computed by the ACC.
Moreover, leaders at the back further attenuate the deceleration,
thus the scenario considers inhomogeneous braking efforts.

We test our approach against periodic cooperative awareness
beacons sent with a frequency of 10Hz. Jerk Beaconing is
tested for maxy; = 1s, miny; = 0.01s, A, =2m/s?, and for
different values of p, i.e., 0.1, 0.3, 0.5, 1, and 3. The maximum
number of retries and the ack timeout are set to 5 and 50 ms
respectively. When using Jerk Beaconing, vehicles predict
leader and front car speed using Equation (3). Finally, both
static and Jerk Beaconing use transmit power control, i.e.,
followers use a transmit power of 0 dBm; Leaders, instead, use
20dBm. Table I summarizes all simulation parameters.

We evaluate the protocols using three different metrics. The
first one is minimum distance: For all repetitions, we compute
the minimum distance between any pair of vehicles in the
simulation. This gives a measure of the safety of the protocol.
The second metric is the channel busy ratio, i.e., we measure
how much time the channel was sensed busy by all vehicles
during the simulation, thus showing how much the network is
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Figure 4: Minimum distances for the different protocols when
transmit power control is not employed, harsh scenario.

overloaded. To compute this metric, each vehicle samples busy

ratio with a 1 Hz frequency throughout the entire simulation:

In the post-processing phase we take all samples from all
cars and all repetitions and generate the boxplots. Finally, we
compute the ECDF of beacon inter-arrival times, to show how
many resources each protocol saves. This clearly needs to be
read together with previous metrics, because a high beacon
inter-arrival time might also indicate severe packet losses.
For the sake of completeness, we also evaluated the protocols
when transmit power control is not employed (i.e., all vehicles
use 20dBm). Figure 4 shows the minimum distance results
for the harsh scenario grouped in boxplots, together with a
dashed line showing the desired distance d;. The plots show a
minimum distance strictly lower than d; because it is reached
in the braking phase, while d; is the steady-state cruising
distance. As highlighted in [6], platooning in large scenarios
cannot be supported by static beaconing if transmit power is
not adapted, and the simulations we performed further confirm
this thesis. For the 160 cars scenario, the network still properly
works. Neither static nor Jerk Beaconing suffer from a vehicle
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Figure 5: Channel busy time for the different protocols when
transmit power control is not employed, harsh scenario.

dynamics point of view. For 320 cars, static beaconing starts
to suffer: Some simulations reach a minimum distance smaller
than 2m. Jerk Beaconing never results in collisions, but for
p = 0.1, the majority of the simulations declared network
failure due to ack timeout and were stopped. For higher values
of p, Jerk Beaconing never led to a crash, and in particular, for
p =0.5, the minimum distance was always around 4 m. The
issues can also be seen in Figure 5, were we plot the channel
busy time. The network overload caused by static beaconing
and by Jerk Beaconing for p = 0.1 is evident, and explains why
the performance is unacceptable. The 640 vehicles scenario, by
completely saturating the channel, makes all protocols unusable.
Static beaconing almost always results in a vehicle collision.
The packet loss rate caused by the network overload (Figure 5c¢)
is non sustainable. Jerk Beaconing works only for p = 1,3
but, from a vehicle-dynamics point of view, the results are not
satisfying. For p = 1 the minimum distance is always around
3 m, while for p =3 it goes down to less than 1 m. For p =3,
the minimum distance worsen with the number of cars in the
scenario even if the network is not overloaded. This is due to
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Figure 6: Minimum distances for the different protocols, 640
cars.

the high CCA-threshold which affects the computation of the
channel busy metric, i.e., farther vehicles have few impact on
the metric. Still, the interference caused by the high density of
vehicles impacts packet reception rate which, in turn, highly
affects Jerk Beaconing in a low reactivity setting.

When using TPC, independently from the number of vehicles
(160, 320, and 640), for the same scenario (harsh or gentle)
the results are almost equal. This is the case thanks to the
use of TPC which reduces the interference range and makes
the network capable of supporting very dense scenarios. For

this reason we only report the results for 640 cars (Figure 6).

Moreover, thanks to TPC coupled with the reliability protocol,
the timeout mechanism declared network failure only in some
rare cases. Figure 6a shows minimum distances for the harsh
scenario. The plot confirms the benefits of using TPC: All

protocols, including static beaconing, never cause an accident.

Jerk Beaconing for values of p equal to 0.1, 0.3, and 0.5
shows better performance than static beaconing which, in turn,
performs better than Jerk Beaconing with p =1 and 3. In
particular, for p = 3, Jerk Beaconing behaves too conservatively

in terms of network resource usage, making the system unsafe.

In the gentle scenario (Figure 6b), instead, the lower reactivity
demand improves the performance of all approaches.

To compare the protocols from the point of view of network
resources, Figure 7 shows the channel busy ratio statistics.
The high performance in terms of minimum distance of Jerk
Beaconing for p =0.1 comes at a price, i.e., network overload.
In this particular case, network usage is higher than for static
beaconing. For other values of p, instead, Jerk Beaconing
uses on average at most half of the resources, leaving the
channel free for other possible applications. The results are
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Figure 7: Channel busy time for the different protocols, 640
cars.

qualitatively equal between harsh and gentle scenario, with
the gentle scenario showing a slightly lower channel usage.
This holds for static beaconing as well because of different
vehicle densities in the scenario. The ACC used by the leaders
results in an inter-platoon gap of only 10 m when driving at
30km/h. Because the minimum speed in the gentle scenario
is 110km/h, instead, the inter-platoon distance is never lower
than 36 m. This difference in density also affects the variance
of the load, which is smaller in the gentle scenario.

As a final comparison metric, we consider beacon inter-
arrival distribution for leader messages (Figure 8). The black,
steep line represents static beaconing which, in the majority
of the cases, delivers the packets every 100 ms, except in case
of packet losses. Figure 8 also shows why Jerk Beaconing for
p = 0.1 overloads the networks: The beacon inter-arrival time
in the harsh scenario is smaller than 100 ms in 50 % of the
cases, and 40 % of the cases in the gentle scenario. For other
values of p, it is evident how effective Jerk Beaconing is in
saving resources, both with respect to static beaconing and to
different scenarios. Considering p = 0.5, in 50 % of the cases,
Jerk Beaconing sends beacons no faster than every 400 ms in
the harsh scenario, and 650 ms in the gentle scenario.

In conclusion, by observing Figures 6 to 8, Jerk Beaconing
with p = 0.5 shows better performance in terms of both safety
and resource saving compared to standard CAM or BSM
beaconing. This shows the potential of dynamic approaches
for platooning and poses a new interesting question: Can we
find a theoretical link between vehicle dynamics, required
sampling (i.e., beaconing) frequency, and performance in terms
of minimum distance bound? This would help in designing an
optimal networking protocol in terms of safety guarantees.
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Figure 8: Empirical CDF of beacon inter-arrival times for the
different protocols, 640 cars.

V. CONCLUSION

This work proposed Jerk Beaconing, a dynamic information
dissemination protocol for platooning that exploits vehicle
dynamics to send beacons only when needed. The protocol,
coupled with a reliable delivery mechanism, showed improved
performance both in terms of safety and network resource
saving. This approach showed that it is not necessary to have
a periodic 10 Hz beaconing to support platooning, but that by
sending beacons at the right moment we can spare channel load
and even improve passengers’ safety. The results in this paper
raise a further question: Can we find a theoretical link between
beacon interval and performance of the controller? Answering
this question would permit us to develop an optimal algorithm
that could be tuned depending on the desired performance.
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