Vehicular Networks [C2X]

Part 2: Car-to-X Networking

Broadcast, Geocast, Routing
Routing

- Classical approaches to routing
 - Distance Vector Routing
 - Nodes keep vector of known destinations, store distance and next hop
 - Ex: DSDV
 - Link State Routing
 - Nodes keep track of all links in network
 - Pro: fast and guaranteed convergence
 - Con: high overhead
 - Ex: OLSR
Classical approaches to routing (II)

- Reactive (on demand) routing
 - Routes established when needed
 - Routing messages only exchanged if (or while) user data is exchanged
 - Unused routes expire
 - Ex: AODV, DYMO

- Proactive (table driven) routing
 - Routes are established and maintained continuously
 - No route setup delay when data needs to be sent
 - High overhead
 - Ex: OLSR, DSDV
Classical approaches to routing (III)

- **Hop-by-Hop Routing**
 - Each packet contains destination address
 - During routing, each hop chooses best next hop
 - Ex: AODV

- **Source Routing**
 - Each packet contains complete route to destination
 - During routing, nodes rely on this information
 - Ex: DSR
Routing

Georouting

- Primary metrics: position / distance to destination
- Requires node positions to be known (at least for the destination)
- Two operation modes (typ.):
 - Greedy mode: choose next hop according to max progress
 - Recovery mode: escape dead ends (local maxima)
- Must ensure that message never gets lost
Routing

- **Georouting: CBF**
 - „Contention Based Forwarding“
 - Reduction (or complete avoidance) of duplicates

- **Outline**
 - Given: position of message destination, position of last hop
 - Do not forward message immediately, but wait for time T
 - Choose wait time T according to suitability of node
 - Do not forward message if another forward was overheard

- **Problem**
 - Potential forwarders must be able to overhear each others’ transmissions

Georouting: CBF

Potential forwarders are contained in Reuleaux triangle (1) (use estimated communication range for thickness of triangle)

Waiting time is $T = 1 - P$

(z: destination, f: last hop forwarder)

If last hop overhears no node forwarding the message, message is re-sent for nodes in (2), then (3)

$$P(f, z, n) = \max \left\{ 0, \frac{\text{dist}(f, z) - \text{dist}(n, z)}{r_{\text{radio}}} \right\}$$
Routing

- Reflection on classical routing approaches
 - Q: Can (classical) routing work in VANETs?
 - A: Only in some cases.
 - Commonly need multicast communication, low load, low delay
 - Additional challenges and opportunities:
 network partitioning, dynamic topology, complex mobility, ...

Flooding

- Flooding (Multi-Hop Broadcast)
 - Simplest protocol: „Smart Flooding“:
 - Problem: Broadcast Storm
 - Superfluous re-broadcasts overload channel
Flooding

- Consequences of a broadcast storm
 - Interference → impact on other systems
 - Collision → impact on other users
 - Contention → impact on other applications

![Graphs showing delay and packet loss ratio versus node density.](image)
Flooding

- Solving the broadcast storm problem

- Classical approaches
 - Lightweight solutions (e.g., probabilistic flooding)
 - Exchange of neighbor information, cost/benefit estimations
 - Topology creation and maintenance (Cluster, Cord, Tree, ...)

- Drawbacks
 - Blind guessing (or scenario dependent parameterization)
 - Additional control message overhead
 - Continuous maintenance of topology
Flooding

- VANET specific solution: Broadcast Suppression
 - Needs no neighbor information
 - Needs no control messages
 - Maximizes distance per hop
 - Minimizes packet loss

- Approach
 - Node receives message, estimates distance to sender
 - Selectively suppresses re-broadcast of message
 - Alternatives
 - weighted p-persistence
 - slotted 1-persistence
 - slotted p-persistence

Flooding

Broadcast Suppression

- Estimate distance to sender as $0 \leq \rho_{ij} \leq 1$

- GPS based
 \[Q_{ij} = \begin{cases}
 0 & \text{if } D_{ij} < 0 \\
 \frac{D_{ij}}{R} & \text{if } 0 \leq D_{ij} < R \text{ (approx. transmission radius)} \\
 1 & \text{otherwise}
 \end{cases} \]

- RSS based
 \[Q_{ij} = \begin{cases}
 0 & \text{if } RSS_x < RSS_{min} \\
 \frac{RSS_{max} - RSS_x}{RSS_{max} - RSS_{min}} & \text{if } RSS_{min} \leq RSS_x < RSS_{max} \\
 1 & \text{otherwise}
 \end{cases} \]
Broadcast Suppression

- Weighted p-persistence
 - Probabilistic flooding with variable p_{ij} for re-broadcast
 - Thus, higher probability for larger distance per hop
Flooding

- **Broadcast Suppression**
 - **Weighted p-persistence**
 - Wait \(\text{WAIT_TIME} \) (e.g., 2 ms)
 - Choose \(p = \min(p_{ij}) = \min(p_{ij}) \) of all received packets (probability for re-broadcast of packet)
 - Ensure that at least one neighbor has re-broadcast packet
Flooding

- Broadcast Suppression
 - Slotted 1-persistence
 - Suppression based on waiting and overhearing
 - Divide length of road into slots
 - More distant slots send sooner
 - Closer slots send later (or if more distant slots did not re-broadcast)
 - Thus, higher probability to transmit over longer distance

\[
p_{ij}^{t=0} \quad t=\tau \quad t=2\tau \quad t=3\tau
\]
Flooding

Broadcast Suppression

- Slotted 1-persistence
 - Divide “communication range” into N_s slots of length τ
 - Nodes wait before re-broadcast, waiting time $T_{ij} = \tau \times \lceil N_s (1 - \rho_{ij}) \rceil$
 - Duplicate elimination takes care of suppression of broadcasts
Flooding

- Broadcast Suppression
 - Slotted p-persistence
 - Cf. slotted 1-persistence
 - Fixed forwarding probability p (instead of 1)
Flooding

- Broadcast Suppression
 - Slotted p-persistence
 - Wait for T_{ij} (instead of fixed WAIT_TIME)
 - Use probability p (instead of 1)
 - Ensure that at least one neighbor has re-broadcast the packet by waiting for $\delta' > \max(T_{ij})$
Flooding

- Broadcast Suppression
 - Solves Broadcast Storm Problem
 - Maximizes distance per hop
 - Minimizes packet loss

![Graph 1](image)

![Graph 2](image)
Flooding

- Broadcast Suppression
 - But: Much higher per-message delay
Flooding

- Remaining problems
 - Temporary network fragmentation

- Undirected message dissemination
Flooding + X

DV-CAST

- Idea: detect current scenario, switch between protocols
- Check for fragmented network
 - Network connected \rightarrow perform broadcast suppression
 - Network fragmented \rightarrow perform Store-Carry-Forward

Flooding + X

- **DV-CAST: Mechanism**
 - Nodes periodically send *Hello* beacons containing position, speed
 - Nodes maintain 3 neighbor tables
 - Same direction, ahead
 - Same direction, driving behind
 - Opposite direction
 - Messages contain source position and Region of Interest (ROI)

- For each message received, evaluate 3 Flags:
 - **Destination Flag (DFlg):**
 - Vehicle in ROI, approaching source
 - **Message Direction Connectivity (MDC):**
 - ∃ neighbor driving in same direction, further away from source
 - **Opposite Direction Connectivity (ODC):**
 - ∃ neighbor driving in opposite direction
Flooding + X

- DV-CAST

Algorithm:

- **IDLE**
 - Packet Arrival
 - MDC = ?
 - 1: Broadcast Suppression
 - 0: ODC = ?
 - 1: Rebroadcast
 - 0: WAIT I
 - Pkt Timer Expires
 - Hello Pkt arrives from ODN
 - ODC = 1 or MDC = 1
 - DFImg = ?
 - 1: WAIT II
 - 0: Rebroadcast
 - Pkt Arrival <HOP = N+2>
 - or Pkt Timer Expires
Flooding + X

DV-CAST

Decision matrix:

<table>
<thead>
<tr>
<th>MDC</th>
<th>ODC</th>
<th>DFbg</th>
<th>Derived Scenario</th>
<th>Actions Taken by DV-CAST Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>×</td>
<td>1</td>
<td>Well Connected</td>
<td>Broadcast Suppression</td>
</tr>
<tr>
<td>1</td>
<td>×</td>
<td>0</td>
<td>Well Connected</td>
<td>Help relay the packet by doing broadcast suppression</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Sparsely Connected</td>
<td>Rebroadcast and assume that the ODN will help relay or rebroadcast</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Sparsely Connected</td>
<td>Rebroadcast and help carry & forward the packet to the first new neighbor in the opposite direction or in the message direction encountered</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>×</td>
<td>Totally Disconnected</td>
<td>Wait and forward the packet to the first neighbor in the opposite direction or in the message direction encountered.</td>
</tr>
</tbody>
</table>
Flooding + X

- **DV-CAST**
 - Simulation results:

![Graphs showing simulation results for DV-CAST compared to Broadcast.]
Intermediate Summary

- Remaining problems
 - Temporary network fragmentation
 - Undirected message dissemination
Geocast

TO-GO

„Topology-Assisted Geo-Opportunistic Routing“

Nodes periodically send *Hello* beacons; Contents:

- Number of neighbors
- Bloom filter of neighbor IDs
- IDs of neighbors furthest down the road/roads

Thus, nodes know about all 2-hop neighbors

Bloom Filter

Idea:

- Bloom filter is a bit field X
- Hash functions h_1 to h_k map input data x to one bit (each) in X
- Insertion of x: Set $X[h_i(x)] \leftarrow 1 \quad \forall i \in [1..k]$
- Test for $x \in X$: Check $X[h_i(x)] = 1 \quad \forall i \in [1..k]$

Probabilistic test for “$x \in X$”

- Possible results: no / maybe (\Rightarrow chance of false positives)
- Allows for very compact representation of X

TO-GO

Step 1: Find best next hop (Target Node, T)
- Find N: Furthest neighbor towards destination
- Find J: Furthest neighbor towards destination, currently on junction
- Find N_J: Furthest neighbor towards destination, as seen by J
- if N, N_J are on the same road (and running in greedy mode), pick N
 else, pick J
Geocast

- TO-GO

 - Step 2: Find Forwarding Set (FS)
 - Nodes in the FS will compete for relaying of the message
 - Only one node in FS should relay
 thus, all nodes in FS must hear each other
 - Finding optimal solution is *NP complete*
 - TO-GO uses approximation:
 - Bloom filter entries indicate who can hear whom
 - Given the target node T,
 find its neighbor M with the maximum number of neighbors
 - Include all those neighbors in FS, which
 - can hear M, and
 - are heard by M, and
 - are heard by all current members of FS
Geocast

TO-GO

Step 3: Multicast message to all nodes in FS

- Nodes in the FS compete for relaying of the message
- Ensure maximum progress within FS
- Delay re-broadcast by t
- Suppress re-broadcast if another nodes forwards within t

$t = \tau \times \frac{d_T}{d_{\text{max}}}$

with:

- τ: Maximum delay per hop
- d_T: Distance to Target Node
- d_{max}: Distance from last hop to Target Node
Intermediate Summary

- Remaining problems
 - Temporary network fragmentation
 - Undirected message dissemination
Scalability

Do the presented approaches scale?

Analytical evaluation [1]:
- Capacity of wireless channel is limited
- Amount of information transported across any (arbitrary) border must be upper-bounded

\[\sum = \xi_r \]

Scalability

Solution?
- Define maximum dissemination range of any information
- Reduce update frequency with increasing distance
- Aggregate information as distance increases

Pre-condition for scalability of dissemination approach?
- Used bandwidth reduces as distance to source increases
- Upper bound: $1 / d^2$
Main Takeaways

- Classic information dissemination
 - Distance vs. link-state
 - Reactive vs. proactive
 - Hop-by-hop vs. source routing
 - Geo-routing (CBF)

- Examples of VANET-centric information dissemination
 - Flooding (Weighted/Slotted 1/p-Persistence)
 - Fragmentation (DV-Cast)
 - Directedness (To-Go)

- Scalability