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Abstract—Query processing has become one of the main
paradigms to approach information processing in Wireless Sen-
sor Networks (WSNs). We study and identify relevant factors
involved in in-network query deployment in WSNs. As a key
outcome, we developed a deployment aware cost estimation model
for distributing operators to nodes within the network using
the network lifetime as a key metric. In contrast to related
approaches, we include the state of each node in the cost model.
This provides means for an automatic load balancing mechanism
that allows us to insert a higher number of queries compared
to other approaches, thus, significantly extending the network
lifetime.1

I. INTRODUCTION

The concept of in-network query processing in sensor
networks has been emerged as a hot research topic, mainly
because of the possible efficiency combined with several
challenging issues such as the determination of the optimal
operator distribution [1], [2]. A query, expressed in a query
language (e.g., SQL), can be split into a set of operators, ones
related with each other and susceptible to be executed in the
sensor nodes. The possibility of distributing the operators of
a query directly into the sensor network appears to be an
efficient method avoiding the recollection of all raw data at
a sink node, just to execute the query at the sink [3].

Directly associated with in-network query processing is the
optimal emplacement of operators. This is considered one of
the key problems to be addressed. The assignment of one or
several operators to a specific sensor nodes implies that the
operator has to be migrated from its current position (e.g., the
sink) to its new position. There are, of course, other problems
like the operator configuration or the state management.

The first step in solving the operator placement problem is
to locate operators that reduce the amount of data transmitted
(e.g., aggregation functions) in order to optimize the energy
consumption of wireless transmissions. Then, all the other
operators have to be distributed optimizing the entire network
lifetime [4], [5]. Thus, the main goal is to wisely decide which
operator has to be distributed to which node.

With this aim in mind, this paper summarizes proposals
and earlier works that help to understand the requirements
for designing a cost estimation model and to establish a
candidate solution for the operator distribution problem. We
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specifically focus on the migration of operators, taking into
account the current state of sensor nodes in the operator
placement decisions [6].

Our work is part of the RDSP project2 and it provides
relevant metadata for the Data Stream Application Manager
(DSAM) [7], the central query manager of RDSP. DSAM
supports the deployment of global queries to distributed and
heterogeneous sensor nodes and Stream Processing Systemss
(SPSs). For the operator emplacement, we use a graph-based
global query language DSAM-AQL.

In our architecture, we build a logical view from the real
WSN topology by means of a Catalog entity, which includes,
for instance, information about memory and energy available
in each node and about already deployed operators. Based on
this information, the DSAM-AQL parser builds a graph with
the operator relationships for a submitted query and generates
the code for each operator. The cost model carries out a
matching process looking for the best operator distribution.
The obtained optimal operator placement is used by the sink
to generate a set of commands (according to a migration
control protocol) to effectively migrate the operators to the
corresponding nodes. This can for example be handled using
the stateful mobile modules approach [6], [8]. As stated before,
the aim of this process is to prolong the overall lifetime of
the sensor network [4]. In our case, we consider the network
lifetime as the total amount of queries that can be injected
before one of the queries fails due to energy starvation of the
sensor nodes. If there is no alternative operator distribution for
successful query execution, we consider the WSN dead from
a functional point of view.

The main contributions of this paper can be summarized
as follows. Primarily, we show the influence of parameters
such as operator migration cost, distance between nodes and
topology on the operator placement problem. Based on the
analysis of previous cost model proposed, we define a new
cost model for operator placement including all the studied
parameters. Our cost model minimizes network transmissions
and includes a per-hop state consideration in order to exclude
nodes with low-level of energy in the operator placement de-
cisions. Including this per-hop state energy parameter enables
a load balancing mechanism, which significantly extends the
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sensor network lifetime.
The rest of the paper is structured as follows. Section II

describes some earlier works related with cost models for
in-network query processing and associated problems. Sec-
tion III introduces the proposed per-hop state cost model.
This section also outlines different considerations about the
operator migration process. Section IV is devoted to analyze
individual factors that have a strong influence on the optimal
operator location. Section V shows the performance of our
cost model under different random topologies and analyzes
some problems identified during this test phase. Finally, in
Section VI, we draw some conclusions and discuss possible
future work.

II. RESEARCH QUESTION AND RELATED WORK

In a WSN, sending data continuously from any sensor
node to one or several sinks can be expensive in terms of
power consumption. In order to save energy, in-network query
processing has been studied as an efficient way to avoid raw
data transmission between the sensor nodes. Several architec-
tures follow this concept like, such as the ones proposed in
RDSP [7], SNEE [9] and SSDQP [10].

In all these architectures, a query is expressed according
to a query language (e.g., SQL or similar languages). This
query is then split into operators (e.g., filter, join, or union),
which are inserted into the network. In the stream processing
concept, each operator directly returns the processed results
of the query. In many cases, a window my define the time
required by the query. For example, to calculate an average
temperature over ten minutes, this time window indirectly
defines the amount of data to be processed.

Having this in mind, one of the key questions that should be
answered is where operators should be placed for an optimal
WSN performance. Effectively, to combine possible emplace-
ments and different configurations for a query with several
operators involved constitutes an NP-hard problem [11]. This
problem deserves greater attention from the research commu-
nity looking for adequate heuristics and algorithms in order to
reduce the computation time and to find operator distributions
close to the theoretical optimum. All these algorithms strongly
depend on a cost model for a correct node emplacement.

To devise a cost model for operator placement, we will
demonstrate that the following aspects need to be considered:
• Operator size – Operator-specific costs could, depending

on the query characteristics, become an important factor.
• Distance between nodes – It is well known that rout-

ing algorithms mainly use the number of hops as cost
function. But, in sensor networks not only the number of
transmissions is important but also the physical distance
between the nodes.

• Selectivity of operators – We define the selectivity as the
ratio between incoming and outgoing data streams. This
is a key aspect to reducing the amount of data transmitted.

• Topology – According to our study, the topology of the
network is a crucial aspect for achieving efficient in-
network query processing.

In [12], Chatzimilioudis et al. develop an operator placement
for snapshot multi-predicative queries in sensor networks.
They use the energy of returning the results to the sink as
their cost function. However, they do not consider the cost
of disseminating the query itself. For energy estimation, they
use the cost model proposed in [13], which is representative
of works in this area since it provides a global view of the
energy cost of a given solution (e.g., the operator distribution
in the WSN). Such cost models do not take into account the
current state of the network, i.e., the state of each node. The
work presented in [5] includes the distance between nodes
in the energy cost for operator deployment, but, again, does
not consider operator migration costs and reduces the problem
to a minimum communication cost placement from a global
point of view. A more comprehensive lifetime metric has been
presented in [4], which also takes the operational aspects of
the network into account.

Despite most of the existing works deal with received data
in each node, they usually do not take the total amount of data
received by each node into account. Instead, they just consider
the data directly addressed to that node [14].

III. PER-HOP STATE COST MODEL

If we have a query Q expressed in any query language, we
can represent it in form of a set of operators O connected in a
directed graph by a set of edges E. Each operator represents
a vertex in the graph, and each edge represents the data flow
between operators. So we can express the query like Q =
{E,O} where O = {o1, o2, . . . , oi} with o1, o2, . . . , oi is the
list of operators for query Q. The set E can be expressed as:

E = {e1, e2, . . . , ei} : ei = {oi, oj}, oi, oj ∈ O, oi 6= oj (1)

where an edge ei represents that the data flow from oi to oj .
Each oi has associated a selectivity si that is characterized

as a ratio between the input stream size and its output stream
size. The set of operators can be either traditional database
operators (e.g., aggregate, filter, correlate) or user-defined
operators. We call Ω of a query Q a valid solution, i.e., a
set of emplacements for all operators involved in the query Q
that satisfy all memory and energy requirements. In the same
way, assuming a WSN of N nodes, we can define oni as the
emplacement of operator oi in node n of the sensor network.

A solution has to satisfy several restrictions in order to be
considered valid.

The memory available of a node n (nmr) has to be sufficient
to store all operators to be placed at node n:

∀n ∈ N : nmr ≥
∑
i∈O

size(oni ) (2)

Also, if we call P a route between nodes x and y, it
is necessary that for all connections between operators in a
specific placement, there is a path P (in the WSN) between
these two emplacements:

∀e = oxi , o
y
j , e ∈ E : ∃P = x, y (3)



The notation oxi and oxj is possible if two operators are placed
on the same node.

We further have to consider energy restrictions. If we can
estimate the energy spent per node for a given solution, this
amount of energy should be less or equal to the energy
available in the node. Between all valid solutions, we need
to choose the one that prolongs the overall network lifetime.
In our case, we define a simple metric for network lifetime:
the number of queries executed in the network before a query
fails as one or more nodes involved in the solution cannot
provide sufficient remaining energy.

If we call Cs the estimated cost for a valid solution including
the energy necessary for operator migration, we need to add
a factor representing the available energy in such way that a
single node with energy problems will increase the cost of all
solutions including this node. With this factor, we expect to
achieve an automatic load balancing mechanism that prolongs
the network lifetime.

We call xtn the energy available of node n at time t. The
capacity factor (Cf ) Cf tn of node n at time t is modeled as

Cf tn =
1

ex
t
n

(4)

Using an exponential function clearly increases the cost
of a solution even if just one of the nodes involved in the
solution has energy problems. To model the estimated energy
consumption, we focus on the transmission and reception of
packets, since both processes represent a high percentage of
the energy consumed by a sensor node. For example, Klan
et al. [15] show that the energy consumed in a single sensor
measurement is lower or equal to the sending of a single byte.

For each node n, the data transmitted Dn
tx for a given query

solution is composed of

• the data stream that must be forwarded (without change
at node n and belonging to stream queries or migration
of operators),

• the sum of all data transmitted by each operator running
at node n, and

• the data transmitted by operators running at node n,
which had to be migrated.

Similarly, the data received Dn
rx for a given query solution

is composed of

• the received data stream that must be forwarded,
• the sum of all data received by each operator running at

node n, and
• the data received as a result of neighbors transmission

but not addressed to node n.

In order to calculate the data transmitted Dn
tx, let us call

predecessor subset Pi of an operator oi the set of operators
connected to operator i where this operator is the consumer
of the data. Using the edge definition from Equation 1 prede-
cessor subset Pi is defined as

Pi = {g1, g2, . . . , gj}∀g ∈ O, g ∈ Pi ⇒ ∃e ∈ E ∧ e = {g, oi}
(5)

Similarly, the successor subset Si of oi is defined as

Si = {c1, c2, . . . , cj}∀c ∈ O, c ∈ Si ⇒ ∃e ∈ E ∧ e = {oi, c}
(6)

Let output(Pi) be the amount of data generated by Pi in
bytes. Now, we can express Dn

tx as

Dn
tx = Dn

f +
∑
on
i

(output(Pi) ∗ Si) ∗ |Si|+Mtx (7)

where |Si| represents the cardinality of Si (we assume that
an operator sends the same data to all its destinations). Mtx

represents the data transmitted if node n contains an operator
that has to be migrated to another node. Finally, Dn

f represents
the data forwarded by node n (and which was not processed
at n).

In the same way, the data received by node n is Dn
rx and

can be expressed as

Dn
rx = Dn

f +
∑
on
i

(output(Pi)) +Mrx (8)

Again, Mrx represents the data received if an operator is
placed at node n as a result of the migration process.

Now, the energy consumed by node n for a given query
solution can be expressed as

En = Dn
tx ∗ Etx +Dn

rx ∗ Erx (9)

where Etx and Erx represent the cost for sending and re-
ceiving a single byte, respectively. We need to mention that
Etx takes into account the distance of the next hop for each
packet transmitted (again, we assume that the energy required
for the transmission varies considerably with distance [16]). If
we include the capacity factor of each node, the cost function
of a valid solution Ω can be expressed as

CΩ =
∑
n∈N

((β +Dn
tx)Etx + (α+Dn

rx)Erx)Cf tn (10)

Here, the constants β and α have been introduced to include
the effect of other data not directly related with the operators’
functionality, that is, routing data exchanged between nodes,
topology control protocol, and others. For the sake of simplic-
ity, both constants have been omitted in the simulations.

IV. EVALUATION OF COST MODEL RELEVANT FACTORS

In this section, we discuss the influence of different factors
in the cost model estimation. In order to show this influence,
we developed a simulator that takes a WSN topology ex-
pressed by mean of an XML file and evaluates all candidate
positions (according to Equation 10) for a query expressed
as an operator tree. The simulator takes the ideal solution
following our cost model and applies this solution, updating
battery and operator place for each node and operator, respec-
tively. Finally, the simulator calculates the number of queries
successfully injected in the network. To shorten the simulation
time, all nodes start with charge of 2753.75 J (about 25 % of
an AA lithium-ion battery). In the simulator, the battery charge
is normalized between 10 and 0.1 in steps of 0.1.



TABLE I
STREAMING CONVERSION FOR EACH TYPE OF OPERATOR

Operator Out streaming size

Union size(S1) + size(S2)
Join σ * C(S1) * C(S2) * (AIS(S1) + AIS(S2))

Conditional merge σ * C(S1) * (AIS(S1) + AIS(S2)),
having C(S1) ≈ C(S2)

Filter σ * C(S1) * AIS(S1)
Map C(S1) * new AIS(S1)

Aggregate (#G / agg size) * C(S1) * AIS(S1)

The simulator is implemented in Python using a python-
graph library to model the WSN topology and the graph
built from the set of operators (and their relationships). In
the following sections, we will show how the simulator helps
us to evaluate of different aspects of the overall performance
of the cost model. We always compare our approach with a
global estimation of the energy without taking into account the
energy in each node. So, when we talk about a global energy
estimation, we refer to Equation 10 without considering the
capacity factor Cf tn.

A. Stream Manipulating Operators

Different operators used for sensor information fusion tasks
have been considered, namely combining operators (union,
join, and conditional merge), nomadic operators (filter, map,
and aggregate) and separating operators. Each one of them
modifies the size of the stream. If we have two raw streams
labeled S1 and S2, considering C(S1) as the cardinality of S1
and AIS(S1) as the average item size of S1, we show in the
Table I the size of the output stream for each type of operator.
We consider σ as the selectivity of the operator (with values
between 0 and 1).

Whenever σ gets close to 1, most of the operators increase
significantly the size of the stream (i.e., join, conditional
merge). In most of these cases, it is more convenient from
the in-network processing query point of view to place the
operators at the sink node.

For simplification, we will consider a user-defined operator
with selectivity σ between 0.2 and 1.6 in the evaluation of the
cost model. This represents the set candidates to be inserted
in the network. The precise operator type is not relevant for
the presented cost model.

B. Distance Between Nodes

Another consideration broadly ignored in the cost model
development is the distance between nodes. Works that deal
with topology control show how to regulate the transmission
power of the nodes to save energy [17]. This aspect has a
strong impact in the overall network lifetime.

The simulator gets the distance between nodes from the
topology file and calculates, based on data presented in [16],
the TX power level for a CC2420 radio chip [18]. With the
TX power level necessary for the transmission, we estimate the
energy required per byte according to data presented in [19].

Sink

S1 S2

OP1 N1

N2 N3

N4 N5

Sink

Query Graph Topology

Data flow

Fig. 1. Query graph and network topology

Per−Hop

Global

Sink

Distance between nodes (in meters)

N
u
m

b
e
r 

o
f 
q
u
e
ri

e
s
 i
n
je

c
te

d

0
e
+

0
0

2
e
+

0
5

4
e
+

0
5

10 30 60

Fig. 2. Successfully injected queries for a join operator of 10KB

In order to show this influence, we executed a simulation
that calculates the optimal position following a greedy ap-
proach that tests all candidate solutions. We define a query in
which two sources send a stream to a user-defined operator
that join both streams and sends the data to a sink as depicted
in Figure 1 (left). This query could be expressed in SQL as:

CREATE STREAM out AS
SELECT * FROM
conditional_merge(S1,S2)

S1 and S2 represent the source streams and the
conditional_merge would be a user-defined operator
(OP1 in Figure 1). We assume that the result of the query
has to be accessed at the sink node in the WSN.

The internal structure of the user-defined operator is not
relevant in this case, but we can assume that it has a selectivity
of 0.2. For the sake of simplicity, we insert this query in a
simple topology outlined in Figure 1 (right). In our simulator,
we repeatedly executed this experiment. Our simulator stops
when it is not possible to insert the query in the WSN because
some nodes involved are out of battery and there is not an
alternative solution.

In Figure 2, we can see a comparison of three possible
approaches. The “sink” bars represent a basic approach where
the operator is always executed at the sink; “global” bars
consider the overall consumed energy to calculate the operator
placement; and finally the “per-hop” bars show the behavior
of our per-hop state cost model. To show the influence of the
node distance, we changed this parameter between 10 m, 30 m,
and 60 m. In this simulation, the operator size is 10KB with a
selectivity of 0.2. Source node emplacements are N4 and N5,
each node has an initial battery of 2753,75 J and Rx power
consumed is 1.8912 nJ/byte.

The basic approach just assigns the join operator to the sink
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node. Thus, it does not spend energy for operator migration.
We use this approach as a reference. Following the traditional
approach, we should estimate the energy spent for each
solution (including the migration process) from a global point
of view. The state of each node is not considered. As we can
see in Figure 2, this “global” option improves the lifetime
clearly in comparison to the basic approach. With our per-hop
state cost model and taking as capability factor the exponential
of the available energy, we are more sensible to nodes’ energy
starvation. So, we migrate the operator in function of the
state of each node. As can be seen, this further improves the
expected network lifetime. With our approach, we can execute
significantly more queries compared to the “global” approach.
This shows that the distance between the nodes has a strong
influence on the maximum number of executed queries.

In order to visualize the behavior of the “global” vs. the
“per-hop” model, we plot in Figure 3 the emplacement of the
user-defined operator over time (actually over the number of
executed queries representing time in our experiments). If we
use an overall energy estimation, the operator is fixed at a
single node (dark line). Using our per-hop state cost model,
the operator location changes according to the state of the
node (grey line). The operator migration has a cost, but even
with this extra cost, we are able to execute more queries and
to prolong the network lifetime.

V. PERFORMANCE EVALUATION

With the aim of studying the overall performance of the
proposed per-hop cost model, we have defined a new query
with two operators where one of them merges two sources
and the result is merged again with another source stream. In
SQL, we can express this query as follows:

CREATE STREAM out AS
SELECT * FROM

conditional_merge(
conditional_merge(S1,S2,...),S3,...);}

The operator tree for this query is depicted in Figure 4. As
can be seen, the three sources S1, S2, and S3 are sending data
to operators OP1 and OP2, respectively.

As mentioned before, our cost model, together with the dy-
namic operator replacement mechanism, enables an automatic
load balancing process. To demonstrate this effect, we tested
our cost model in a regular square topology of 5x5 nodes
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(Figure 4). The sources are at nodes labeled with N1, N5 and
N15, located in coordinates (1,1), (5,1) and (5,3), respectively.
The operator size is 3 KB and the distance between nodes
is set to 60 m. To simplify the simulation, the selectivity of
operators σ is 0.5, source size of 150 KB and the nodes have
an initial battery of 2753.75 J. When we talk about source size
we refer to the size of the streaming processed according with
the window defined in the query.

With this topology and configuration, the overall energy
consumption of all nodes is equal as we can see in Figure 5
left. In this figure, the diameter of the circles represents
the remaining energy after the simulation terminated. As can
be seen, using the global operator distribution approach, the
topology becomes partitioned. This approach selects coordi-
nates (3,1) and (3,3) for the two operators

In contrast, our per-hop cost model performs a load balanc-
ing mechanism and stops only when one of the sources, in
this case sensor node N15 at (5,3), is running out of energy.
The rest of the network is still operational (Figure 5 right).

In a final experiment, we compared the total network
lifetime for both approaches. Here, we analyzed the number
of queries that we can execute with each solution. In this
experiment, we generated 10 random topologies of 25 nodes
and, again, apply the same query (see Figure 4 right). The
sources are located at nodes N1, N5 and N15, independently
of the operator distribution. The operator size is 3 KB and the
distance between nodes ranges randomly between 1 m to 60 m.
To speedup the simulation, the initial value of the battery was
set to 110.5 J.

The average of successfully executed queries is shown in
Figures 6 and 7 for source sizes of 10 KB and 150 KB. The
results are depicted in form of boxlots. For each data set, a
box is drawn from the first quartile to the third quartile, and
the median is marked with a thick line. Additional whiskers
extend from the edges of the box towards the minimum and
maximum of the data set, but no further than 1.5 times the
interquartile range. Data points outside the range of box and
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whiskers are considered outliers and drawn separately, as small
circles. As we can see in all cases, our cost model (grey
bars) performs significantly better compared to the global
energy model. When the operator selectivity is larger than
one, both approaches present a lower limit. In this case, the
key limitation is the battery available in the sink’s one-hop
neighbors. The global approach emplaces both operators (OP1
and OP2) at the sink. So, the data flows converge in the
sink’s one-hop neighbors. Again, our approach performs a load
balancing between sink’s neighbors, when possible, in order
to prolong the overall network lifetime.

VI. CONCLUSIONS

Cost estimation if a key factor for the success of in-network
query streaming architectures. The final decision about the
operator distribution for the queries in sensor networks is
crucial, especially, if operator migration is possible to prolong
the network lifetime.

A review of the literature shows that when dealing with
in-network query processing in sensor networks, most of the
presented solutions allow a good overall energy estimation,
but do not take all communication costs into account. Our
key contributions are the comprehensive study of important
factors like node distance, operator size and selectivity, and the
available remaining energy; as well as the resulting definition
of a novel cost model taking all the energy constraints into
account. The per-hop cost model especially focuses on the
operator migration cost and all communication related energy
demands. As can be seen from our experiments, our model

is significantly outperforming related solutions, proving its
effectiveness for optimal operator placement.
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