
On the Need for Passive Monitoring
in Sensor Networks

Abdalkarim Awad, Rodrigo Nebel, Reinhard German and Falko Dressler
Autonomic Networking Group, Computer Networks and Communication Systems

University of Erlangen-Nuremberg, Germany
{abdalkarim.awad,german,dressler}@informatik.uni-erlangen.de

Abstract—Debugging and analyzing Wireless Sensor Networks
(WSNs) are important tasks for improving the quality and
performance of the network. In this paper, Pimoto is to be
presented, which is a distributed passive monitoring system
implemented for debugging and analyzing WSNs. It is based on
a hierarchical structure allowing to monitor different networks
simultaneously and to analyze the obtained information at a
dedicated PC. The system relies on three components. The first
element is the monitoring node. It intercepts the radio packets in
the vicinity and sends received packet information to a gateway
using a second radio interface in order to prevent intrinsic
interactions with the sensor network operation. The gateway
has the ability to communicate directly with the monitoring
node and to transfer all the collected monitoring data to the
third component, a dedicated PC (server), in the hierarchy using
standard TCP/IP communication. The packets are analyzed and
visualized on the server using the standard network monitoring
and analyzing tool Wireshark. The most important characteristic
of this monitoring concept is the passive operation, i.e. the normal
operation in the WSN is not influenced by the analyzer.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) consist of many small
sensor nodes, which communicate using radio interfaces over
a wireless channel. The main function of these networks
is to sample the surrounding environment using attached
sensors [1]. In the early beginnings, these networks were
considered to consist of few sensor nodes connected to a
central control unit. Today however, the emphasis of the
research is on the area of the distributed operation in wireless
sensor nodes. Such sensor networks are assumed to consist of
low cost sensor nodes and to operate in a distributed and self-
organized manner. However, these nodes have constraints on
the resources (power, memory communication channel) [2].

The communication in WSNs is often complex and in some
cases difficult to predict. Especially during the development of
WSNs, methods for analyzing and debugging communication
methods are strongly demanded. Usually, only the behavior of
single sensor nodes can be supervised using directly attached
debugging interfaces [3]. Therefore, the communication be-
tween nodes can only be estimated if all participating nodes
can be analyzed simultaneously. A second problem lies in the
operation and control of already deployed sensor networks. In
failure situations, tools are needed to analyze the behavior of
the network as a whole.

In this work, we present an architecture (see Figure 1)
and a tool to passively monitor sensor networks, which we

named Pimoto. We are able to intercept all radio packets in
the network, and to store and transmit them to a central server
for further analysis. The transport and the coordination of the
monitoring environment is accomplished in a hierarchical way.
That enables the system to scale for large numbers of nodes
in a deployed sensor network.

Low-power radio network

Bluetooth

Fig. 1. Basic architecture of Pimoto

For easier and more comprehensive analysis, we developed
a plugin for Wireshark1 for graphical analysis. Our target
are typical WSNs, therefore we implemented our approach
using BTnode2 nodes. These sensor nodes have the ability to
communicate either with a low power radio signal (Chipcon
CC1000) or using a Bluetooth interface. Our approach, as will
be explained later in this paper, is to place a node inside the
network to passively collect all radio packets in the wireless
medium. Thereafter, these packets are transported by means
of Bluetooth to a local PC and further to a central server to
be analyzed and visualized.

The rest of the paper proceeds as follows. In Section II, we
outline relevant related work. In Section III, an overview to
the complete system architecture is presented. Afterwards, the
implementation and some evaluation results are presented in
Sections IV and V, respectively. Finally, we give a conclusion
in Section VI.

II. RELATED WORK

In network monitoring, passive and active monitoring tech-
niques are distinguished. In general, active monitoring refers
to the active interaction with the system under observation.
Thus, the system behavior is being influenced by the monitor-
ing actions. Nevertheless, active monitoring allows to obtain
detailed information about the system parameters. In contrast,

1http://www.wireshark.org/
2http://btnode.ethz.ch/



passive monitoring means the access to the network traffic
without interfering the communicating systems. Nevertheless,
additional hardware is required for this purpose. The obtained
data can be used for several aims. We are focusing on passive
management and control of sensor networks and on enhanced
debugging during protocol development.

In spite of the fact that network analysis is critical for
understanding and improving the performance of networks,
there is no much work done in this area. In this section,
we show selected approaches that have been described in the
literature.

The Sensor Network Management System (SNMS) [4]
introduces a set of TinyOS components , which can be
integrated into developed application. The goal is information
exchange between these components and an instant analysis.
For this, SNMS also introduces the appropriate tools. The user
has an overview, by means of the TinyOS components and
the gathered data, of the behavior and the condition of the
specific SNMS-enabled node. In order to avoid unnecessary
communication, which can also lead to unwanted interferences
between the nodes, the information is sent only on explicit
inquiries of the user to the evaluating instance. If unexpected
events occur on the nodes, information is stored to these nodes
locally on the sensor nodes so it is available for evaluation.
SNMS also allows to configure the frequency and event types.

A further monitoring system is Sympathy [5], [6]. Sympathy
is an active monitoring system in which the sensor nodes are
supplied with an additional piece of software. All sensor nodes
periodically send local information to a dedicated sink node,
which is used to gather and evaluate data from the sensor
network. By means of this evaluation the errors and their
location can be recognized. Sinks receive their information
from three sources. First, each sensor node continuously
runs additional software packages. This is needed to obtain
information about the conditions in the sensor node and to
prepare it to be sent to a Sympathy sink in periodic intervals.
The second source is the sink node itself. The same software is
installed in sinks. Thus, also information about the conditions
of sinks are noted and processed locally, i.e. sinks supervise
their own conditions. The last source is the direct environment
of the sink node as this node continuously monitors the data
traffic in the vicinity and evaluates it.

Wit [7] is a passive monitoring system. Although it may be
the closest approach to our system, it has been developed for
another purpose. Wit is designed to test the performance of the
MAC layer (802.11) in wireless networks, whereas our system
is designed to analyze the protocol behavior in WSNs. Wit
uses three stages to construct an enhanced trace of the system
behavior. In the first phase, a merging process is accomplished
to obtain a better view from multiple monitoring sources. In
the second stage, a formal language technique is used to infer
which packets were received by their destinations and also
to infer packets which are not logged by any monitor. Finally,
Wit derives network performance measures from this enhanced
trace.

The raising demand for sensor network monitoring encour-

aged also the ScatterWeb project [8] to include monitoring
techniques. The integrated tool ScatterViewer allows to man-
age sensor nodes and to collect status information. It also
represents an active monitoring application that may influence
the network behavior.

In [9], an approach that targets non-intrusive monitoring
in already deployed WSNs is presented. Here, the concept
of Deployment Support Networks (DSN) [10] is proposed.
In the suggested approach monitoring nodes are deployed in
an existing wireless sensor network, these nodes collect and
decode packets. To ease the decoding of packets, a packet
structure is assumed; thereafter the decoded packets are ready
for further analysis.

Another passive monitoring environment has been devel-
oped, which was named TWIST [3]. It collects information
from the participating sensor nodes using an USB-based cable
network. This architecture allows to specifically debugging
all connected nodes while it does not support the collection
of radio messages. Additionally, an expensive infrastructure
(USB cables) must be provided.

III. PIMOTO

In order to enable a comprehensive monitoring in WSNs,
we developed Pimoto, a distributed monitoring environment
for passive monitoring in sensor networks. In the following,
we describe its architecture and characteristics. Two aspects
should be supported by our passive monitoring system. First,
we want to allow hierarchical monitoring, i.e. multiple de-
ployed monitoring nodes have to be interconnected by a net-
work separate from the WSN. Secondly, the collected packet
data should be visualized at the central server in real-time,
i.e. the latency from monitoring, transmission, and analyzing
should be minimized.

SERVER

BTnode

PC

TCP/IP / WLAN
communication

BTnode

MONITOR

bluetooth communication
PC

BTnode
BTnode

MONITOR

BTnode

BTnode
BTnode

Sensor network
(low power radio communication)

Sensor network
(low power radio communication)

Fig. 2. Hierarchical structure of Pimoto supporting so called monitor islands

A. Principle architecture for passive monitoring

There are mainly two common approaches to monitoring the
network, passive and active techniques. The passive approach
uses devices to watch the traffic as it passes by. These



devices can be special purpose devices or can be built on
common network devices like routers, access points, switches,
or even normal hosts. The passive monitoring devices are
polled periodically and information is collected. Although this
technique does not increase the traffic on the network for
the measurements, the amount of data gathered can become
substantial if one is trying to capture information of all the
data packets. In comparison, the active approach relies on the
capability to inject packets into the networks or send packets to
servers or applications, following them and measuring service
obtained from the network. Because of energy constrains
and for real-time monitoring without influencing the sensor
network application, the passive approach is preferable. The
gathered data can be used to debug, and analyze the network
performance.

The basic concept is depicted in Figure 1. A three-node
sensor network is analyzed by a fourth node, which is a
dedicated Pimoto monitoring node is placed within the radio
range of the WSN. This monitoring node collects as much in-
formation from the sensor network as possible, i.e. it sniffs all
the radio packets. Finally, it forwards the received information
to a PC using its Bluetooth radio interface. Bluetooth is used
for several reasons. First, it is “just available” on standard
BTnode sensor nodes. Thus, no additional radio hardware
needs to be implemented. Secondly, the Bluetooth protocol
already provides much better features to establish reliable data
communication compared to the typical low-power radio used
in sensor networks. Finally, the independent radio interface
allows to transmit monitoring data to a gateway PC while
simultaneously receiving packets on the other radio interface.
Without any change of the functionality, Bluetooth can easily
be replaced by any other wireless or wired communication
interface.

B. Hierarchical setup of monitoring islands

The hierarchical structure is depicted in Figure 2. As can
be seen, monitoring nodes are placed inside a sensor network
(monitoring islands). These nodes collect all the radio traffic.
Using a second radio interface (in our case, we employ Blue-
tooth), the monitoring data is delivered to a gateway PC, which
may control multiple monitoring nodes. The gateway PC
forwards the data using a TCP/IP network, e.g. over WLAN-
based wireless infrastructure, to a central server. At this place,
the standard network monitoring application Wireshark is used
to receive, to decode, and to visualize the packet information.

The hierarchical structure of architecture plays an important
role regarding the distribution of resources. As is shown in
Figure 2, several monitoring islands are considered to operate
simultaneously. Each monitoring island is assigned to exactly
one monitoring node for the transmission of the packets to an
associated PC. This association will usually be a one to one
mapping. However, if multiple monitoring nodes are in the
same vicinity, they can all be associated to a single PC. In this
case, the Bluetooth communication between the monitoring
node and the PC can be a limiting factor. Finally, the actual
architectural decision depends on the application scenario.

If one would like to supervise several spatially separated
from each other sensor networks, the distributed scenario re-
mains as only meaningful solution. Nevertheless, this scenario
has disadvantages as it requires more hardware and strongly
depends of high quality time synchronization between the
gateway PCs.

C. Push and pull techniques

The terms push and pull were originally used in the market-
ing domain. Different sales and advertising strategies are called
push and pull marketing, respectively [11]. Classical examples
of push marketing are mail distributions, radio, and television.
The information ”is pushed” into the communication channel
whether desired by the consumer or not. In contrast, the pull
method requires the customer to become active and request
the desired information explicitly. A well-known example is
the world wide web.

The same techniques can be used to transmit the received
monitoring data from the monitoring nodes to the server. In the
entire system, monitoring data is flowing from the monitoring
node over the connected PC, which is maintaining a single
monitoring island, towards the server for further analysis. One
of the most important questions regarding the performance and
the quality of the monitoring system is the design decision for
one of these techniques.

Considering a pull-based architecture, the server needs to
ask for the desired information. This could be done periodi-
cally or on-demand by intervention of an user. Thus, the server
sends an inquiry to the PC, which forwards this inquiry to the
monitoring node. Then, the desired information is delivered
to the server via the PC. In contrast, the push architecture
relies on the transmission of monitoring data initiated by the
monitoring node. This action can be triggered by a condition,
e.g. timers, partial consumption of the internal memory, or the
receipt of a packet with special contents.

We decided to use the push technique as the storage
capabilities of the employed monitoring nodes (actually, these
are typical embedded sensor nodes) are strongly limited. Thus,
the intercepted radio packets must be forwarded as soon as
possible to re-use the memory for further data. Additionally,
the demanded real-time behavior of the analysis as well as
the typically very low data rates in WSN contributed to our
decision.

D. Communications protocols

The developed system consists of four components. First, an
application on the monitor node running a thread to intercept
the radio packets in the sensor network to be stored and
transferred to the gateway PC. Secondly, an application on
the gateway PC, which processes the radio packets and sends
these again to a server. Third, the communication between
PC and server is supervised by Wireshark. Finally, a plugin
developed particularly for this type of radio packets performs
the interpretation of the data. All the components relevant for
the communication are described below.



1) Monitoring node → gateway PC: For data distribution,
we decided to use the push solution as mentioned before,
i.e. the monitoring node supplies its data to the gateway PC
in regular intervals. The communication is performed using
the Rfcomm protocol. It guarantees reliable data exchange
over Bluetooth. The employed BTnode sensor nodes primarily
use the Berkeley MAC (BMAC) protocol. Table I shows the
original packets format used by BMAC.

Field Meaning
Source address (2 Byte) BMAC source address
Destination address (2 Byte) BMAC destination address
Length of Data (2 Byte) Length of the data
Type (1 Byte) Application type
Data (length of data) Packet data

TABLE I
BMAC DATA FORMAT

2) Gateway PC → Server: The communication between
the gateway PC and the server takes employs standard TCP/IP
protocols. In particular, TCP is used as transport protocol
for reliable data transmission between the gateway PC and
the server. Apart from forwarding of the monitoring packets,
the gateway PC is responsible for providing meta informa-
tion about the original packet. Such information is stored
in additional fields before transmitting the monitored data
to the server. According to these updates, Wireshark can
perform detailed traffic and protocol analysis. In Table II,
the additional fields are shown. Apart from the MAC address
of the monitoring node, two timestamp fields are added that
become necessary for the later computation of the reception
time through Wireshark.

Field Meaning
Monitor address (6 Byte) MAC Address of monitoring node
Source address (2 Byte) BMAC source address
Destination address (2 Byte) BMAC destination address
Length of Data (2 Byte) Length of the data
Type (1 Byte) Application type
Seconds (4 Byte) Seconds of the reception time
Milliseconds (2 Byte) Milliseconds of the reception time
Data (length of data) Packet data

TABLE II
EXTENDED BMAC DATA FORMAT

IV. IMPLEMENTATION

In the following, we describe the used hardware and soft-
ware components and outline the most important aspects of
our implementation of Pimoto.

A. Hardware and software of BTnode and PCs

For implementing Pimoto, we used the BTnode sensor
nodes rev3. This sensor node incorporates two radio interfaces,
the Chipcon CC1000 for low power radio transmissions and a
Bluetooth interface. Such a BTnode provides 64 kByte RAM
and some additional flash and eeprom capacity for programs
and permanent configuration parameters.

On the BTnodes, we used Nut/OS as the operating system.
It specifically supports small embedded systems and has been
developed particularly for the ATMEL ATmega128 micro
controller.

For the gateway and server PCs, we used standard PC
components (desktops and laptops) that we further extended
using a BlueFRITZ! Bluetooth adapters . The theoretically
maximum transmission rate is approximately 723 kBits/s for
Bluetooth communication over 100 m.

On all PCs, we used Linux as the operating system. It
already provides support for our Bluetooth adapter in form
of the BlueZ library and some associates kernel modules.

Finally, we used Wireshark, which was formerly known as
Ethereal, for graphical networks analysis. It is able to analyze
the packet either online or offline. Packet monitoring can be
done based on any available network interface.

B. BTnode monitoring software
We developed a sensor program that sets the radio interface

in the promiscuous mode, i.e. in a mode that allows to capture
any packet regardless of its destination address. As this capa-
bility is currently not supported by the used BMAC protocol
implementation, we extended the BTnut driver accordingly.
For the Bluetooth communication, we employed the Rfcomm
protocol. It represents a simple serial connection between the
sensor node and the gateway PC. This PC forwards all received
monitoring data to the server using TCP/IP.

The principles of the BTnode monitoring software are
depicted in Figure 3. Two threads are concurrently monitoring
radio packets and transmitting them to the gateway PC. Both
threads are coupled by a shared memory that was implemented
in form of a ring buffer.

New monitor packet Add meta 
information Store

Send Packets Connected 
to Pc

Connect

NoYes

Thread 1

Thread 2

Fig. 3. Architecture of the BTnode implementation

C. Gateway PC
The substantial task of the application on the gateway PC

consists of receiving packets from the monitoring node and
passing them forward to the server. However, before a data
exchange with the monitor node takes place, the gateway PC
is kept in a waiting state. The connecting inquiry takes place
via the monitoring node. After establishing the connection,
monitoring data can be exchanged. The gateway PC immedi-
ately forwards the received packets, i.e. the monitored radio
communication, to the server.



The gateway PC also computes timestamps for each packet
that it received from the monitoring node and stores this
meta information in two additional fields in the packet header
(see also Table II). The format of the seconds field is UNIX
standard time, i.e. the seconds since January 1, 1970. In the
second field, the milliseconds are stored. These values are
later used by Wireshark to compute the reception time of the
radio packets. Additionally, a six byte field is used for the
identification of the monitoring node. In this, the Bluetooth
MAC address of the monitoring node is stored.

Synchronization of the timestamps that are stored with each
captured packet has been proven to be the most challenging
issue. We need accurate timestamps in order to (re-)order
the received packets in the analysis stage. Unfortunately, the
clocks of the monitoring nodes cannot easily be synchronized.
Therefore, we used a trick to synchronize the timestamps in
the second hierarchy, i.e. at the gateway PCs. Each sensor
node provides a 4-byte counter showing the milliseconds since
its last reboot. Thus, the uptime of the sensor node can be
exactly measured for 49.7 days (then, the counter overflows).
We used this uptime measure as the recorded timestamp in
each collected packet. Then, prior submission to the connected
PC, the timestamp is subtracted from the current submission
time, i.e. depicting the time difference between reception and
forwarding. The gateway PC can then update the timestamp
according to its, e.g. NTP-synchronized, local time.

D. Wireshark plugin

At the server, we used the standard monitoring environment
Wireshark for data analysis and filtering. Our plugin ”BTnode
Radio Protocol” decodes and interprets the received data
packets. Currently, we support all features from the BMAC
protocol while other elements (and protocols) can easily be
added. The graphical analysis is depicted in figure 5. Shown
is a decoded BMAC packet including source and destination
address, length, type, timestamp, and payload data.

V. EVALUATION

We executed a number of experiments to analyze the
functionality of Pimoto as well as its performance limitations.
In the simplest scenario, one sending sensor node and one
monitoring node, we were able to receive all the transmitted
packets. Thus, we decided to setup some more complex
scenarios. In the following, four different setups are described
and the measurement results are discussed.

A. Starting simple – illustration of the functionality

The first test is intended to illustrate the functionality of
Pimoto. For this purpose, we created with a small network
consisting of two sensor nodes that continuously send radio
packets to each other. The monitor node is placed within the
range of the sensor network to intercept these packets and to
transfer them for further evaluation to the gateway PC. The
structure is to be seen in Figure 4.

Table III shows the number of the monitored packets com-
pared to the received packets. It is clear that the monitoring

S1

S2

M PC

Fig. 4. Scenario for the first experiments. Two nodes (S1 and S2) are sending
packets to each other, the Pimoto monitor (M ) is sniffing all the traffic.

node can monitor more packets than what both nodes can
receive because it is always ready to receive while the sen-
sor nodes periodically switch between sending and receiving
packets. Moreover the result shows that, when the packet size
is increased, the number of monitored as well as the received
packets declines.

Data size Sent packets Received packets Sniffed packets
69 100 51 83
119 100 52 79
219 100 50 79
419 100 42 65

TABLE III
RESULTS FROM THE FIRST SCENARIO.

In Figure 5, a screenshot from Wireshark is shown after re-
ceiving the monitoring data. Wireshark provides the capability
to use filters to display only the desired data. These packets can
now be examined much more conveniently since all unneces-
sary data traffic is faded out. In our example, we used the
expression btnode.typ == 3 && btnode.src == 1
to only display packets of node 1 and of type 3.

Fig. 5. Filtered packet output based on a limiting expression.

As an example, a measured BMAC packet is listed in the
following. This BMAC message is sent from node 7 to node 8.

BTnodeRadioProtocol,
TIME: Tue Aug 7 11:32:43.950,
Seconds: 1186479163,
Milliseconds: 950,
Src: 7, Dst: 8, Type 1, Lenght data: 8

Monitor MAC: 00:04:3f:00:01:1a
Source node: B-MAC ID 7 (7)



Destination node: B-MAC ID 8 (8)
Length of data: 8
Type: Type 1 (1)
Seconds: 1186479163
Milliseconds: 950
Time: Aug 7, 2007 11:32:43.950000000
Data: 0800020008000200

This mechanism essentially supports the debugging of
communication protocols used in sensor networks. Also, it
provides means for comprehensive studies of communication
aspects even for non-experts such as students in a networking
course.

B. Overlapping monitoring islands and time synchronization

A second test has been conducted to provide information on
the accuracy of the computed reception times of radio packets
that are simultaneously received by multiple monitoring nodes.
The structure from the previous experiment is supplemented
with a further monitoring node as shown in Figure 6.

S1

S2

M1

PC

M1

Fig. 6. Scenario for the receiving time experiments. Two nodes (S1 and S2)
are sending packets to each other, two Pimoto monitors (M1 and M2) are
sniffing all the traffic.

Both monitoring nodes intercept the radio packets ex-
changes between the two sensor nodes. Since both monitoring
nodes (M1 and M2) are in the same distance to sensor S1 and
sensor S2, an almost identical timestamp can be expected for
each packet received by both monitoring nodes. We performed
a number of measurements. The average deviation of the re-
ception time was about 39.7 milliseconds. The average ratio of
successfully monitored packets was 96.3%. For typical sensor
networks using data rates up to 19.2 kbit/s, this deviation
seems feasible.

C. Behavior under load

In the next experiment, which is depicted in Figure 7, the
behavior of the implemented monitoring system was examined
under load. The test environment consists of three sensor
nodes, which send themselves 100 packets each of 69 byte
in the first test and 300 packets of the same size in the second
test.

S1

S3

M PCS2

Fig. 7. Scenario for the load test. Three nodes (S1, S2, and S3) are sending
packets to a Pimoto monitor (M ).

Five test runs were accomplished for each experiment to
produce statistical relevant data. In the first test, on average
85% of the packets were recorded. In the second test, on
average 80% were received. All results are listed in Table IV.

Additionally, statistical aspects of results are shown in
Figure 8. All results are shown as boxplots. For each data set,
a box is drawn from the first quartile to the third quartile, and
the median is marked with a thick line. Additional whiskers
extend from the edges of the box towards the minimum and
maximum of the data set, but no further than 1.5 times the
interquartile range. Data points outside the range of box and
whiskers are considered outliers and drawn separately.

●

●

●●

0.
75

0.
80

0.
85

0.
90

ra
tio

 o
f m

on
ito

re
d 

pa
ck

et
s

S1 S2 S3 all S1 S2 S3 all
100 Pkts 300 Pkts

Fig. 8. Results from load test using 100 and 300 packets, respectively

burst of 100 packets burst of 300 packets
Src S1 0.85 0.82
Src S2 0.92 0.77
Src S3 0.78 0.81
Total 0.85 0.80

TABLE IV
RESULTS FROM LOAD TEST. DEPICTED IS THE AVERAGE RATIO OF

SUCCESSFULLY MONITORED PACKETS

D. Behavior at different data rates

In this final experiment, the influence of the data rate has
been analyzed. We used the setup as depicted in Figure 9. In
this experiment, we used four sensor nodes transmitting data
to a single receiver and placed a monitoring node within the
radio range of all nodes. We performed five runs each based
sending 100 packets with a packet size of 69 byte from each
source to the central sink.

S1

S3

M PC

S2

S4

S5

Fig. 9. Scenario for the load test. Three nodes (S1, S2, and S3) are sending
packets to a Pimoto monitor (M ).

Figure 10 shows the results from this test. Again, we
used boxplots to illustrate the statistical characteristics of the



25
0

30
0

35
0

data rate

nu
m

be
r o

f m
on

ito
re

d 
pa

ck
et

s

0.6 1.2 2.4 4.8 9.6 19.2

26
0

28
0

30
0

32
0

34
0

36
0

38
0

data rate

nu
m

be
r o

f r
ec

ei
ve

d 
pa

ck
et

s

0.6 1.2 2.4 4.8 9.6 19.2

0.
6

0.
7

0.
8

0.
9

data rate

ra
tio

 o
f r

ec
ei

ve
d/

m
on

ito
re

d 
pa

ck
et

s

0.6 1.2 2.4 4.8 9.6 19.2

received
monitored

Fig. 10. Results from test of different data rates. Shown are the number of received packets at the monitoring node (left) and at the sink node (middle).
Additionally, the ratio of successfully received packets is shown (right)

multiple runs of this experiment. Shown are the number of
received packets at the monitoring node (left) and at the sink
node (middle). This comparison allows to determine the ability
of the sensor node to cope with the increased complexity
of the monitoring program compared to a simple sink node.
Additionally, the ratio of successfully received packets is
shown (right).

Analyzing the results, it becomes obvious that the monitor-
ing node is able to process almost all radio packets for data
rates less that 2.4 kbit/s. For higher rates, the reception ratio
decreases and the variance of this ratio increases. This effect
results from the processing demands in the sensor node. A
receiving thread must complete its work on the current packet
before the transceiver can receive the next one. A second effect
is the high collision probability with those high rates as four
nodes are sending simultaneously.

In summary, we are quite convinced with the achieved re-
sults are they already allow to perform high quality debugging
in typical sensor networks.

VI. CONCLUSION

In this paper, we presented Pimoto, a distributed passive
monitoring system developed particularly for Wireless Sensor
Networks. The primary objectives were to intercept radio data
packets in a completely passive way. Additionally, we wanted
to support distributed monitoring in a hierarchical way.

Pimoto visualizes the packets collected by several moni-
toring nodes, which transmitted the monitoring data over a
hierarchically operating system to a central server for further
analysis. In particular, the packets are sniffed at MAC level
by sensor nodes that employ a second radio channel, i.e. a
Bluetooth interface, for communication with a gateway PC.
This gateway in turn sends the received data to the server.
In our system we use the concept of ”monitoring islands”,
which has the advantage of monitoring several networks
simultaneously by multiple monitoring nodes and, perhaps,
multiple gateways. At the server, we use a Wireshark plugin
for protocol analysis. This tools allows to analyze and visualize
the packet contents.

In conclusion, it can be said that the developed toolkit al-
lows to perform the envisioned management and control tasks,
which are usually required in WSNs. Protocol development as
well as failure detection are simplified by means of graphical
protocol analysis.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Elsevier Computer Networks, vol. 38, pp.
393–422, 2002.

[2] D. Estrin, D. Culler, K. Pister, and G. S. Sukhatme, “Connecting the
Physical World with Pervasive Networks,” IEEE Pervasive Computing,
vol. 1, no. 1, pp. 59–69, January 2002.

[3] V. Handziski, A. Köpke, A. Willig, and A. Wolisz, “TWIST: A Scalable
and Reconfigurable Testbed for Wireless Indoor Experiments with
Sensor Networks,” in 7th ACM International Symposium on Mobile
Ad Hoc Networking and Computing (ACM Mobihoc 2006): 2nd ACM
International Workshop on Multi-hop Ad Hoc Networks: from theory to
reality 2006 (ACM REALMAN 2006), Florence, Italy, May 2006, pp.
63–70.

[4] G. Tolle and D. Culler, “Design of an Application-Cooperative Man-
agement System for Wireless Sensor Networks,” in 2nd European
Workshop on Wireless Sensor Networks (EWSN), Istanbul, Turkey,
January/February 2005, pp. 121–132.

[5] N. Ramanathan, E. Kohler, L. Girod, and D. Estrin, “Sympathy: A
Debugging System for Sensor Networks,” in 1st IEEE Workshop on
Embedded Networked Sensors (EmNetS-I), Tampa, Florida, November
2004, pp. 554–555.

[6] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin,
“Sympathy for the Sensor Network Debugger,” in 3rd ACM Conference
on Embedded Networked Sensor Systems (ACM SenSys 2005), San
Diego, California, November 2005, pp. 255–267.

[7] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan, “Analyzing
the MAC-level Behavior of Wireless Networks in the Wild,” in ACM
SIGCOMM 2006, Pisa, Italy, October 2006, pp. 75–86.

[8] H. Ritter, R. Winter, and J. Schiller, “A Partition Detection System
for Mobile Ad-Hoc Networks,” in First IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks
(SECON 2004), Santa Clara, California, October 2004, pp. 489–497.

[9] M. Ringwald and K. Römer, “Monitoring and Debugging of Deployed
Sensor Networks,” in GI/ITG KuVS Fachgespräch Systemsoftware für
Pervasive Computing, Erlangen, Germany, October 2005.

[10] M. Dyer, J. Beutel, T. Kalt, P. Oehen, L. Thiele, K. Martin, and
P. Blum, “Deployment Support Network - A Toolkit for the Development
of WSNs,” in 4th European Workshop on Wireless Sensor Networks
(EWSN), vol. LNCS 4373. Berlin, Germany: Springer, January, pp.
195–211.

[11] A. Silberstein, “Push and Pull in Sensor Network Query Processing,”
in Southeast Workshop on Data and Information Management (SWDIM
’06), Raleigh, North Carolina, March 2006.


