Reactive Virtual Position-Based Routing
in Wireless Sensor Networks

Abdalkarim Awad*, Andreas Mitschele-Thiel* and Falko Dressler!
*Dept. of Computer Science, [Imenau University of Technology, Germany
tnstitute of Computer Science, University of Innsbruck, Austria

Abstract—Virtual position-based routing protocols have many
attractive characteristics for wireless sensor networks. Typically,
such protocols use a proactive scheme for updating routing tables.
Because sensor networks can have very low data rate, sending
periodic beacons to update routing tables can be very expensive.
Instead, reactive approaches might be more appropriate in such
scenarios. MANET-inspired reactive routing protocols do not
scale well because of the effort in the order of O(n) for each
routing information update. In this paper, we present Reactive
Virtual Cord Protocol (RVCP), a data-centric reactive virtual
position based routing protocol for use in sensor networks. Route
discovery is directed towards the destination and hence there is
no need to flood the entire network to discover a route. Our
approach is based on Virtual Cord Protocol (VCP), an efficient,
virtual relative position based routing protocol that also provides
support for data management as known from typical Distributed
Hash Table (DHT) services. To minimize the end-to-end delay
and energy consumption, we used adaptive techniques for the
development of RVCP.

I. INTRODUCTION

New advances in the technology make it possible to produce
small size computing devices that can sense the surrounding
environment. These devices are called sensor nodes and are
equipped with a wireless communication channel. Wireless
Sensor Networks (WSNs), which are composed of cooperat-
ing of sensor nodes, present a cost-effective, practical, and
capable solution to support many application scenarios. Sensor
nodes typically resource limited devices, but WSN application
domains are diverse and they have to manage a variety of
data types, including simple temperature, light intensity, and
humidity measures; or more complex data types such as sound,
images, or even video. It is foreseen that the size of such
network will be very large and hence efficient routing is a
crucial issue in these networks [1]. One of the key challenges
in WSN routing design is how to guarantee packet delivery,
i.e. to ensure that a path to any destination can be found [2],
[3], in combination with an optimized network lifetime [4].

Traditionally, routing algorithms can be classified as proac-
tive or reactive. Proactive algorithms, also called global state
algorithms, employ classical routing strategies such as distance-
vector routing (e.g., Destination-Sequenced Distance Vector
(DSDV) [5]) or link-state routing (e.g., Optimized Link State
Routing (OLSR) [6]). Those approaches maintain routing
information in the network even if these paths are currently not
being used. Moreover, they usually rely on flooding techniques
for updating in case of topology changes. On the other hand,
reactive algorithms have been developed as a response to this

observation (e.g., Dynamic Source Routing (DSR) [7], Ad
Hoc on Demand Distance Vector (AODV) [8], and Dynamic
MANET on Demand (DYMO) [9]). Reactive routing protocols
use on-demand route acquisition systems, where a node sends
a route request (RREQ) whenever it needs to send a message
to a node for which a route not already exists. Reactive routing
protocols are generally more scalable, since they generate less
network traffic. They are thus suitable for highly dynamic ad
hoc networks [10]. However, maintaining routes only while in
use leads to a delay for the first packet to be transmitted.

Besides these classic Mobile Ad Hoc Network (MANET)
based approaches, geographic or location based routing al-
gorithms have been developed to eliminate some limitations
using the positions of all nodes. Geographic routing algorithms
can be divided mainly into two types: real location based and
virtual location based. For the first type, it is necessary that
each node knows its exact physical location. Commonly, it is
assumed that each node determines its position using Global
Positioning System (GPS) or some other type of positioning
service [11]-[13]. For the second type, a virtual location is
allocated to each node.

Approaches like Geographic Hash Table (GHT) [14] map
the data items to real locations in the network. Thus, GHTs
assume that each node know its physical location and the area
is pre-defined before deploying the network. As geographic
coordinates are sometimes not available, error-prone, and the
used greedy routing might end up in dead ends, transformations
have been proposed to create a modified virtual topology [15].
Furthermore, virtual coordinate based solutions such as Virtual
Ring Routing (VRR) [16] or Virtual Cord Protocol (VCP) [3],
[17] rely on a virtual topology created and maintained for
efficient routing and data management.

One of the most recent approaches is VCP [3], a DHT-
like protocol in which all data items are associated with
numbers in a pre-determined range [S, E], i.e. on an one-
dimensional cord. All the available nodes capture this range
by having a unique ID in the range [S, E] . Thus, each node
in the network is responsible for a portion of the entire space
defined by its relative position to physical neighbors. This
way, it is possible to store data on the nodes by mapping data
items deterministically in space using a hash function. The
corresponding key-value pair is then stored at the node whose
position is closest to the key. Greedy routing is performed based
only on the position of the physical neighbors. To retrieve data
items, nodes have to apply the same hash function to find the

978-1-4577-0636-3 /11/$26.00 ©2011 IEEE

joined node joining node additional neighbor
__hello-req — hello- req_
'\——\——\h ello -
—| hello
le—
____Ppos-re q,,,/,,/,
- \—pos -ac k;\\lr;

Fig. 1. Join process: message exchange during the join process

key value. They then can route the request to the node whose
position is closest to the key. Yet, still this protocol is proactive,
thus, consuming a non-negligible amount of energy for topology
maintenance, and reducing the network lifetime [4].

We investigated the performance of VCP assuming each node
sends a periodic hello message to update network topology.
In order to increase the network lifetime, we developed the
Reactive Virtual Cord Protocol (RVCP), an extended version of

VCP to support reactive node joins and updates of routing tables.

In this paper, we describe the findings of our performance
evaluation and present the reactive routing scheme. In detailed
evaluations, we compared the new RVCP protocol to the
standard VCP as well as to typical MANET routing.

II. REACTIVE JOIN PROCESS

In this section, we describe the join process in our new
Reactive Virtual Cord Protocol (RVCP). As stated previously,
RVCP is a DHT-like protocol. All data items are associated
with numbers in a pre-determined range [S, E] and the available
nodes capture this range. Thus, each node captures a part of
the entire range.

When a node joins the RVCP network, it must set three
important variables: its position, predecessor, and successor in
the virtual cord. Each node determines these values based on
the positions of its single-hop neighbors. One he11o messages

from the neighboring nodes is sufficient to set these parameters.

At network startup, one node must be pre-programmed as
initial node, i.e. it gets the position .S. The joining node has to
discover the network structure, i.e. all neighboring nodes and
their position in the cord. As shown in Figure 1, the joining
node sends a request message (hello-req) in RVCP. This
is answered by the nodes that already joined the network by
sending hello messages. All these messages are broadcasted
to all neighbors. To avoid collisions that can occur during
the hello exchange, each node should wait a random time
(backoff) before starting to send the hello message. In such
a self-organizing system, it may happen that more than one
node in the same physical region tries to join at the same time.
Therefore, we used position request messages (pos—req) and
the respective acknowledgments (pos—ack), which guarantee
that each node will get a unique position in the cord.

Based on the received hello messages, the joining node
gets information about its physical neighbors and their adjacent
nodes. If the node sending the hello is not yet in the physical
neighbors table, it will be added. Otherwise, the entry is updated

090 |

Fig. 2. Join operation in VCP and RVCP

accordingly. Of course, the hello message updates also the
successor and predecessor information. If the node has not yet
joined the network, it internally starts the join process based on
the received information — a join delay 7}, must have elapsed
before re-asking for a relative position.

The cord setup follows the same rules used in the standard
VCP protocol [3]: If a node can communicate with an end node,
i.e. a node that has either position S or F, the new node takes
over this end value as its virtual cord position. The old node
gets a new position between the end value and its successor or
predecessor, depending on the its old position. The new node
becomes predecessor of the old node if it received position S.
Otherwise it becomes its successor.

If a node can communicate with two adjacent nodes in
the cord, the new node gets a position between the values of
the two adjacent nodes. Additionally, the new node becomes
successor of the old node with the lower position value and
predecessor to the node that has the higher position value.

Finally, if the new node can communicate with only one
node in the network, which is neither at S nor F, then the new
node asks that node to create a virtual position. This virtual
node gets a position between the position of the real node and
its successor or predecessor. The new joining node can now
get a position in between the real and the virtual position of
the node in the cord. Notice that the node has to wait some
time before asking for a virtual node. This timeout is used to
encourage the node to find multiple neighbors, i.e. to get a
proper position in the cord without the need to setup a virtual
position. In previous experiments, we discovered that fewer
virtual nodes lead to better routing paths [17].

Figure 2 shows the joining process for a six node network.
The outer circle indicates the communication range of the
newly joining node. In the first five steps, nodes are placed in
the cord according to the simple rule to create new addresses
either at an end or in the middle of the cord. In the sixth step,
a virtual node is created to join node 0.52.

III. REACTIVE ROUTING TABLE UPDATE

In RVCP, packets are marked with their destinations’ loca-
tions. As a result, a forwarding node can make a local choice

when greedily choosing a packet’s next hop: the neighbor with
an ID closest to the packet’s destination. This procedure is
repeated until the destination is reached. Thus, for routing in
RVCP, each node must know its physical neighbors, extracted
from the neighbors’ hello messages.

The routing tables are maintained as follows: When a node
receives a data packet, it verifies the corresponding routing
table entries. If the routing table is older than RTFE, it is
considered stale. RVCP depends on timeouts and not on link-
layer notifications or probing which makes it independent of the
implementation of the lower layers. If routing information is
stale, the node starts a new hello exchange. The node sends
a hello-req and waits for a short time Hd, before sending
further data packets. This make it possible for the node to
receive a maximum number of its neighbors’ hello messages.
Hd is adaptively adjusted depending on the network conditions.
We measure it as the minimum time that elapsed between
sending a hello-req and receiving a hello message over
the last n x RTFE seconds. That way we decrease the end-
to-end delay, because if the network is free, Hd has a lower
value. Furthermore, less hello messages will be sent when we
have adaptive Hd.

If the node did not receive new routing information after
sending the hello-req, then it stores the data packet
temporally until routing information becomes available. Each
node cal locally determine whether it is responsible for some
data item, relying on the successor and predecessor information.
A stabilization function runs every Ty, that detects existing
packets that should be further forwarded. Algorithm 1 depicts
the routing process. If the routing information are valid, a
greedy algorithm is employed to send packets to the physical
neighbor that has a cord position closest to the destination
until no more progress is possible and the value lies between
the positions of the predecessor and successor.

RVCP inherently relies on a previously established cord and,
thus, provides guaranteed delivery. In addition, RVCP supports
shortcuts whenever a physical neighbor with a virtual number
is available that is closer to the destination. In Section IV, we
show that the used routes are close to the shortest path.

Algorithm 1 Reactive Greedy Forwarding Algorithm

Require: Received data packet D for destination position D,
locally maintained data set [Pyin, Prax]
if Ppin <D, < P4, then
StoreData(D),)
else if Hd < AT < RTFE then
if 3N; € N : |Position(N;) — Dp| < |P — D,| then
Send(N;, D)
else
StoreData(D),,)
end if
else if AT > RTFE then
Send(hello-req)
11: end if

R A A S ol S

._
4

Fig. 3. An example for a inserting / retrieving data using the virtual cord
and greedy routing exploiting local neighborhood information

Theorem 1. Given a static network, VCP’s greedy forwarding
based on local information guarantees packet delivery to the
correct destination.

Proof: Assume a packet, marked by its originator with
key K, gets stuck at a node that is not closest to K, say N,
and there exists another node N’ that is closest to K. Recall
that in VCP each node can communicate at least with its
predecessor and successor and the value of the successor is
larger than N and the value of the predecessor is smaller than
N. Therefore either the successor or the predecessor is closer
to N’ than N (if not, then N = N’). Hence the packet can be
greedily forwarded either to the successor or the predecessor
until it reaches a node for which neither the successor nor the
predecessor is closer to K than the node itself. []

Consider the example shown in Figure 3. If node 0.25
produces a data item, it first prepares the corresponding hash
value — we assume a hash value of 0.781. Node 0.25 will
forward the message towards the destination node, i.e. greedily
to the physical neighbor closest to the identified hash value.
In our case, this is node 0.5. Afterwards, the message will be
forwarded to node 0.75, and then to node 0.78 as illustrated
in Figure 3. Node 0.78 will finally store the data and will
not forward it any further because there is no more possible
progress and the value lies between the positions of the
predecessor and the successor.

It is important here to say that the update of routing tables
occurs only at the nodes on the routing path and not in the
entire network. The great advantage of greedy forwarding is its
reliance on only knowledge of the forwarding node’s immediate
neighbors. The amount of state information that needs to be
tracked is negligible and dependent on the node density but
not on the total number of nodes in the network.

The scalability can by analyzed as follows: The most obvious
measure of scalability of a routing protocol is the overhead
associated with the maintenance of routing tables. In a sensor
network, two measures are important: the size of the routing
table and the communication overhead required to keep it up
to date. The size is not only refers to the memory size required
to store the routing table, but also to how many entries of
the table need to be adjusted when nodes join or leave. The
communication overhead indicates how much communication
is required to update each entry. In RVCP, the routing table

of each node contains only its radio neighbors, hence the size
is O(m) where m is the node degree and m << n, n being
the total number of nodes in the network. Since one hello
message is sufficient to update each entry in the routing table,
the communication overhead to update each entry is again
O(m). Thus, RVCP has excellent scalability characteristics.

IV. PERFORMANCE EVALUATION

In this section, we evaluate RVCP for different network
conditions and compare it to other protocols. We performed
several experiments using OMNeT++, which is an open
source discrete event simulator free for academic use. It is
component-based C++ simulation environment, it is gaining
wide acceptance in the scientific community for building and
simulating communication systems. We executed a large set of
experiments to explore the impact of various parameter settings,
including the network size and the offered traffic load.

A. Analytical comparison with a standard reactive protocol

First, we analytically compare the routing cost of RVCP to
the de-facto standard in reactive routing, DYMO [9]. Routes in
DYMO are discovered on-demand when a node needs to send
a packet to a destination currently not in its routing table. A
Route Request (RREQ) message is flooded through the network
using broadcast messages. If the packet reaches its destination
(or a node that cached corresponding path), a Route Reply
(RREP) message is sent back containing the requested path
information. Each node maintains a local sequence number,
which is incremented each time the node sends a RREQ. This
allows other nodes to determine the order of discovery messages
to avoid stale routing information, to detect duplicate messages,
and to ensure loop free routing.

RVCP requires an initialization phase in which each node
gets is virtual relative position. For a network of size n, the
initialization phase requires O(n) messages. Afterwards, update
messages are needed in case the routing information is stale.
This requires O(+/n) and hence the cost Crycp for sending D
items that require update of routing information is:

Crvce =n+ D x\/n (1

On the other side, DYMO requires no initialization phase,
but for each routing update it requires O(n) messages and
therefore the cost Cpymo for sending D items that require
update of routing information is:

ODYMO=0+DXTL (2)

From this comparison we conclude that standard protocols
like DYMO are only efficient for a very low number of
messages. If, however, the number of forwarded data items is
large, RVCP is clearly outperforming such protocols.

B. Simulation environment

We implemented a simulation model of the RVCP in
the OMNeT++ simulation toolkit. We also used the INET
framework that provides detailed simulation models of typical
network protocols. In our simulation, we used RVCP on

TABLE I
SUMMARY OF SIMULATION SCENARIOS

Input Parameter ~ Value
Number of Nodes 100-400
Playground size 200m x 200m to 600 m X 600 m
Node placement Grid, Random
Data rate CBR, 1pps, 0.2 pps, 0.1 pps, and 0.05 pps
Initialization time 40s
Start of data transmission uniformly distributed in [100, 120) s
End of data transmissions 200 s

Destination node Upper left node or Random

the top of the IEEE 802.11 Wireless LAN protocol. The
communication range is about 40m. We investigated our
approach for network sizes between 100 and 400 nodes. We
also adjusted the plane dimensions to keep the density of
nodes per square meter constant. Additionally, we evaluated
networks with different node degrees. To explore the effect
of the used data rate, we also varied the data rate between
0.05 and 1 pps. In the simulation experiments, we measured
the end-to-end delay, mac-layer collisions, and total number of
broadcast messages. End-to-end delay represents the latency
that a message experiences from source to destination, whereas
the number of collisions and broadcasts indicate the power
consumption of a sensor node. A summary of our simulation
scenarios is shown in Table 1. For statistical confidence, we
executed each experiment at least 5 times with different random
seeds.

We visualized the results using the empirical cumulative
density function (CDF) and box plots. CDF is a useful way
to show the distributions of the output. We chose box plots
because they are more robust in the presence of outliers than the
classical statistics based on the normal distribution. Boxplots
indicate the median value and the quartiles. Additionally, we
plot the average as small box.

C. Simulation comparison with a standard reactive protocol

We started our simulation experiments by comparing the
performance of RVCP to the proactive version VCP [3], [17],
and to the reactive protocol DYMO [9], [18].

In this comparison, we placed 100 nodes in a rectangular
area in form of a grid. We varied the node density and the
traffic rate. We configured an average node degree of 16 for
the high density scenario, and an average node degree of 4
in the low density scenario. We investigated two traffic rates
of 1pps and 0.1 pps. Each node in the network sends packets
to the same destination, which is equivalent to store the same
data type collected from all the sensor nodes at a base station.

Figure 4 shows that the measured latency of RVCP and of
DYMO is in the same range. In both protocols, most of the
packets (more than 90 %) experience an end-to-end delay of
less than 0.05s. The reason that some packets show a higher
delay is the reactive nature of these protocols, which implies
updating the routing information before sending data packets.
Because of the proactive nature of VCP, it results in much
lower end-to-end delays: all data packets have been sent with

CDF
0.6
|

0.4

0.2

— 1PPS

CDF

0.4 0.6 0.8 1.0

0.2

1PPS

CDF

0.6 0.8 1.0

0.4

0.2

-

— 1PPS

o | 0.1PPS o | 0.1PPS o | 0.1PPS
< T T T T e T T T T © T T T T
0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
delayins delay ins delay in's
(a) RVCP (b) VCP (c) DYMO
Fig. 4. End-to-end delay
8 VCP 8 VCP 8 DYMO
= = - —
€ £ £
@ [[
® o | ® o | @ o |
g v 3 ¥ 5
o o o
o © [
Q = o o Py S
T © & ® & ®
o a a
2 2 2
2] 2 8 2 R
3]]
S 3 S
o o o
<< o << o | << o
> T = T > T
ES ES ES —— ——
o d —— —— —r & o d —— —a— —l— —— o | —8—
T T T T T T T T T T T T
1s 10s 1s 10s 1s 10s 1s 10s 1s 10s 1s 10s
low high low high low high
node density, traffic pattern node density, traffic pattern node density, traffic pattern
(a) RVCP (b) VCP (c) DYMO

Fig. 5. MAC layer collisions

a delay of less than 0.05s.

Figure 5 shows the ratio of MAC collisions per link-layer
packet sent for nodes deployed in a grid for all the three
protocols. As can be seen, only in the case of a high node
density and a mean interval between two application-layer
messages of 10s, the collision ratio in the DYMO experiments
exceeds 40 %. MAC collisions in all other scenarios were
reaching only insignificant ratios. VCP keeps the collision ratio
in almost all experiments close to 0 %. In the low load scenario
(one message every 10s) with a high density, the collision
ratio for RVCP is at about 2 %, caused by the necessary route
updates.

D. Performance with different network size

We further evaluated the performance of the proactive and
the new reactive variants of the VCP protocol as the number of
nodes increases while keeping the traffic load offered by each
node constant. We varied the number of nodes from 100 to
400. Each node generated one packet every 10s to a randomly
chosen destination. Figures 6(a) and 6(b) show the results for
the latency and number of broadcast messages, respectively.

Figure 6(a) shows that VCP achieves lower delays compared
to RVCP for all network sizes because it never has to queue
packets waiting for route updated to complete. In fact, the
end-to-end delay of VCP is proportional to the path length as
a result of only the propagation delay. The delay of RVCP is
larger due to the need for routing information updates. Please

note that we selected a low load scenario to allow routes to
timeout. On the other hand, RVCP produces significantly less
broadcast messages compared to VCP as shown in Figure 6(b),
because it sends hello messages on demand. The success
ratio was close to 100 % for all network sizes.

E. Performance with different network traffic

In this set of experiments, we compared the performance
of the RVCP and VCP routing protocols with increasing
traffic load while keeping the size of the network constant
at 200 nodes, deployed randomly in a rectangular playground
of size 300m x 300m. Each node sends packets to random
destinations at the different packet rates.

In RVCP, the delay as shown in Figure 6(c) increased inverse
proportional with the data rate. This effect can be explained by
the route timeouts used by RVCP. In low data rate scenarios,
RVCP has to set up a route for almost every packet because
the available routes have timed out. On the other hand, the
delay for VCP slightly decreases. This effect is caused by the
congestion in the network.

Figure 6(d) shows the number of broadcast messages sent by
each node. It is clear that the RVCP causes much less broadcast
messages and the number of these messages depends on the
traffic in the network. On the other hand, VCP sends constant
amount of broadcast messages regardless of the normal traffic
in the network.

End-to-End Delay

End-to-End Delay

o o < 5 o
S mwer| § 3 g7 mwr S Rvee g g 8 g7 mwe
@ @
8 8
8 (%’ 2 (Uﬂ?
2 i 2 8 2 2 8
o D @ % o 1] @
= K] =
k7] [a} k7]
o S o T o S o
s : % & 45 : g 8
' ' i : @ o £ ; : @
! ' : : s 2 : ; : s
R e armmtmnt i LR I N N N IR NS NN
g i i ‘ | e S ‘
‘ . . . 2 === — E ‘ . H e =T
o : : : : - - - o 7 : ' - —
g | L i L o 8 | /= i L i o 4
° T T T T T T T T ° T T T T T T T T
100 200 300 400 100 200 300 400 1 0.2 0.1 0.05 1 0.2 0.1 0.05
Network Size Network Size Date Rate (pps) Data Rate (pps)
o o o o
s vep €7 wvep S vee g7 wvep
@ @
S S
L) 3 -) @
z BRI R O R g v o1
= : g =
7 : aQ 3
2 S g = 2 e § o
el 5 S [[fr S 8 g < [[] [
o —— i 2 ° o e i =i ——
5 = —= = — 3z 5 = = —= =
8 | 5 84 a8 5 84
=) e - = g -
o I R 5
g | == == = B o ° 3 | = == == =i o
e T T T T T T T T ° T T T T T T T T
100 200 300 400 100 200 300 400 1 0.2 0.1 0.05 1 0.2 0.1 0.05
Network Size Network Size Data Rate (pps) Data Rate (pps)

(a) End-to-end delay for different net- (b) Number of broadcast messages per (c) End-to-end delay for different data (d) Number of broadcast messages per

work sizes

node for different network size

Fig. 6.

V. CONCLUSION

In this paper, we presented Reactive Virtual Cord Protocol
(RVCP), a fully reactive data-centric routing protocol that
minimizes the number of necessary broadcast messages. The
join process as well as the update of the routing table are done
on demand. There are several advantages of RVCP compared
to other reactive protocols. First, updating routing table does

not

require flooding the entire network, instead a directed

hello-req message toward the destination is employed.
Secondly, RVCP do not require initial node addresses that are
unique in the entire network. Additionally, it provides typical
DHT functionality for data management. We evaluated RVCP
in the context of wireless sensor networks. The simulation
results show that RVCP provides stable performance across
wide range of parameter settings.

[1]

[2]

[3

[t}

[4

=

[5]

REFERENCES

I. F. Akyildiz and 1. H. Kasimoglu, “Wireless Sensor and Actor Networks:
Research Challenges,” Elsevier Ad Hoc Networks, vol. 2, pp. 351-367,
October 2004.

M.-J. Tsai, H.-Y. Yang, B.-H. Liu, and W.-Q. Huang, “Virtual-coordinate-
based delivery-guaranteed routing protocol in wireless sensor networks,”
IEEE/ACM Transactions on Networking, vol. 17, no. 4, pp. 1228-1241,
2009.

A. Awad, R. German, and F. Dressler, “Exploiting Virtual Coordinates for
Improved Routing Performance in Sensor Networks,” IEEE Transactions
on Mobile Computing, 2010, available online: 10.1109/TMC.2010.218.
I. Dietrich and F. Dressler, “On the Lifetime of Wireless Sensor Networks,”
ACM Transactions on Sensor Networks (TOSN), vol. 5, no. 1, pp. 1-39,
February 2009.

C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers,” Computer
Communications Review, pp. 234-244, 1994.

rates

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

node for different data rates

Comparison between RVCP and VCP for different network sizes and data rates

P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and
L. Viennot, “Optimized link state routing protocol for ad hoc networks,”
in IEEE INMIC 2001, Lahore, Pakistan, December 2001, pp. 62-68.
D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc
Wireless Networks,” in Mobile Computing, T. Imielinski and H. F. Korth,
Eds. Kluwer Academic Publishers, 1996, vol. 353, pp. 152—-181.

C. E. Perkins and E. M. Royer, “Ad hoc On-Demand Distance Vector
Routing,” in 2nd IEEE Workshop on Mobile Computing Systems and
Applications, New Orleans, LA, February 1999, pp. 90-100.

I. Chakeres and C. Perkins, “Dynamic MANET On-Demand (DYMO)
Routing,” Internet-Draft (work in progress) draft-ietf-manet-dymo-10.txt,
July 2007.

R. Bhaskar, J. Herranz, and F. Laguillaumie, “Efficient Authentication
for Reactive Routing Protocols,” in IEEE AINA-06, vol. 2. Vienna,
Austria: IEEE, April 2006, pp. 57-61.

S. Capkun, M. Hamdi, and J.-P. Hubaux, “GPS-Free Positioning in
Mobile ad-hoc Networks,” in HICSS 2001, Big Island, Hawaii, January
2001.

A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The anatomy
of a context-aware application,” ACM/Springer Wireless Networks, vol. 8,
pp. 187-197, March 2002.

N. B. Priyantha, A. K. Miu, H. Balakrishnan, and S. Teller, “The cricket
compass for context-aware mobile applications,” in ACM MobiCom 2001,
Rome, Italy, July 2001, pp. 1-14.

S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker, “GHT: A Geographic Hash Table for Data-Centric Storage,”
in ACM WSNA 2002, Atlanta, Georgia, September 2002.

R. Flury, S. V. Pemmaraju, and R. Wattenhofer, “Greedy Routing with
Bounded Stretch,” in 28th IEEE Conference on Computer Communica-
tions (INFOCOM 2009). Rio de Janeiro, Brazil: IEEE, April 2009.
M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron,
“Virtual Ring Routing: Network routing inspired by DHTS,” in SIGCOMM
2006, Pisa, Italy, September 2006.

A. Awad, C. Sommer, R. German, and F. Dressler, “Virtual Cord Protocol
(VCP): A Flexible DHT-like Routing Service for Sensor Networks,” in
IEEE MASS 2008. Atlanta, GA: IEEE, September 2008, pp. 133-142.
C. Sommer, 1. Dietrich, and F. Dressler, “A Simulation Model of DYMO
for Ad Hoc Routing in OMNeT++,” in ACM/ICST SIMUTools 2008,
OMNeT++ Workshop. Marseille, France: ACM, March 2008.

