
Exploiting Virtual Coordinates for Improved
Routing Performance in Sensor Networks

Abdalkarim Awad, Reinhard German, and Falko Dressler, Senior Member, IEEE

Abstract—We present the Virtual Cord Protocol (VCP), which exploits virtual coordinates to provide efficient and failure tolerant

routing and data management in sensor networks. VCP maintains a virtual cord interconnecting all the nodes in the network and which,

operating similar to a Distributed Hash Table (DHT), provides means for inserting data fragments into sensor nodes and retrieving

them. Furthermore, it supports service discovery using indirections. VCP uses two mechanisms for finding paths to nodes and

associated data items: First, it relies on the virtual cord that always provides a path toward the destination. Second, locally available

neighborhood information is exploited for greedy routing. Our simulation results show that VCP is able to find paths close to the

shortest path (achieving a stretch ratio of less than 125 percent) with very low overhead. We also extended VCP with data replication

mechanisms to improve failure handling. The routing performance of VCP, which clearly outperforms other ad hoc routing protocols

such as Dynamic MANET On Demand (DYMO), is similar to other virtual addressing schemes, e.g., Virtual Ring Routing (VRR).

However, we improved VCP to handle frequent node failures in an optimized way. The presented results outline the capabilities of VCP

to handle such cases more efficiently compared to other protocols. We also compared the capabilities to reliably store and retrieve data

in the network to Geographic Hash Tables (GHTs). VCP, in the worst case, performs similar to GHTs, but outperforms this protocol in

most cases, especially when complex routing is involved.

Index Terms—Virtual coordinates, ad hoc routing, data management, sensor networks.

Ç

1 INTRODUCTION

THE use of virtual coordinates is currently being investi-
gated for efficient routing in Wireless Sensor Networks

(WSNs) [1], [2], [3], [4], [5]. In general, WSNs provide an
interesting research domain because they represent a class of
massively distributed systems in which nodes are required
to work in a cooperative and self-organized fashion to
overcome scalability problems [6], [7], [8]. Additionally,
WSNs are facing strong resource limitations: many sensor
nodes with strong CPU, energy, and bandwidth restrictions
need to be operated to build stable and operational net-
works. This includes the need to solve problems with high
dynamics introduced by joining and leaving nodes.

In recent years, WSNs have changed from purely academic
research testbeds into real-world applications. Nevertheless,
many of the original research issues still apply [6]. Among
others, routing has attracted many research projects. Over the
last decades, a wide variety of routing protocols has been
developed in the domain of sensor networks [9]. However,
most practical approaches rely on standard Mobile Ad Hoc
Network (MANET) protocols such as Ad Hoc on Demand
Distance Vector (AODV) [10], Dynamic MANET On Demand

(DYMO) [11], or Dynamic Source Routing (DSR) [12]. On the
other hand, WSNs show specific capabilities that demand
completely different routing approaches. One of the major
requirements in the domain of sensor networks is the need for
network-centric operation [13], [14]. This property relies on
the main working principles of WSNs, i.e., data are collected
in a distributed way and need to be analyzed as close as
possible to the data source. This working behavior saves
communication and energy resources in sensor networks to
a large extent. Combined with database technology such as
data stream query processing, further optimization can be
achieved [15].

In particular, the following two operations (see Fig. 1)
need to be supported in an efficient way. First, data need to
be identified. This includes a mapping between an identifier
and node addresses where the data should be retrieved
from (“pull”) or where the data should be transferred to
(“push”). Service discovery could be supported in the same
way by associating services with identifiers and nodes.
Second, packets have to be routed from and to the identified
node. Furthermore, data preprocessing might be supported.

These observations motivate the combination of data
storage and communication capabilities. Interestingly, simi-
lar requirements can be observed in a different application
domain, e.g., in peer-to-peer networks used in the Internet.
Here, Distributed Hash Tables (DHTs) are successfully used
to distribute data over a large number of peers and to find
optimal paths toward these data [16]. The main idea is
simple: Data items are associated with numbers and each
node in the network is responsible for a range of these
numbers. Therefore, it is easy to find the node at which a data
item is stored. Usually, DHTs are built on the application
layer and rely on an underlying routing protocol that
provides connectivity between the nodes. Systems like
Chord [17] or Pastry [18] have been implemented, in which

1214 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 9, SEPTEMBER 2011

. A. Awad is with the Faculty of Computer Science and Automation,
Ilmenau University of Technology, PO Box 10 0565, 98684 Ilmenau,
Germany. E-mail: abdalkarim.awad@tu-ilmenau.de.

. R. German is with the Department of Computer Science, University of
Erlangen, Martensstr. 3, Erlangen 91058, Germany.
E-mail: german@informatik.uni-erlangen.de.

. F. Dressler is with the Institute of Computer Science, University of
Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria.
E-mail: falko.dressler@uibk.ac.at.

Manuscript received 26 June 2009; revised 15 Dec. 2009; accepted 12 Aug.
2010; published online 15 Nov. 2010.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2009-06-0254.
Digital Object Identifier no. 10.1109/TMC.2010.218.

1536-1233/11/$26.00 � 2011 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

the nodes communicate taking advantage of the already
existing routing protocols on the Internet.

Implementing DHTs in WSNs as an overlay and relying
on typical MANET routing protocols has the drawback that
these routing protocols already need to maintain globally
valid topology information of the entire network. This
cannot scale well because additional overhead is needed to
maintain the overlay. In addition, the DHTs have not been
designed to take advantage of geographic dependencies,
e.g., physically neighboring nodes. On the other hand,
routing protocols that use geographic location like Greedy
Perimeter Stateless Routing (GPSR) [19] and Geographic
Routing Without Location Information (GRWLI) [20] can
scale well. Unfortunately, obtaining the location is not only
costly and susceptible to localization errors, but sometimes
even not feasible. Thus, greedy forwarding cannot guaran-
tee reachability of all destinations because of possible dead
ends [21]. Transformation of geographic coordinates can be
considered as a first step toward the use of virtual
coordinates only [22]. Also, hierarchical approaches using
a mixture of geographical coordinates and a virtual overlay
have been considered [23]. Comprehensive surveys of such
virtual coordinate-based solutions can be found in [4], [5].

In this paper, we present an extended version of our
Virtual Cord Protocol (VCP), which explicitly exploits the
advantages of using virtual addressing schemes in WSNs
[3], [24]. Motivated by studies on dynamic address
allocation techniques that do not scale well in sensor
networks [25], we address two objectives in this paper:
efficient routing toward clearly identified data items and
fault tolerance w.r.t. frequent node failures. VCP follows
similar concepts as are used in DHTs to provide Oð1Þ
complexity for storing and retrieving data items in the
network. We extended the protocol to support data
replication on the virtual cord in order to improve the
ability to cope with frequent node failures in the network.
VCP inherently provides service discovery features [26]
using DHT-based indirections [27].

In the first part of the paper, we analyze the routing
performance of virtual address-based protocols. In parti-
cular, we compare our protocol to one of the most
promising approaches of virtual routing, namely, Virtual
Ring Routing (VRR) [1]. As a reference measurement, we
compare both to DYMO [11], which is the defacto standard
for MANETs in the scope of the IETF and the successor of
AODV, which is usually used for comparing routing
protocols to in the fields of WSNs and MANETs. From
the results, we see that both virtual address-based protocols
clearly outperform the most recent MANET approach.

In the second part of the paper, we study the protocol
behavior in the case of frequent node failures. Such a
scenario is not unusual in WSNs because nodes may fail,
e.g., due to energy outages, or just become “invisible” due
to changing conditions of the radio channel. For this

evaluation, we explicitly modeled a scenario that is similar
to the one described in the Geographic Hash Table (GHT)
paper [28] in order to be able to compare the results with
this approach as well. For this scenario, we directly
compare simulation results for VCP and VRR, and rely on
published measurements for GHTs.

The results demonstrate that the routing performance of
VCP is similar to VRR in the optimal case, i.e., considering
no node failures. However, in the case of node failures, VCP
demonstrates the strengths of its efficient cord manage-
ment. VCP achieves much better tolerance to node failures
compared to VRR due to its low maintenance overhead.

The rest of this paper is organized as follows: In Section 2,
we outline relevant related work. In Section 3, an overview of
the working principles of our VCP protocol is presented. This
section also outlines the concepts of data replication in VCP.
After a detailed performance analysis of the VCP routing in
comparison to DYMO and VRR in Section 5, we investigate
the capabilities of VCP to handle frequent node failures in
Section 6. Selected performance measures of the data
replication mechanism are presented in Section 7. Lastly,
Section 8 concludes the paper.

2 RELATED WORK

DHT-based approaches for data management in WSNs can
be classified into three main categories: real location-based,
virtual location-based, and location independent. GHTs
[28], [29] hash keys into geographic locations, so the data
items are stored on the sensor node geographically close to
the hash of its key. Typically, stored data are replicated
locally to ensure persistence when nodes fail. Like normal
DHTs, GHTs are built as overlays and rely on underlay
routing protocols. For underlay routing, GPSR [19] is used,
which exploits the physical location of nodes. Thus, it is
assumed that all nodes in the network know their exact
location. Since the greedy forwarding routing mode fails in
areas in the network without any deployed nodes, GPSR
switches to another mode for routing, face routing, which
uses a planar subgraph without crossing edges. In
comparison, VCP used a virtual cord for efficient routing.
It features a predefined hashing range allowing applications
to clearly associate data items to places in the virtual cord.

The problem of dead ends and the possibly inefficient face
routing to overcome this problem have been investigated in a
number of approaches. For example, the Visibility-Graph-
based Routing Protocol (VIGOR) uses a hierarchical ap-
proach relying on typical MANET protocols in the overlay
[30]. This approach has been further extended to completely
switch to virtual coordinates on the overlay by performing
some coordinate transformation [23]. Similarly, a transfor-
mation of geographical coordinates into virtual positions
that prevent concave holes in the network allows optimized
greedy routing relying on GHT-like services [4], [22].

One of the first virtual coordinate-based protocols was
GRWLI [20]. Instead of using real node locations, it constructs
an n-dimensional virtual coordinate system, which is based
on finding the perimeter nodes and their locations. Then, a
relaxation algorithm is used to find the virtual location of all
nodes. However, the drawback of having many dimensions
resulting from a large n is that forming virtual coordinates

AWAD ET AL.: EXPLOITING VIRTUAL COORDINATES FOR IMPROVED ROUTING PERFORMANCE IN SENSOR NETWORKS 1215

Fig. 1. Scenario description: data and services need to be identified and
(optimal) paths for information exchange need to be provided.

requires a long time to converge [31]. Subsequently, it
consumes more communication power. Again, the problem
of possible dead ends exists, so the greedy forwarding
algorithm cannot guarantee a path to the final destination.

VRR [1] is a routing protocol inspired by overlay DHTs. It
uses a unique key to identify nodes. This key is a location
independent integer value. VRR organizes the nodes into a
virtual ring in the order of increasing identifiers. For routing
purposes, each node maintains a set of cardinality r of virtual
neighbors that are nearest to their node identifier in the
virtual ring. Each node also maintains a physical neighbor set
with the identifiers of nodes it can communicate with directly.
A proactively maintained routing table identifies the next hop
toward each virtual neighbor. The forwarding algorithm
used by VRR is quite simple. VRR picks the node with the
identifier closest to the destination from the routing table and
forwards the message toward that node. The problem of such
protocols is that the adjacent nodes in the virtual ring can be
far away in the real network. As a result, forwarding to
the nearest node can result in a very long path. Moreover, the
scalability is an issue because, as the network gets larger, the
protocol needs to maintain routing tables of increasing size.

GSpring [32] tries to improve the performance of greedy
forwarding. First, each node assigns itself an initial coordi-
nate. Subsequently, nodes adjust their coordinates by
simulating a system of springs and repulsion forces. Now,
greedy routing is performed with only about 15 percent
overhead compared to using real addresses.

In the hop id routing scheme [33], each node maintains a
hop id, which is a multidimensional coordinate based on the
distance to some landmark nodes. In general, landmarks can
be randomly selected in the network. However, to obtain
better performance and to reduce the effect of dead ends, the
authors present several methods for landmark selection. To
construct and maintain the hop id system, one node first
floods the entire network to build a shortest path tree. Then,
landmarks are selected. Finally, each node periodically
adjusts its hop id and broadcasts it using a hello message.
When greedy forwarding fails to deal with dead ends, a
landmark guided detour is designed and is used with an
expanding ring search algorithm to route out of dead ends.

The special case of unidirectional links has been investi-
gated in [2]. The developed virtual coordinate assignment
protocol (ABVCap_Uni) supports routing in sensor net-
works with unidirectional links. Exploiting the availability of
unique network IDs of all nodes, the protocol tries to place
nodes with unidirectional links into rings and to treat a ring
as an extended node. Routing is performed on virtual
addresses assigned to real nodes and extended nodes.

The concept of data-centric routing is also exploited in
GEM [34], which is a data-centric routing scheme based on
a virtual polar coordinate. GEM builds a Virtual Polar
Coordinate System (VPCS) that can be used by Virtual Polar
Coordinate Routing (VPCR) for routing data and events in
which names are hashed to a level and an angle. The main
problem in GEM is that when nodes or links fail, a large
number of nodes in the systems need to rebuild routing
information. Similarly, PathDCS is a data-centric storage
scheme that requires a tree construction for routing [35].
The trees are rooted at landmarks, which are used to direct
packets in the routing process. Hence, the landmarks are
prone to be overloaded. Moreover, in PathDCS, not all the

nodes in the network can be storage nodes and, therefore,
the load balancing of necessary storage is not optimal. As
such, both solutions, GEM and PathDCS, extend the
concept of GHT by adding virtual coordinates.

Landmarks are used also in HVGR, which uses concepts
from Voronoi graphs to construct and maintain a virtual
hierarchy that spans all sensor nodes [36]. The algorithm
assumes some number of first level (or highest level)
landmarks which divide the network into different first
level subregions, whereby each level is divided into
subregions. Basically, the landmarks can be selected ran-
domly; however, this can lead to bad performance results.
Better results can be obtained by using a flooding-based
selection algorithm. It is clear that number of landmarks and
the location of them have big effect on the performance of the
approach. Landmarks can affect the success rate, the stretch
ratio, overhead, and the quality of load balancing.

3 VIRTUAL CORD PROTOCOL

The idea behind the Virtual Cord Protocol is to combine
data lookup with routing techniques in an efficient way.
VCP accomplishes this by placing all nodes on a virtual
cord, which is also used to associate data items with. A
hash function is used to create values in a predefined
range ½S;E� and each node in the network maintains a
part of the entire range. The routing mechanism relies on
two concepts: First, the virtual cord can be used as a path
to each destination in the network. Additionally, locally
available neighborhood information is exploited for
greedy routing toward the destination. In the following,
the operation of VCP is introduced and extensions for
failure management are presented.

3.1 Joining Operation

A number of initial variables are initialized in the startup
phase as listed in Table 1. One node must be preprogrammed
as initial node, i.e., it gets the position S. We employ hello

messages to discover the network structure, i.e., all physical
neighbors and their position in the cord. In the current
implementation of VCP, thehellomessages are transmitted
by means of broadcasting, i.e., each node broadcasts a hello
message every Th. The joining operation could also be

1216 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 9, SEPTEMBER 2011

TABLE 1
Initial Parameters for the Join Process

executed using an on-demand mechanism, which has
advantages in static networks or those with a high node
density. Based on the periodically transmitted hello

messages, the joining node gets information about its
physical neighbors as well as their successors and prede-
cessors. Algorithm 1 illustrates the handling of hello

messages. If the node has not yet joined the network,
Algorithm 2 is used to get a relative position in the cord. The
artificial join delay Tps is used to prevent conflicts between
multiple nodes that simultaneously ask for relative positions.

Algorithm 1. Handling of hello messages

Require: Locally stored state of all neighbors in set N

Ensure: Maintain neighbor set N and set virtual address

1: Receive neighbor information from node Ni

2: if Ni 62 N then

3: N N [fNig
4: else

5: Update Ni

6: end if

7: if P is unset AND Tps has expired then

8: Reset Tps
9: Try joining the cord (see Algorithm 2)

10: end if

Algorithm 2. Joining of the cord

Require: Neighbor information stored in set N

1: if 9Ni;Nj 2 N : SuccðNiÞ ¼¼ Nj then

2: P ðPosðNiÞ þ PosðNjÞÞ=2

3: Coordinate position P with Ni

4: Coordinate position P with Nj

5: else if 9Ni 2 N : PosðNiÞ ¼¼ S then

6: P S

7: if SuccðNiÞ is unset then

8: PNi
 E

9: else

10: PNi
 ðSuccðNiÞ þ SÞ=2

11: end if

12: Coordinate positions P and PNi
with Ni

13: else if 9Ni 2 N : PosðNiÞ ¼¼ E then

14: P E

15: PNi
 ðPredðNiÞ þ EÞ=2

16: Coordinate positions P and PNi
with Ni

17: else if 9Ni 2 N then

18: if Timer Tvps not yet started then

19: Start timer Tvps
20: else if Tvps has expired then

21: Create virtual node at Ni

22: Coordinate new position P with Ni

23: end if

24: end if

Each node joining the network has to receive at least one
hello message from a node that already joined the cord in
order to get a relative position in this cord. If a node can
communicate with only an end node (lines 5-16 in
Algorithm 2), i.e., a node that has either position S or E,
the new node takes over this end value as its virtual cord
position. The old node gets a new position between the end
value and its successor or predecessor depending on its old
position. If a node can communicate with two adjacent

nodes in the cord, the new node gets a position between the
values of the two adjacent nodes (lines 1-4), i.e., the new
node becomes successor of the old node with the lower
position value and predecessor to the node that has the
higher position value. An acknowledgment procedure is
used for reliable position exchange among the involved
nodes (annotated as coordinate position in Algorithm 2).

Finally, if the new node can communicate with only one
node in the network, which is neither at S nor E, then this
node is asked to create a virtual node (lines 17-23). This
virtual node gets a position between the position of the real
node and its successor or predecessor. The new joining node
can now get a position in between the real and the virtual
position of the node in the cord. Notice that the node has to
wait some time Tvps before asking for a virtual node. This
timeout is used to encourage the node to find multiple
neighbors, i.e., to get a proper position in the cord without
the need to set up a virtual position. Simulation results have
shown that fewer virtual nodes lead to better routing paths.

Fig. 2 shows the joining process for a six-node network.
The outer circle indicates the communication range of the
newly joining node. In the first four steps, nodes are placed
in the cord either at an end or in the middle of the cord. In
the fifth step, the node joining the network finds two
adjacent nodes (0.5 and 0.75). So, it becomes the successor of
the first node (0.5) and predecessor of the other node (0.75).
The new address is a number between 0.5 and 0.75.

However, when the sixth node joins the network, nodes 0.5
and 0.75 are no longer adjacent. Thus, node 0.5 is asked to
create a virtual node as shown in Fig. 3. The main idea is
simple: the cord must connect all the nodes in the network in
an ordered way. Thus, if no two nodes adjacent in the cord are
in the direct communication range of the new node, a virtual
node is created to balance the cord again.

It is clear that the joining of a new node only affects a
small number of nodes in the vicinity and it is independent
of the total number of nodes in the network. In fact, the
insertion of a new node only affects OðmÞ nodes, where m is
the number of local neighbors. The final result of the join
process is a virtual cord that interconnects all the nodes in
the network. This cord does not need to fulfill any specific
requirements. In particular, it does not need to be efficient
in any sense. However, the cord spans the numbering range

AWAD ET AL.: EXPLOITING VIRTUAL COORDINATES FOR IMPROVED ROUTING PERFORMANCE IN SENSOR NETWORKS 1217

Fig. 2. Basic join operation in VCP, six nodes are joining the network
according to the rules described in Algorithm 2.

½S;E�, which can be exploited by a hash function for data
storage or service discovery. Furthermore, this cord sup-
ports efficient routing in the network. This is detailed in the
next section.

3.2 Routing

Routing in VCP is done using the virtual cord. Additionally,
local neighborhood information is exploited for greedy
routing. The greedy forwarding works as follows: a node
with relative position P forwards a packet to its neighbor Ni

that has the closest virtual position to the destinationDp. The
forwarding is terminated if no more progress is possible, i.e.,
the local coordinate P is closest Dp. Based on the established
cord, VCP routing will always lead to a path to the
destination—it is not possible to run into a dead end.
Additionally, VCP allows to take shortcuts whenever a
physical neighbor with a virtual number is available that is
closer to the destination. Simulation studies indicate that the
path stretch is almost optimal (about 125 percent in the worst
case). This process is outlined in detail in Algorithm 3.

Algorithm 3. Greedy forwarding algorithm

Require: Received data packet D for destination position

Dp, locally maintained data set ½Pmin; Pmax�
1: if Pmin � Dp � Pmax then

2: Store data
3: else

4: Select Ni 2 N such that 8Nj 2 N; i 6¼ j : jPosðNiÞ �
Dpj < jPosðNjÞ �Dpj

5: Send D to Ni

6: end if

Fig. 4 depicts the network after adding 15 nodes. In our
example, node 0.25 has a message to transmit to node 0.78.
Thus, it will forward the message toward the destination
node via node 0.5, which has the closest position to the
value among the physical neighbors. Afterward, node 0.5
will send it to node 0.75, and finally node 0.75 will forward
it to node 0.78.

3.3 Failure Management

The presented cord management is working very well as
long as all nodes stay available after forming the cord.
Greedy forwarding can guarantee the reachability of the
destination only if there is no failure. However, in case of
node failures, greedy forwarding might fail and the cord
becomes unstable. To overcome the problem of finding a
path toward the destination in case of node failures, we
propose a new scheme to find an alternative path.

The hello messages are used to identify failed nodes. In
particular, we store the time stamp of the last hello

message in the routing table, i.e., the physical neighbor

table, in addition to successor and predecessor positions. If
a node did not receive a hello message from a neighbor
for n� Th, where Th is the hello message period, this
neighbor is marked as a dead node. From the information
available in the routing table, each node can locally check
whether the correct destination of a packet is this dead
neighbor itself or one of this neighbor’s physical neighbors.

During packet routing, there are two cases in which
greedy forwarding cannot reach the correct destination
because of a dead end in the cord. In the first case, the
failing node could be the final destination. In this case, the
packet can be either dropped or stored within the neighbor of
the failed node. If the operation was to retrieve data items,
the connection is counted as not successful. We added data
replication techniques to counteract this case (see Section 7).

In the second case, the failing node could be the next hop
toward the destination but not the final destination itself. In
this case, we have to find an alternative path. The procedure
is as follows: The neighbor of the failing node locally creates
a so-called no path interval (NP-I). This interval corresponds
to the range of IDs that the dead node was responsible for.
Then, the node sends a no path (NP) packet, which includes
NP-I to another active node in its neighborhood. This node
is selected according to its position in the cord that should
be as close as possible to NP-I. In order to prevent routing
loops, this information needs to be stored on all nodes
involved in this process. However, the stored NP-I data are
expected to be expired after Tnp. From now on, each node
either transmits the data using greedy forwarding toward
the destination if there is a neighboring node closer to the
destination available, or it continues to send NP packets.
Using the stored NP-I data, this information will never be
sent twice. If an NP packet reaches a node, which already
has NP-I in its table, it has to send a no path back (NPB)
packet as an indicator of a detected loop. The procedure of
treating routing packets is shown in more detail in
Algorithm 4. The interval ½Pmin; Pmax� is maintained by
evaluating the distance between the current node and the
neighbors on the cord. In particular, this interval is used to
identify the final destination for each packet. NP-I is
maintained by checking the locally stored NP information,
updating the timeouts and expiring old entries.

Algorithm 4. Handle routing failure packets

Require: Received data packet D for destination position

Dp, locally maintained data set ½Pmin; Pmax�
1: if Pmin � Dp � Pmax then

2: Store data

1218 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 9, SEPTEMBER 2011

Fig. 3. Operation of creating virtual node. For a new node that only finds
one neighbor, the neighbor (node 0.5) creates a virtual node 0.55. Now,
the new node can join as 0.52.

Fig. 4. An example routing path using greedy routing along the virtual
cord and exploiting local neighborhood information.

3: else if D 2 NP-I then

4: Send NPB back

5: else if 9Ni 2 N : jPositionðNiÞ �Dpj < jP �Dpj then

6: Send D to Ni

7: else

8: Maintain NP-I

9: Send NP back

10: end if

In very dynamic scenarios with frequent node failures, this
rather strong loop prevention does not guarantee 100 percent
success rate. We consider this a minor issue as the overall
success rate in our simulations is very promising. Permanent
node failures have to be handled by replication (Section 3.4).

An example for packet forwarding in case of a node
failure is illustrated in Fig. 5. In this example, node 0.0
produces a data packet destined to address 0.51. According
to the greedy routing principles of VCP, the data packet will
be forwarded by nodes 0.30 and 0.35 until it reaches
node 0.41. At this node, a dead end is detected because the
previously existing node 0.47 has failed. Thus, node 0.41
will create a no path interval and, accordingly, send an NP
packet back the path to node 0.35. Similarly, the NP packet
is forwarded until it reaches node 0.24. This one, according
to the programmed rules, tries node 0.41 again, however,
0.41 detects a loop and sends an NPB packet to node 0.24. In
turn, node 0.24 tries to find another path by sending an NP
packet to node 0.69. Finally, this node can resume greedy
forwarding toward destination node 0.51.

3.4 Replication Strategies

In order to improve the reliability of VCP in case of possible
node failures, we integrated data replication techniques.
Replication requires two conceptual steps. First, replicas
need to be created and maintained (updated). Second, in the
case of failures, available replicas need to be identified. We
used two different strategies to support the failure handling
of VCP.

First, we investigated concepts to manage replicas in the
physical neighborhood of a node. The advantage of this
concept is the simplified creation and maintenance of
replicas. The broadcast characteristic of the radio commu-
nication can be exploited to communicate replication
messages to all physical neighbors in a single step. This
concept is depicted in Fig. 6a. In the case of failures, the
virtual cord can be used to find a node close to the original
location, i.e., by routing a request to the vicinity of the failed
node. Then, a ring search can be performed, again, using
broadcast messages, to identify a replica. The simplified
creation and maintenance of replicas is accompanied by a

slightly more expensive and time consuming ring search for
available replicas.

In a second approach, we studied the possibility to exploit
the available cord structure of VCP to maintain replicas
along the cord, i.e., on direct neighbors in both directions. In
this approach, the number of replicas can be controlled by
storing duplicates on the n nearest nodes in each direction.
The creation and maintenance of replicas needs at least
2n messages. On the other hand, the location of replicas is
straightforward and, thus, in the case of node failures, no
extra effort needs to be spent to identify such replicas.

4 SIMULATION MODEL AND PARAMETERS

For analyzing the performance of the virtual address-based
routing protocols VCP and VRR, we implemented these
models in OMNeT++ [37], a discrete event simulator free
for academic use. Additionally, we used the INET framework
that provides detailed simulation models of typical MAC
and physical layer protocols.

In our simulation, we built our protocol on the top of the
IEEE 802.11 protocol. The key objective was to rely on a
contention-based MAC protocol that suits best for distrib-
uted and self-organizing routing protocols like VCP and the
evaluated competitors. We also have an implementation for
IEEE 802.15.4 available [38], which is frequently used in the
context of sensor networks. However, as only the non-
beacon enabled mode could be used because of the missing
coordinator functionality, the performance of IEEE 802.15.4
is expected to be comparable to IEEE 802.11, both operating
as contention-based MAC protocols. Furthermore, the
comparison to other protocol evaluations in the literature
becomes easier as most of them use IEEE 802.11 for
the simulation setup as well. For all communications, the
complete network stack is simulated and wireless modules
are configured to closely resemble IEEE 802.11b network
cards transmitting at 2 Mbit/s with RTS/CTS disabled. We
also executed simulation experiments for other data rates,
in particular for 250 kbit/s and 10 Mbit/s, to resemble
typical sensor network and MANET characteristics, respec-
tively. The results only change linearly for throughput and
delay. Therefore, we decided not to include the according
graphs. For the simulation of radio wave propagation, a
plain free-space model is employed, with the transmission
ranges of all nodes adjusted to a fixed value of 50 m.

Furthermore, we used our recently implemented model
of the DYMO routing protocol, which is now publicly
available [39]. DYMO is the successor of AODV, the latter is
the protocol most frequently used to evaluate sensor and ad
hoc routing protocols with. Certainly, an ad hoc routing
protocol has different objectives compared to VCP and
other virtual coordinate-based solutions; however, this
comparison provides kind of ground truth measures to

AWAD ET AL.: EXPLOITING VIRTUAL COORDINATES FOR IMPROVED ROUTING PERFORMANCE IN SENSOR NETWORKS 1219

Fig. 5. Routing in the case of a node failure: node 0.41 generates an NP
packet that is forwarded until node 0.69 continues to forward the original
data packet.

Fig. 6. Replication strategies: on physical neighbors (left) and along the
cord (right).

evaluate the routing performance of any ad hoc routing
solution. All simulation parameters used to configure the
mentioned modules are summarized in Table 2.

In the baseline scenario, 100 nodes are deployed either in
the form of a grid or randomly on a rectangular area. A single
node is dedicated as the sink node and placed on the upper
left corner of the playground. An example of a 25-node
network is depicted in Fig. 7. The figure includes the virtual
relative positions and the virtual cord connecting all the
nodes. We allowed for an initial transient period of 400 s in
which VCP and VRR initialize their address information and
routing tables. Afterward, each node starts transmitting at a
time in the range [400, 418] s for a data rate of 1 pps (packets
per second) and in the range [400, 580] s for a data rate of
0.1 pps. The experiment is terminated at 490 s and 1300 s,
respectively. This experiment is then extended to a general
peer-to-peer communication setup, where destination nodes
are randomly chosen instead of using a single sink node.

For the second set of experiments, we analyzed the failure
tolerance of the routing protocol by periodically switching a
fraction of the nodes on and off (except for the sink node).
Both the on and off intervals are uniformly distributed in a
predefined range. After a node is reactivated, it needs to
rejoin the network and reestablish its routing information.
The configuration of this failure scenario corresponds to the
one used to analyze GHTs [28]. For statistical evidence, for
each experiment, we performed 10 runs. All the simulation
parameters are summarized in Table 3.

For our evaluation, we selected four basis metrics. First,
we analyzed the success ratio, which describes the cap-
ability of the protocol to ensure correct data delivery. Then,
the MAC collisions were analyzed to get an impression of
the overall network load. Furthermore, the path length is
evaluated and, finally, the end-to-end delay. All results
discussed in the following sections are shown as boxplots.
For each data set, a box is drawn from the first quartile to
the third quartile, and the median is marked with a thick
line. Additional whiskers extend from the edges of the box
toward the minimum and maximum of the data set. Data
points outside the range of box and whiskers are considered
outliers and drawn separately. Additionally, the mean
value is depicted in the form of a small filled square.

5 ROUTING PERFORMANCE OF VIRTUAL

COORDINATE-BASED PROTOCOLS

In a first set of simulations, we evaluated the routing
performance of VCP. We looked into different aspects that
might influence the protocol and performed a comprehen-
sive comparison to DYMO, which is the current standard of
the IETF for ad hoc routing, and with VRR, a competitive
approach relying on virtual coordinates for routing in
sensor networks.

5.1 Quality of Routing Paths

In order to inspect the quality of the routing paths, we
examined the stretch ratio, i.e., the ratio between the length
of the path traversed by VCP and the shortest path. For
different network sizes, we measured the path length from
all nodes to the upper left node.

As a base measure, we analytically evaluated the average
path length. The average length of routing paths lavg
depends on the number of nodes n in the network. We
only consider nodes deployed in a grid network in a
rectangular area. The maximum length of routing paths lmax
in the grid can be calculated recursively as shown in (1). The
closed form is given in (2). Because the grid is symmetrical,
the average length of routing paths lavg can be calculated
according to (3). Thus, in case of 25 nodes, the average path
length lavg ¼ 4 and the maximum path length lmax ¼ 8
(between end corners).

1220 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 9, SEPTEMBER 2011

TABLE 2
INET Framework Module Parameters

Fig. 7. Screenshot of the simulation setup. Nodes are deployed either in
a grid or randomly on a rectangular area.

TABLE 3
Simulation Parameters

lmaxð1Þ ¼ 0;

lmaxðnÞ ¼ lmaxð
ffiffiffi

n
p
� 1Þ þ 2; ð1Þ

lmax ¼ 2
ffiffiffi

n
p
� 2; ð2Þ

lavg ¼
lmax þ lmin

2
;

¼
ffiffiffi

n
p
� 1: ð3Þ

Fig. 8 shows the measured stretch ratio in the simula-
tions as we varied the network size from 25 to 1,000 nodes.
The stretch ratio slightly increases with the network size;
however, this increase is reasonable and the median stays
below 25 percent. This low stretch level outlines the optimal
path selection of VCP. For comparison, the stretch ratio of
VRR increases to over 40 percent already for network sizes
larger than 200 nodes (data not shown). This is because
successors and predecessors, which are included in the
routing table, can be far away from each other and,
therefore, messages may be routed over many unnecessary
nodes. This indicates that in VCP, messages are traveling
near optimal paths.

5.2 Influence of the Network Size

We performed a series of experiments to explore the effect
of network size on the performance of VCP. Each node in
the network sends packets to the same destination, which
simulates storing the same data item collected from all the

sensor nodes in the network. We varied the network size
from 25 to 225 nodes.

Fig. 9a shows the simulation results. The path length
increases with the network size in a logarithmic manner.
However, there are a few nodes that used a path length larger
than the shortest path to reach the destination. Taking a look
on the mean and the median of the path lengths, they are
almost equal to lmax=2, which is an indication of good path
selection. Also, more than 75 percent of the nodes have a path
length smaller than lmax. The end-to-end delay is propor-
tional to the path length because it is not necessary to queue
packets. Furthermore, the success ratio was 100 percent for
all large network sizes.

Instead of evaluating a single sink environment, we also
simulated a peer-to-peer communication scenario. It is to be
expected that VCP performs especially well and that there is
no performance degradation compared to the single source
scenario. As can be seen in Fig. 10, both the path length and
the end-to-end delay behave as expected for increasing
network sizes. For the experiments considering node
failures (Section 6), we stay with this peer-to-peer setup.

5.3 Influence of the Traffic Load

To study the behavior of our protocol under varying traffic
load, we kept the number of nodes in the network constant
at 100 nodes and each node in the network sent 100 packets
to the same destination. For the first experiments, the time

AWAD ET AL.: EXPLOITING VIRTUAL COORDINATES FOR IMPROVED ROUTING PERFORMANCE IN SENSOR NETWORKS 1221

Fig. 8. Stretch ratio for different network sizes.

Fig. 9. First performance evaluation results. Most figures are drawn as boxplots indicating the median value and the quartiles. The small box shows
the mean value. (a) Number of hops (top) and end-to-end delay (bottom) for varying network size. (b) Loss ratio (top) and end-to-end delay for bursty
traffic behavior. (c) Loss ratio (top) and end-to-end delay for constant traffic rate.

Fig. 10. Peer-to-peer scenario: number of hops and end-to-end delay for
varying network size.

between successive packets was randomly selected in the
interval [0, 0.5] s, which is equivalent to sending at least
2 pps. Afterward, we decreased this time interval down to
[0, 0.005] s, which is equivalent to sending at least 400 pps.
As shown in Fig. 9b, packets can be delayed at the MAC
layer due to congestion. As a result, the end-to-end delay
increases with increasing traffic load. Nevertheless, the
delay is still within an acceptable range. When sending
packets with rates below 16 pps, the effect of congestion is
negligible. However, the delay reaches a peak of 1.2 s when
sending with a rate of 400 pps (compared to only 0.03 s in
the other case). The effect of increasing traffic was not so big
on the packet delivery rate. As can be seen from Fig. 9b, the
loss ratio was below 0.4 percent; therefore, the success rate
was still above 99.6 percent.

We repeated the same experiment using a constant packet
rate. We started sending packets every 0.5 s and decreased
this duration down to 0.005 s. As shown in Fig. 9c, the results
are a little bit better. There was no impact of increasing traffic
load until 32 pps and the mean delay was lower than before.
To explore the performance of VCP in random deployments,
we performed several simulations using a network consist-
ing of 200 nodes deployed randomly in a 600 m �120 m
plane, which is similar to scenarios described in [1] for VRR.
The packet rate was set to 1 or 2 pps, which is equivalent to
200 or 400 CBR flows, respectively. In less than 20 s, all the
nodes had joined the network. The average number of
control messages sent by each node (excluding hello

messages) was 10.54. Each node started sending a 100 byte
packet to a random destination at a random time in the
interval [50, 230] s. All nodes stopped sending at time 950 s.
As shown in Table 4, the results are very promising. For
example, the success rate is almost 100 percent, even for high
traffic load. In comparison, the success rate for VRR dropped
to 60 percent if either the network size was increased to more
than 200 nodes or if the traffic load was doubled.

5.4 Comparison to DYMO and VRR

We also evaluated the routing performance of VCP in
comparison to VRR, a competitive approach relying on
virtual coordinates for routing, and to DYMO, which is the
most recent standard of ad hoc routing protocols developed
by the IETF MANET working group.

In a first experiment, we evaluated the end-to-end delay
as observed by the application. Furthermore, we analyzed
the protocol behavior for different network densities and
traffic rates. Finally, we evaluated the influence of the
network topology, i.e., grid or random. The results for the
grid scenario are depicted in Fig. 11 (for random deploy-
ment, the results are similar). For better comparability, we
normalized the latency to the path length, i.e., to a per-hop
delay. As can be seen, the per-hop delay for VCP and VRR
is quite similar. Both the mean and the median are at about
1 ms. Some outliers can be observed up to about 10 ms.
Both protocols are very robust w.r.t. the network density
and the traffic load. The MANET routing protocol DYMO
performed slightly worse for higher traffic load (depicted as
1 s traffic pattern). For lower traffic rates, the observed
delay increased largely. This effect can be explained with
the route timeouts used by DYMO in our experiment. In the
10 s example, DYMO has to set up a route for almost each
packet because the available routes have timed out. Thus,
each time an additional route setup delay adds to the
transmission delay.

For the analysis of routing protocols designed for
wireless networks, a main measure to observe is the
number of MAC layer collisions. This metric helps to
evaluate the overall load in the network. Fig. 12 shows the
results for the grid scenario (for random deployment, the
number of MAC collisions shows a higher variance, but a
similar trend). In particular, the number of MAC collisions
is almost zero for the virtual address-based routing
protocols (for the high density scenario, VRR shows about
5 percent collisions per data packet sent, which is
negligible). However, the number of collisions is quite high
for DYMO for high node densities [39].

6 PROTOCOL BEHAVIOR IN THE PRESENCE OF

NODE FAILURES

In the second set of experiments, we focused on the protocol
behavior in presence of frequent node failures. As a node
failure, we consider in general any event that prevents
communication to a particular node at a given time, e.g.,
complete energy outages, node replacement, or interrupted

1222 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 9, SEPTEMBER 2011

TABLE 4
Influence of the Traffic Load for Random Deployment

Fig. 11. Delay performance of VCP, VRR, and DYMO in the grid scenario: depicted is the latency as observed by the application normalized to the
path length; all figures are plotted using a log scale y-axis. (a) Per-hop delay of VCP. (b) Per-hop delay of VRR. (c) Per-hop delay of DYMO.

communications due to changes in the radio propagation.
For these experiments, we only consider VCP and VRR
because the network load (and therefore the collision
probability) increases too much for MANET protocols such
as DYMO [39].

The general setup is the same as used for evaluating the
routing performance. However, we further introduced node
failures as described in Section 4. We follow the simulation
setup described in [28]. In particular, node failures are
modeled as a uniformly distributed on/off process. We
increase the number of nodes toggling their state from 0 to
100 percent. Four metrics were chosen for the performance
comparison. In all the figures, we show results for the grid
scenario. For random deployment, the variance was sightly
higher but the trend of the results was exactly the same.

First, we investigated the success rate, i.e., the number of
transmissions that were completed successfully. Figs. 13a
and 13b depict the measured success rate for VCP and VRR,
respectively. As can be seen, the ratio of successful
transmissions degrades with the number of failing nodes.
However, VCP still maintains a success rate of about 70 to
80 percent. In contrast, the success rate degrades much
faster for VRR (down to 50 percent). A look at the network
load reveals some effects that explain the reduced success
rate of VRR compared to VCP. Figs. 13c and 13d show the

number of MAC layer collisions. As can be seen, there are
almost no collisions for VCP, which outlines the capability
of this protocol to work even in situations with a high
number of node failures.

When VRR enters the transmission phase after its initial

join phase, it simply forwards packets to the node that has

the ID closest to the packet ID. It needs to be noted that

“closest” ID means the ID that is closest on the virtual ring.

When the network size increases and many nodes fail

periodically, the forwarding tables become incomplete and

only represent a local view of the whole network. VRR has

two different strategies to handle such failure situations:

exact repair and local vset-path repair. The idea is to bypass

the failed node. However, this technique only works for a

limited number of node failures.
The effect can also be observed when looking at the

latency performance. Fig. 14a shows that the median per-

hop delay of VCP is not affected by the failing nodes,

whereas, as shown in Fig. 14b, the delay of VRR increases

with the failure ratio.
We further studied the path length, which outlines the

capability of the routing protocol to find shortest paths even

in the case of many node failures. Figs. 14c and 14d depict

the simulation results. While the average path length is

AWAD ET AL.: EXPLOITING VIRTUAL COORDINATES FOR IMPROVED ROUTING PERFORMANCE IN SENSOR NETWORKS 1223

Fig. 12. MAC layer collisions per date packet sent for VCP, VRR, and DYMO in the grid scenario. (a) Collisions of VCP. (b) Collisions of VRR.
(c) Collisions of DYMO.

Fig. 13. Failure performance: depicted are the success rate and number of MAC collisions for the grid scenario. (a) Success rate of VCP.
(b) Success rate of VRR. (c) Collisions of VCP. (d) Collisions of VRR.

Fig. 14. Failure performance: depicted are the per-hop delay and the path lengths for the grid scenario. (a) Delay of VCP. (b) Delay of VRR. (c) Path
length of VCP. (d) Path length of VRR.

slightly shorter for VCP, some single outliers correspond to
special cases in which the virtual cord needs to be used for
routing instead of the optimal greedy routing between
physical neighbors.

As a final measure, the number of messages transmitted
is shown in Fig. 15. As can be seen, VCP is using roughly
the same number of messages in case of no failing nodes.
However, with an increasing number of node failures, VRR
needs to transmit an increasing number of messages for
ring maintenance. In contrast, the number of messages per
node stays constant for VCP, that means that the total
number of messages sent in the network is even decreasing
(due to nodes being in off state). This number can roughly
be translated to the energy performance of the protocol,
because energy consumption is mainly a function of
communication activities in WSNs.

7 PERFORMANCE OF DATA REPLICATION

In some final experiments, we evaluated the performance
impact of data replication. As analyzed, for example, in the
context of GHTs, a clear improvement can be expected in
case of frequent node failures [29]. We specifically
designed the simulation setup to make the results
comparable to those published for GHT [28], [29]. In
contrast to the previously described experiments, we
performed continuous queries instead of pushing content
to a dedicated node. Thus, we expect a much lower success
ratio and increased communication delays. In particular,
we placed 100 nodes on an area of 160 m � 160 m. After an
initial setup time, two queries are being transmitted per
second for a period of 300 s. We performed the experi-
ments both for random and for grid deployment. The
results were almost the same; therefore, only data for grid
deployment are shown. Furthermore, we experimented
with different node densities. It turned out that the most
limiting factor is the connectivity in the network. If nodes
are deployed too sparsely, isolated nodes or even islands
appear, which may falsify the measurement results. For the
presented simulation results, this number was zero or
negligible in all the runs.

In order to evaluate the replication performance, we first
analyzed the resulting query success rate. We show a
comparison of the quality of all the implemented replication
schemes in Fig. 16. As can be seen, the replication on the
cord is less effective compared to the replication on physical
neighbors. The worst case success rate can be seen in the
scenario in which 100 percent of all the nodes continuously
flip between on and off state. However, compared to the
performance results reported for GHT [28], VCP performs

very well—the results are compared numerically in Table 5.
Exploiting the simple broadcast-based replication among
nodes in the physical neighborhood, even better results can
be achieved.

Such improvement in the success rate can be expected to
be expensive in terms of some other metrics. Thus, we
investigated other communication metrics such as the path
length and the delay. Both kept almost constant, the path
length at two to four hops (data not shown), and the delay
increased slightly in the scenario with frequent node
failures due to the additional effort for discovering alternate
replicas (Fig. 7). All the graphs in Fig. 17 refer to
measurements of data replication within the physical
neighborhood (see Section 3.4). As previously discussed,
the replication on the cord led to less effective improve-
ments but the observed trend was similar.

Another interesting metric is the amount of messages
needed to keep the replicas up to date. Fig. 7 shows the
number of refresh messages, which is continuously increas-
ing with the number of node failures. However, when
comparing those to the total number of transmitted
messages in Fig. 7, the additional effort seems to be adequate
as it only represents about 20 percent of the total commu-
nication load. This is still a lot, however, if these data are of
high potential interest, the effort can easily be motivated.

Finally, we investigated the storage requirements. In the
best case, the number of stored messages would be
insensitive to the number of node failures. As can be seen
in Fig. 7, this is the case. On average, about five additional
messages have to be stored on each node. The variance is
also in a tolerable range. Only a few nodes have to store
more than 15 messages, but those qualify as outliers in the
statistical evaluation.

1224 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 9, SEPTEMBER 2011

Fig. 15. Total number of messages for routing in VCP (left) and VRR
(right).

Fig. 16. Success rate with replication (grid scenario) for different
replication strategies.

TABLE 5
Comparison of the Success Ratio and the

Necessary Refresh Messages for VCP versus GHT

8 CONCLUSION AND FUTURE WORK

Virtual Cord Protocol is a routing protocol designed for
efficient data management in sensor networks. VCP exploits
the benefits of using virtual coordinates for efficient
routing. Using application-specific hash functions, data
items can be associated with particular nodes. Furthermore,
the protocol supports data replication in order to improve
the failure performance.

In an extensive simulation-based performance evalua-
tion, we assessed the impact of the network density, the
traffic load, and potential node failures. We compared the
routing performance of virtual address-based protocols, in
particular VCP and VRR, with a typical ad hoc routing
protocol (DYMO). The results clearly demonstrate the
advantages of virtual coordinate-based approaches com-
pared to classical ad hoc routing protocols in the optimal
case, i.e., without any node failures. Both VCP and VRR,
which show a comparable performance, outperform DYMO.
However, in case of node failures, VCP demonstrates its
strengths of efficient cord management. It shows a much
better tolerance to node failures compared to VRR due to its
low maintenance overhead. Based on these results and
taking into account the capabilities of virtual address-based
protocols to manage data using an application-specific hash
function, we conclude that virtual coordinate-based ap-
proaches are better suited for WSNs, especially if these
networks are dynamic w.r.t. node failures.

Finally, we evaluated the performance of the implemented
data replication scheme. The resulting failure performance
underlines the high quality of VCP for data management and
routing in sensor networks; compared to GHTs, VCP
achieves at least the same success rate with a much smaller
number of refresh messages. Nevertheless, the additional
effort for replication is not negligible but on an acceptable
level (roughly 25 percent communication overhead).

Future work will include studies of the suitability of
different hash functions for content replication in sensor
networks. Recently, we also implemented VCP on real
sensor nodes in our lab to verify its applicability on
resource limited sensor nodes [27].

ACKNOWLEDGMENTS

This work was partially supported by DAAD grant “Peer-
to-peer techniques for sensor networks” under grant
number 331 4 04 001. The manuscript is based on earlier
work on VCP that was presented at IEEE MASS 2008 (basic
protocol) and IEEE/IFIP WONS 2009 (comparison to VRR).

REFERENCES

[1] M. Caesar, M. Castro, E.B. Nightingale, G. O’Shea, and A.
Rowstron, “Virtual Ring Routing: Network Routing Inspired by
DHTs,” Proc. ACM SIGCOMM, Sept. 2006.

[2] C.-H. Lin, B.-H. Liu, H.-Y. Yang, C.-Y. Kao, and M.-J. Tasi,
“Virtual-Coordinate-Based Delivery-Guaranteed Routing Protocol
in Wireless Sensor Networks with Unidirectional Links,” Proc.
IEEE INFOCOM, Apr. 2008.

[3] A. Awad, C. Sommer, R. German, and F. Dressler, “Virtual Cord
Protocol (VCP): A Flexible DHT-like Routing Service for Sensor
Networks,” Proc. Fifth IEEE Int’l Conf. Mobile Ad-Hoc and Sensor
Systems (MASS ’08), pp. 133-142, Sept. 2008.

[4] M.-J. Tsai, F.-R. Wang, H.-Y. Yang, and Y.-P. Cheng, “VirtualFace:
An Algorithm to Guarantee Packet Delivery of Virtual-Coordi-
nate-Based Routing Protocols in Wireless Sensor Networks,” Proc.
IEEE INFOCOM, Apr. 2009.

[5] T. Watteyne, D. Simplot-Ryl, I. Augé-Blum, and M. Dohler, “On
Using Virtual Coordinates for Routing in the Context of Wireless
Sensor Networks,” Proc. 18th IEEE Int’l Symp. Personal, Indoor and
Mobile Radio Comm. (PIMRC ’07), pp. 1-5, Sept. 2007.

[6] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless Sensor Networks: A Survey,” Computer Networks,
vol. 38, pp. 393-422, 2002.

[7] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless Sensor Network
Survey,” Computer Networks, vol. 52, no. 12, pp. 2292-2330, Aug.
2008.

[8] F. Dressler, Self-Organization in Sensor and Actor Networks. John
Wiley & Sons, Dec. 2007.

[9] K. Akkaya and M. Younis, “A Survey of Routing Protocols in
Wireless Sensor Networks,” Ad Hoc Networks, vol. 3, no. 3, pp. 325-
349, 2005.

[10] C.E. Perkins and E.M. Royer, “Ad Hoc On-Demand Distance
Vector Routing,” Proc. Second IEEE Workshop Mobile Computing
Systems and Applications, pp. 90-100, Feb. 1999.

[11] I. Chakeres and C. Perkins, “Dynamic MANET On-Demand
(DYMO) Routing,” Internet Draft (Work in Progress), draft-ietf-
manet-dymo-10.txt, July 2007.

[12] D.B. Johnson and D.A. Maltz, “Dynamic Source Routing in
Ad Hoc Wireless Networks,” Mobile Computing, T. Imielinski and
H.F. Korth, eds., vol. 353, pp. 152-181, Kluwer Academic, 1996.

[13] B. Krishnamachari, D. Estrin, and S. Wicker, “The Impact of Data
Aggregation in Wireless Sensor Networks,” Proc. Int’l Workshop
Distributed Event Based System (DEBS ’02), July 2002.

[14] R. Govindan, “Data-Centric Routing and Storage in Sensor
Networks,” Wireless Sensor Networks, C.S. Raghavendra, K.M.
Sivalingam, and T. Znati, eds., pp. 185-205, Springer, 2004.

[15] J. Gehrke and S. Madden, “Query Processing in Sensor Net-
works,” IEEE Pervasive Computing, vol. 3, no. 1, pp. 46-55, Jan.-
Mar. 2004.

[16] Peer-to-Peer Systems and Applications, R. Steinmetz and K. Wehrle,
eds. Springer, 2005.

[17] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, F. Kaashoek, F.
Dabek, and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer
Lookup Protocol for Internet Applications,” IEEE/ACM Trans.
Networking, vol. 11, no. 1, pp. 17-32, Feb. 2003.

[18] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems,” Proc.
IFIP/ACM Int’l Conf. Distributed Systems Platforms (Middleware),
pp. 329-350, Nov. 2001.

AWAD ET AL.: EXPLOITING VIRTUAL COORDINATES FOR IMPROVED ROUTING PERFORMANCE IN SENSOR NETWORKS 1225

Fig. 17. Replication performance; depicted are the per-hop delay, transmitted and stored messages for the grid scenario. (a) Delay. (b) Refresh
messages. (c) Total number of messages. (d) Storage requirements.

[19] B. Karp and H.T. Kung, “GPSR: Greedy Perimeter Stateless
Routing for Wireless Networks,” Proc. ACM MobiCom, pp. 243-
254, 2000.

[20] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic Routing without Location Information,” Proc. ACM
MobiCom, Sept. 2003.

[21] M. Mauve, J. Widmer, and H. Hartenstein, “A Survey on Position-
Based Routing in Mobile Ad-Hoc Networks,” IEEE Network,
vol. 15, no. 6, pp. 30-39, Nov./Dec. 2001.

[22] R. Flury, S.V. Pemmaraju, and R. Wattenhofer, “Greedy Routing
with Bounded Stretch,” Proc. IEEE INFOCOM, Apr. 2009.

[23] G. Tan, M. Bertier, and A.-M. Kermarrec, “Convex Partition of
Sensor Networks and Its Use in Virtual Coordinate Geographic
Routing,” Proc. IEEE INFOCOM, Apr. 2009.

[24] A. Awad, L.R. Shi, R. German, and F. Dressler, “Advantages of
Virtual Addressing for Efficient and Failure Tolerant Routing in
Sensor Networks,” Proc. Sixth IEEE/IFIP Conf. Wireless On Demand
Network Systems and Services (WONS ’09), pp. 111-118, Feb. 2009.

[25] F. Dressler and F. Chen, “Dynamic Address Allocation for Self-
Organized Management and Control in Sensor Networks,” Int’l J.
Mobile Network Design and Innovation, vol. 2, no. 2, pp. 116-124,
2007.

[26] C.N. Ververidis and G.C. Polyzos, “Service Discovery for Mobile
Ad Hoc Networks: A Survey of Issues and Techniques,” IEEE
Comm. Surveys and Tutorials, vol. 10, no. 3, pp. 30-45, 2008.

[27] A. Awad, R. German, and F. Dressler, “Efficient Routing and
Service Discovery in Sensor Networks Using Virtual Cord
Routing,” Proc. Seventh ACM Int’l Conf. Mobile Systems, Applica-
tions, and Services (MobiSys ’09), June 2009.

[28] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin,
and F. Yu, “Data-Centric Storage in Sensornets with GHT, a
Geographic Hash Table,” ACM/Springer Mobile Networks and
Applications, Special Issue on Wireless Sensor Networks, vol. 8,
no. 4, pp. 427-442, Aug. 2003.

[29] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S.
Shenker, “GHT: A Geographic Hash Table for Data-Centric
Storage,” Proc. First ACM Int’l Workshop Wireless Sensor Networks
and Applications (WSNA ’02), Sept. 2002.

[30] G. Tan, M. Bertier, and A.-M. Kermarrec, “Visibility-Graph-Based
Shortest-Path Geographic Routing in Sensor Networks,” Proc.
IEEE INFOCOM, Apr. 2009.

[31] K. Liu and N. Abu-Ghazaleh, “Aligned Virtual Coordinates for
Greedy Routing in WSNs,” Proc. Third IEEE Int’l Conf. Mobile
Ad Hoc and Sensor Systems (MASS ’06), pp. 377-386, Oct. 2006.

[32] B. Leong, B. Liskov, and R. Morris, “Greedy Virtual Coordinates
for Geographic Routing,” Proc. 15th IEEE Int’l Conf. Network
Protocols (ICNP ’07), pp. 71-80, Oct. 2007.

[33] Y. Zhao, Y. Chen, B. Li, and Q. Zhang, “Hop ID: A Virtual
Coordinate-Based Routing for Sparse Mobile Ad Hoc Networks,”
IEEE Trans. Mobile Computing, vol. 6, no. 9, pp. 1075-1089, Sept.
2007.

[34] J. Newsome and D.X. Song, “GEM: Graph Embedding for Routing
and Data-Centric Storage in Sensor Networks without Geographic
Information,” Proc. First ACM Conf. Embedded Networked Sensor
Systems (SenSys ’03), pp. 76-88, Nov. 2003.

[35] C.T. Ee, S. Ratnasamy, and S. Shenker, “Practical Data-Centric
Storage,” Proc. Third Symp. Networked Systems Design and Im-
plementation (NSDI ’06), pp. 325-338, May 2006.

[36] Ö.D. Incel and B. Krishnamachari, “Enhancing the Data Collection
Rate of Tree-Based Aggregation in Wireless Sensor Networks,”
Proc. Fifth IEEE Comm. Soc. Conf. Sensor and Ad Hoc Comm. and
Networks (SECON ’08), pp. 569-577, June 2008.

[37] A. Varga, “The OMNeT++ Discrete Event Simulation System,”
Proc. European Simulation Multiconf. (ESM ’01), June 2001.

[38] F. Chen, N. Wang, R. German, and F. Dressler, “Simulation Study
of IEEE 802.15.4 LR-WPAN for Industrial Applications,” Wireless
Comm. and Mobile Computing, vol. 10, no. 5, pp. 609-621, May 2010.

[39] C. Sommer, I. Dietrich, and F. Dressler, “Simulation of Ad Hoc
Routing Protocols Using OMNeT++: A Case Study for the DYMO
Protocol,” ACM/Springer Mobile Networks and Applications, Special
Issue on Simulation Techniques and Tools for Mobile Networking,
doi:10.1007/s11036-009-0174-5, 2009.

Abdalkarim Awad received the BS degree in
electrical engineering and the MSc degree
in scientific computing from Birzeit University in
1999 and 2003, respectively. In 2006, he joined
the Networking Group in the Department of
Computer Science, University of Erlangen,
Germany, supported by a DAAD scholarship.
In 2009, he received the PhD degree from the
School of Engineering, University of Erlangen,
Germany. Now, he works as a research associ-

ate in the Integrated Communication Systems Group with the Faculty of
Computer Science and Automation, Ilmenau University of Technology.
His current research interests are focused on self-organizing methodol-
ogies and their evaluation techniques. He uses these methodologies to
solve problems in computer networks and communication systems. His
research interests include routing and data management in sensor
networks, peer-to-peer systems, and control of distributed systems.

Reinhard German received the diploma in 1991,
the PhD degree in 1994, and the Habilitation
degree in 2000 from the Computer Science
Department, Technical University of Berlin. Then,
he joined the Department of Computer Science
at the University of Erlangen-Nuremberg, first as
an associate professor (system simulation), and
since 2004, as a full professor (computer net-
works and communication systems), where he is
currently the head of the department. His re-

search interests include model-based and measurement-based perfor-
mance analysis, modeling and simulation paradigms and tools, numerical
analysis of Markovian and non-Markovian models, vehicular communica-
tions, and autonomous sensor/actuator networks.

Falko Dressler received the MSc and PhD
degrees from the Department of Computer
Science, University of Erlangen, in 1998 and
2003, respectively. In 2003, he joined the Com-
puter Networks and Internet Group at the Wil-
helm-Schickard-Institute for Computer Science,
University of Tuebingen. Between 2004 and
2011, he has been an assistant professor at the
Computer Networks and Communication Sys-
tems Chair in the Department of Computer

Science, University of Erlangen, coordinating the Autonomic Networking
Group. He is now a full professor of computer science heading the
Computer and Communication Systems Group at the Institute of
Computer Science, University of Innsbruck. He teaches on self-organizing
sensor and actor networks, network security, and communication
systems. Dr. Dressler is an editor for journals such as Elsevier’s Ad Hoc
Networks, ACM/Springer’s Wireless Networks (WINET), and Elsevier’s
Nano Communication Networks. He was a guest editor of special issues
on self-organization, autonomic networking, and bio-inspired computing
and communication for the IEEE’s Journal on Selected Areas in
Communications (JSAC), Elsevier’s Ad Hoc Networks, and others.
Dr. Dressler was the general chair of IEEE/ACM BIONETICS 2007 and
IEEE/IFIP WONS 2011. Besides chairing a number of workshops
associated with high-level conferences, he regularly acts in the TPC of
leading networking conferences such as IEEE INFOCOM, IEEE ICC,
IEEE Globecom, IEEE WCNC, and IEEE MASS. Among others, he wrote
the textbook Self-Organization in Sensor and Actor Networks (Wiley,
2007). Dr. Dressler is an IEEE Distinguished Lecturer in the fields of inter-
vehicular communication, self-organization, and bio-inspired networking.
He is a senior member of the IEEE (COMSOC, CS, VTS) as well as a
senior member of the ACM (SIGMOBILE), and member of GI (KuVS). He
actively participates in the IETF standardization. His research activities
are focused on adaptive wireless networking and self-organization
methods addressing issues in wireless ad hoc and sensor networks,
inter-vehicular communication systems, bio-inspired networking, and
adaptive network security techniques.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1226 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 9, SEPTEMBER 2011

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

