
TKN
Telecommunication

Networks Group

Technical University Berlin

Telecommunication Networks Group

A Splitter/Combiner Architecture for
TCP over Multiple Paths

Tacettin Ayar, Berthold Rathke
and

 Lukasz Budzisz
{ayar,rathke,budzisz}@tkn.tu-berlin.de

Berlin, February 2012

TKN Technical Report TKN-12-001

TKN Technical Reports Series

Editor: Prof. Dr.-Ing. Adam Wolisz

TU Berlin

Contents

1 Introduction 6

2 State of The Art: TCP Problems over Mulitiple Paths and The Approaches
To Handle Them 8
2.1 Preventing/Handling Out-of-Order Packet Receptions 8
2.2 Management of The list of Multiple Paths . 11
2.3 Force TCP Packets to Follow A Specified Path 12
2.4 Scheduling The Packets to The Paths and Finding The Path Characteristics 13
2.5 Isolate Losses on One Path From The Other Paths 14
2.6 Handling Incorrect RTT/RTO Estimations 14
2.7 Deployment of The Solutions . 15

3 TCP Splitter/Combiner Architecture (SCA) 17
3.1 SCA Protocol Stack Transparency . 18
3.2 Pipes: SCA Abstraction for Multiple Paths 19
3.3 Overview of The SCA Components . 20
3.4 Packet Classifier . 21
3.5 Connection Handler . 21
3.6 Multiple Pipes Adapter . 22

3.6.1 Get The List of Multiple Pipes . 22
3.6.2 Probe For Pipes Characteristics . 23
3.6.3 Employ Newly Available Pipes . 23
3.6.4 Delete Pipes . 23
3.6.5 Select A Pipe Subset . 24
3.6.6 Send A Packet via one of The Multiple Pipes 24
3.6.7 Hide The Use of Encapsulation . 24

3.7 Data/ACK Processor . 25
3.8 Signaling Unit . 25
3.9 Configuration and Management Unit . 26

4 SCA Deployment 27
4.1 SCAP on a Single Network Element . 28
4.2 SCAP Pairs . 29
4.3 SCAP Chains . 30

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 2

TU Berlin

5 A Standalone SCAP 31
5.1 DEF Assumptions . 31
5.2 DEF States . 32

5.2.1 NO LOSS State . 32
5.2.2 RETRANSMISSION State . 32

5.3 DUPACK Estimation and Filtering Algorithm 33
5.4 Retransmission Detection and Response Algorithm 33

6 The Standalone SCAP: Prototyping and Performance Evaluation 35
6.1 Experiment Results . 38

7 Summary and Future Work 43

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 3

TU Berlin

List of Figures

2.1 Out-of-Order Packets Solutions . 11
2.2 Path List Management Solutions . 12
2.3 Specifying The Path Solutions . 13
2.4 Packet Scheduling Solutions . 14
2.5 Deployment of The Solutions . 16

3.1 SCA Position in a Network Protocol Stack . 18
3.2 SCA Position on A Network Element’s Protocol Stack 18
3.3 Example Pipes . 20
3.4 SCA Components . 21

4.1 Common Network Architecture . 27
4.2 Standalone SCAP . 28
4.3 SCAP Pairs . 29
4.4 SCAP Chain . 30

5.1 DEF Position on the Network . 32
5.2 DEF State Transitions . 32

6.1 Test-bed for DEF Performance Evaluation . 35
6.2 NCTUns Emulation Scenario for DEF Performance Evaluation 36
6.3 Average TCP Goodput Calculation for The Experiments 38
6.4 PC-BSD 8.2 Results . 40
6.5 Windows XP Results . 41
6.6 Ubuntu 11.04 Results . 42

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 4

TU Berlin

List of Tables

6.1 Path Delays and RTTs used in NCTUns Emulations 36
6.2 Configured OS System Parameters . 37

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 5

TU Berlin

Chapter 1

Introduction

TCP is the prevalent reliable transport layer protocol used in the Internet to carry user data.
Usually, a single path between TCP sender and receiver is used to transport TCP traffic. In
such a case, TCP throughput is limited to the capacity of the bottleneck link on that path.
Instead, if multiple paths are used simultaneously to aggregate the bandwidth the TCP per-
formance may increase.

It has been already shown using TCP fluid model [24, 27] that the potential of the multipath
solution lies not only in providing robustness but also, in conjunction with an appropriate
congestion controller, in providing means to balance the Internet congestion in a stable way.

Despite these potential benefits and a large body of work [15, 18, 19, 22, 23, 31, 33, 34, 38, 41],
several issues concerning multipath transport of TCP remain to be addressed before it can
be succesfully deployed. These include (i)easy activation/deactivation of the solution on the
end-hosts, (ii)opportunity to place the solution on network elements in-between the TCP
sender and receiver (i.e., deployment of the solution must not be limited to the end-hosts),
and (iii)independency of operation from the operating systems (OSs) used on end-hosts.

First issue is to develop a solution that does not change TCP/IP protocol stack imple-
mentation of the end hosts. To expect OS vendors to change their TCP/IP protocol stack
implementations to include the solution is for us a little bit unrealistic. Indeed, TCP variants
proposed till today shows the infeasibilty of that expectation. Instead, we offer a solution
that is pluggable to the host. When users want to benefit from the solution, they may install
the solution and use it.

Second of the mentioned limitations of the TCP over multiple paths solutions is the free-
dom of its use from the TCP end points. Deployment and adoption of the solutions that
are based on the end-host support is usually a big problem [34, 38]. Indeed, to the best of
our knowledge, there is no TCP over multiple paths solution without end-host support (i.e.,
TCP sender and receiver sides are not aware of its presence).

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 6

TU Berlin

Last point in achieving high deployment of the multipath TCP solutions is to test the im-
plementation with real hosts running different OSs. Thus, end users using different OSs may
benefit from the proposed solution.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 7

TU Berlin

Chapter 2

State of The Art: TCP Problems
over Mulitiple Paths and The
Approaches To Handle Them

TCP design assumes that packets of a TCP flow follows a single path. When TCP data
packets are distributed over multiple paths, a couple of issues must be considered. In this
section, we list these issues and the solutions offered by the researchers.

2.1 Preventing/Handling Out-of-Order Packet Receptions

Since multiple paths may have different delays, packets scheduled for shorter delay paths may
arrive at the receiver before the packets scheduled to the paths with longer delays.

TCP performance suffers from out-of-order packets in different ways, as described in [28].
Among these, the most important one is that they will cause generation of duplicate ac-
knowledgements (DUPACKs). When TCP receiver gets a packet out-of-order, it generates a
DUPACK. Reception of three DUPACKs cause TCP sender to unnecessairly trigger the fast
retransmission/recovery algorithms [36].

In order to minimize the impact of the out-of-order deliveries in multi-path networks, so-
lutions proposed so far (Figure 2.1):

1. use delay estimations of the paths to minimize the number of out-of-order packet recep-
tions:

• BAG (Bandwidth Aggregation) proxy [22] uses PET (Packet Pair based Earliest-
Delivery-Path-First (EDPF [13])) scheduling algorithm to distribute packets to
multiple paths. Based on path delay estimations, EDPF algorithm selects the
path that will earliest deliver the packet to the client.

• Simula Proxy [34] uses path delay estimations to calculate packet arrival times
and buffer the potentially out-of-order packets on the shorter paths, compensating
the different path delays.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 8

TU Berlin

2. provide receiver-side buffering and reordering: Even if the solutions try to minimize
out-of-order packet arrivals at the TCP receiver, it is most of the time inevitable since
scheduling algorithms are based on the delay estimations, which may not be accurate
because of the variations in the network. Thus, buffering and reordering of the out-
of-order packets may be necessary before they reach the TCP receiver. A component
on the receiver host is generally used in that case to buffer and reorder out-of-order
packets before passing them to the TCP receiver entity [22, 33].

How long packets will be buffered if there is a gap in packet sequence numbers re-
ceived so far? The missing packet may be lost or on the way. BAG [22] receiver side
component defines two buffer management policies (BMP) to answer that question:

• comparison-based BMP: if a sequence number is missed and packets with higher
sequence numbers are received from all the paths, then a packet loss is inferred.
There is no need to wait for the missed packet.

• timer-based BMP : A timer is started for each packet reception. If the timer expires
before the packet is received, then the packet loss is inferred. Buffered packets are
sent to the TCP receiver so that the DUPACK generation may be started. BAG
uses comparison based BMP as the main algorithm and timer-based BMP as a
backup with constant timer value of 500 ms.

Horizon [33] uses the timer-based BMP with an adaptive timer. Since it is pos-
sible for TCP sender to timeout if a path has a delay very larger than the other
paths, Horizon keeps its own estimate of one-way propagation delay. Mean skewed
one-way propagation delay and its variance is estimated using the same weighted
moving average algorithm as in TCP round-trip time (RTT) and retransmission
timeout (RTO) estimation. If a sequence gap is not filled after this estimated de-
lay, then a buffered packet is delivered to the TCP receiver so that it may generate
a DUPACK, which prevents TCP sender from timeout.

3. extend TCP receiver side sliding window mechanism to cover multiple paths:

• TCP-PARIS (PArallel download protocol for ReplIcaS) [23] uses its own TCP-
PARIS receiver instead of standard TCP receiver. TCP-PARIS downloads differ-
ent portions of a replicated file from different servers. In case a file is replicated on
n servers, a TCP-PARIS receiver makes n sub-connections to all of these servers.
A TCP-PARIS flow is defined as a combination of all these sub-connections.

TCP-PARIS uses a receiver-side sliding window mechanism for flow control. In
contrast to TCP, TCP-PARIS spans the sliding window over multiple TCP sub-
connections. Minimum sequence number of the on-the-fly segments is the left
boundary of the window and specifies the smallest missing sequence number (SMS).
SMS is updated when the smallest missing segments of all connections are received.
The right boundary of the window, largest assigned sequence number (LAS), is
used for new segment-to-server assignments and assures that a segment is not
assigned to more than one server.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 9

TU Berlin

• MPTCP uses two sequence numbers for the packets: (1)connection level data se-
quence numbers (DSNs) and (2)subflow1 level sequence numbers. Each subflow
has its own sequence number space that is mapped to DSNs. If a packet is re-
transmitted via another subflow, then it uses the same DSN mapped to a different
subflow level sequence number. MPTCP buffers and orders packets from differ-
ent subflows based on their DSNs. pTCP [19] also uses a similar method to map
sequence numbers of the connection data packets to sub-connection (i.e., TCP-v)
sequence numbers.

4. allow out-of-order packet arrivals, but eliminate its side effects:

• TCP uses the number of DUPACKs as a sign for congestion and therefore reduces
its sending rate. In a multiple path environment DUPACKs may not be a sign
of congestion; it may just indicate packet reordering caused by different delays
of paths. Therefore, default TCP fast retransmission threshold (dupthresh) value
(i.e., 3) may not be suitable for multiple path environments and leads to through-
put degradation. By means of computer simulations, authors investigate a relation
between the number of paths used and dupthresh value in [15]. They propose to
increase dupthresh value logarithmically based on the number of paths used.

• PRISM [31] tracks the state of the receiver buffer by processing SACK packets from
the receiver to detect out-of-order packet receptions and packet losses. When a
DUPACK is received, it is processed and buffered. By comparing following ACKs
with the stored ACKs, PRISM reorders SACKs and modifies their cumulative
ACK numbers to hide reordered packets to the TCP sender. If a new ACK is
received which covers buffered ACKs, then the buffered ACKs are sent to the
TCP sender. If a packet loss is detected, then PRISM sends the buffered SACKs
immediately, without changing their cumulative ACK numbers.

• DEF (DUPACK Estimation and Filtering, Chapter 5) uses path delays to estimate
number of out-of-order packet arrivals at the receiver side. It filters the excessive
DUPACKs to prevent TCP sender from the unnecessary fast retransmit/recovery.

5. allow out-of-order packet arrivals without eliminating its side effects: Multiple paths
may be used for redundancy concerns. If the available paths have high packet loss rates,
then the same copy of the packets may be sent via the default path as well as via the
backup path(s). Some of the packets will be dropped and some will arrive at the receiver
(possibly) out-of-order. As an example, MultiPath TCP [18] has been developed for
mobile ad-hoc networks (MANETs) which have high error rates. MultiPath TCP uses
two disjoint paths to send copies of the same TCP segment to create redundancy. It
doesn’t process the DUPACKs generated since the packet loss rate is high.

1MPTCP calls sub-connections as subflows

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 10

TU Berlin

Figure 2.1: Out-of-Order Packets Solutions

2.2 Management of The list of Multiple Paths

Path list management includes two steps (Figure 2.2):

1. The list of usable multiple paths must be found during connection setup: The following
methods are used to detect the available multiple paths:

• Active (i.e., connected to a network and may be used to send/receive data) in-
terfaces of the multi-homed hosts are used (e.g., [19, 22, 31, 34, 41]): a packet
forwarded to/from each interface follows a different path.

• MultiPath TCP uses a multipath routing protocol (i.e., Split Multipath Routing
(SMR) [10]) to get the list of routes that may be used to send data.

• TCP-PARIS receiver is supplied with the addresses of the file servers where the file
which will be downloaded is replicated. TCP-PARIS receiver establishes a TCP
sub-connection with each of the servers and data flows via the paths between the
TCP-PARIS receiver host and the server hosts.

2. Path list must be updated during the connection time since some new paths may become
available (e.g., by means of activation of an idle interface) or some paths may become
unusable:

• MPTCP allows addition/deletion of paths during the connection by means of
ADD ADDR and REMOVE ADDR TCP options.

• pTCP uses if-up and if-down messages to indicate that an interface became ac-
tive/passive.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 11

TU Berlin

Figure 2.2: Path List Management Solutions

2.3 Force TCP Packets to Follow A Specified Path

The methods outlined in [32] may be used to direct packets via multiple paths in the Internet.
Packets may be sent as they are received, may be (re)directed, or may be encapsulated before
they are sent (Figure 2.3):

1. MultiPath TCP [18] uses source routing to specify the path that the packet will follow
in the network.

2. BAG proxy captures TCP data packets sent by the TCP sender and uses IP-in-IP
encapsulation to re-direct them to multiple interfaces of the multi-homed TCP receiver.

3. PRISM proxy captures TCP data packets sent by the TCP sender and uses Generic
Routing Encapsulation (GRE) to re-direct them to neighbors of the TCP receiver.
Then, neighbors decapsulate the packets and pass them to the TCP receiver which is
within the same ad-hoc mode WLAN.

4. Simula Proxy captures TCP data packets sent by the TCP sender and uses network
address translation (NAT) to re-direct them to multiple client interfaces. Simula proxy
changes the destination address of the packets to direct it to targeted MH interface.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 12

TU Berlin

Figure 2.3: Specifying The Path Solutions

2.4 Scheduling The Packets to The Paths and Finding The
Path Characteristics

Path characteristics (e.g., bandwidth, delay, packet loss rate, utilization) may be used in
packet scheduling decisions. For example, aggregation of path bandwidth is an important
benefit of using multiple paths. If the path bandwidths are known, then the packets can be
scheduled to the paths so that they don’t cause congestion on the paths. The paths may be
used to send data packets as efficiently as possible without exceeding their capacities.

The following methods are used to schedule packets to the paths (Figure 2.4):

1. A very basic approach to schedule packets to available paths is to forward packets to
the neighbors in round-robin (RR) or random manner [15].

2. Horizon selects one of the neighbors as the next hop based on a cost function. Each
node has a price which is proportional to the maximum amount of packets queued at
the node as well as the back-pressure of the TCP flow via its neighbors. A node selects
the next hop among the neighbors with the minimum cost.

3. Packet-pair based path capacity and delay estimation is used by BAG and Simula
Proxies. They use estimated path capacities to determine how many packets may be
scheduled to a path. As we stated in Section 2.1, path delays are used along with the
path bandwidth to minimize out-of-order packet receptions in packet-to-path scheduling
decisions.

4. The TCP-like path capacity probing is used by [39]. Each sub-connection has a cwnd
which is increased/decreased similar to TCP cwnd.

5. PRISM tracks how many packets are sent via each path and then processes ACK packets
to collect information about the path utilization and delay. PRISM selects the least
utilized path to schedule a packet. If multiple paths have the same least utilization,
then the path with lower delay is selected.

6. TCP-PARIS receiver has knowledge of the current cwnd value of the TCP-PARIS
senders. Therefore, the receiver knows the servers that are able to transmit the next
packets and decides on which server should transmit the following packets. A Partition

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 13

TU Berlin

Rule (prule) for each server informs servers which segments to transmit. TCP options
are used for the cwnd-prule information exchange. TCP-PARIS sender of each sub-
connection piggybacks its current cwnd value on every data segment (as a TCP option
of 8 bytes) to TCP-PARIS receiver. Similarly, prule is piggybacked (as a TCP option
of up to 40 bytes) on ACK segments to the TCP-PARIS sender.

Figure 2.4: Packet Scheduling Solutions

2.5 Isolate Losses on One Path From The Other Paths

When a packet loss occurs on a path, TCP will reduce its sending rate by half. However, this
may not be proper in some cases. Assume that there is a low- and a high- bandwidth path
and a packet is lost on the low-bandwidth path. Since the TCP sending rate will be halved,
high-bandwidth path will be under-utilized. The phenomena of a loss on a path not affecting
the sending rates for the other paths is called as the loss isolation in [22].

Calculating the bandwidth of each path separately and decreasing the bandwidth of the
path after detection of a packet loss on the path is the common solution to that problem.
For example,

1. On a packet loss on a path, PRISM sends the path’s bandwidth value to its TCP
sender-side component, TCP-PRISM, in negative acknowledgments (NACKs). TCP-
PRISM uses bandwidth information in setting its new cwnd value. Additive increase
proportional decrease (AIPD) algorithm is used to set new cwnd proportional to the
congested link’s bandwidth over total bandwidth.

2. When a packet loss is detected on a sub-connection, [39] decreases only the cwnd of the
sub-connection by half. Cwnd values of other sub-flows are not changed.

3. DEF looks for retransmissions by the TCP sender. If there is no retransmission, then
DEF filters DUPACKs. Otherwise, it doesn’t filter DUPACKs so that TCP sender can
estimate the number of inflight TCP packets.

2.6 Handling Incorrect RTT/RTO Estimations

Since packets will arrive at the receiver out-of-order or via paths with different delays, TCP
sender’s RTT estimation may not be accurate. This may cause premature timeouts on the

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 14

TU Berlin

long paths and unnecessary waiting times for the lost packets on the short paths.

To the best of our knowledge, there is no solution which deals explicitly with the insta-
ble RTT estimations. Indeed, receiver side buffering of the out-of-order packets (See Section
2.1) implicitly handles this problem. Assume that we have a short path and a long path.
Since out-of-order packets will arrive from the short path, they will be buffered till the pack-
ets come from the long path. They will be released after the arrival of these packets. Thus,
TCP receiver will generate ACKs paced with the RTT of the long path.

2.7 Deployment of The Solutions

The solutions may be divided into two classes from the deployment point of view: (1)end-host
based and (2)proxy-aided solutions (Figure 2.5):

1. End-host based solutions have components only on the TCP end- points. TCP sender
and/or receiver TCP/IP stack implementation is modified to handle multiple-path re-
lated issues.

2. In addition to end-host changes, proxy-aided solutions have some components on a
network element (i.e., a proxy) in-between the TCP sender and receiver. The proxy
helps in handling the multiple-path related issues.

As we stated at the start of the chapter, deployment of the available solutions requires some
form of support from the end hosts.

The proxy-based solutions [22, 31, 34] needs to deploy some components of their solutions on
a proxy in between the TCP sender and the receiver:

1. BAG clients send their interface addresses to the BAG proxy.

2. Simula proxy must be configured to re-direct TCP packets to the interfaces of the
Simula client.

3. PRISM proxy has to know addresses of WWAN interfaces of the neighbors of the TCP
receiver to send TCP data packets via GRE encapsulation.

End-host based solutions require changes on the TCP-sender and/or the receiver:

1. socket calls are modified: TCP-PARIS defines a SOCK PARIS socket option and gets
addresses of the servers on which the file is replicated via modified connect() socket
call. Similarly, MPTCP [41] uses socket options [43] in its implementation.

2. TCP sender is changed: PRISM, MPTCP, and TCP-PARIS replace TCP sender with
their senders. TCP dupthresh value is changed by [15].

3. TCP receiver is changed: MPTCP and TCP-PARIS replaces TCP receiver with their
receivers. TCP delayed ACK algorithm is changed in [15].

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 15

TU Berlin

Figure 2.5: Deployment of The Solutions

Most of the TCP over multiple paths research (and the solutions presented in this paper)
focused on the simultaneous use of interfaces of multi-homed hosts. Since these solutions
generally require changes on the TCP senders and/or receivers, deployment and adoption of
such solutions is a big problem [34, 38].

3 requirements are mentioned in [38] for a solution that requires changes at the both ends of
the connection: (1)the solution must be implemented by the operating system, (2)at least one
of the end-hosts must have simultaneous Internet access accross different network interfaces,
and (3)both sides must be capable of using the solution.

Thus, solutions that require changes on the end-points (i.e., user premises) have a little
chance of being adopted and deployed. It is necessary to design TCP over multiple paths
solutions that are independent from the changes on end-hosts.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 16

TU Berlin

Chapter 3

TCP Splitter/Combiner
Architecture (SCA)

In [48], we defined basic requirements for a generic TCP Splitter/Combiner Architecture
(SCA) that enables development of highly deployable TCP over multiple paths solutions. In
this technical report, we give the detailed description for the SCA and one of its applications.

SCA may distribute TCP data packets of a single connection to multiple paths (i.e., splitter)
or may aggregate TCP data packets of a single connection from multiple paths (i.e., com-
biner).

SCA captures the TCP packets and processes their headers1 to detect TCP connections and
to process data/ACK packets of detected TCP connections to increase TCP performance.
SCA aims at high deployment possibilities and is designed by a consideration of the protocol
stack and end-to-end transparency:

• Protocol Stack Transparency: TCP multiple path related issues are handled in
SCA which is placed beneath the transport layer. SCA design is isolated from the
other layers. SCA may be implemented as a module or a thin layer.

To the best of our knowledge, using a thin layer below the TCP is first introduced
by ATCP [11]. Although ATCP uses its layer to remedy TCP problems in ad-hoc net-
works (i.e., frequent route changes and network partitionings), we design our layer to
shield multiple-path use from the TCP.

• End-to-End Transparency: SCA works on Split/Join Point(s) which may be located
on the TCP sender/receiver hosts as well as in-between the TCP sender and TCP
receiver. Neither TCP sender nor TCP receiver must be aware of the presence of the
SCA.

1We assume that TCP headers are readable by SCA.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 17

TU Berlin

3.1 SCA Protocol Stack Transparency

SCA is designed to be protocol stack transparent in order to alleviate the problem of de-
ployment (Section 2.7). That is, SCA instances work standalone and their implementation
does not need any changes on the TCP/IP implementation of the end-host operating systems
(OSs). We call running SCA instances as SCA Proxies (SCAPs).

SCAPs may be located either on end-hosts or interim network elements (e.g., APs, routers,
... etc). SCA is placed below the transport layer (if exists) and above the forwarding layer
(i.e., network or data link layer) that supplies multiple paths as shown in Figure 3.1. All the
TCP packets must pass through the SCA.

Figure 3.1 shows SCA on the TCP end-points (e.g., multi-homed hosts). In that case, trans-
port layer instance (i.e., TCP end-point entity) sends outgoing TCP packets to the lower
layer. Similarly, forwarding layer instance (e.g., IP module) passes incoming TCP data/ACK
packets to the upper layer. In both cases, SCAP captures packets and processes them. Nei-
ther TCP nor forwarding layer entity knows about the intervention of the SCAP.

Figure 3.1: SCA Position in a Network Protocol Stack

Figure 3.2 shows SCA on a network element other than TCP end-points (i.e., network ele-
ments without any TCP entity). In that case, forwarding layer instance (e.g., data link layer
module) sends TCP packets to its upper layer entity which is the SCAP. The SCAP processes
the packet and sends it back to forwarding layer instance or drop the packet.

Figure 3.2: SCA Position on A Network Element’s Protocol Stack

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 18

TU Berlin

3.2 Pipes: SCA Abstraction for Multiple Paths

SCA requires that the functionality of splitting TCP traffic via multiple ”paths” is provided
by the forwarding layer. Multiple paths may be provided by means of:

• IP source routing [1]: TCP packets may be requested to follow a specific path. IP
Loose/Strict Source and Record Route option may be used to specify the path they
must follow.

• IP-in-IP encapsulation [5]: The source and destination SCAP IP addresses may be
specified in the outer IP header to create tunnels between a SCAP peer.

• IP-in-IP tunneling [4]: SCAPs may use special headers to exchange signaling informa-
tion. Tunnel Headers in the IP-in-IP tunneling may be used to carry SCA signaling
information.

• Multi-path routing protocols: Packets may be sent via routes find by a multipath
routing protocol (e.g., SMR [10], YAMR [35], etc.).

• Multiple interfaces of a multi-homed host: Packets may be sent via multiple access
networks when interfaces are connected to different access networks. Alternatively,
direct links between the cross-connected multiple-interface neighbors may be used to
send packets.

• Multiple channels on the same physical link (e.g., more capacity supplied via different
WDM wavelengths).

Figure 3.3a shows an example of a SCAP that works in between the network layer and data
link layer of a host with multiple interfaces. The interfaces of the multi-homed-host are used
as the pipes. TCP packets are sent via each interface to the receiver.

Figure 3.3b shows an example of a SCAP that works in between the network layer and
transport layer of a host. Multiple routes to the destination in the routing table are used as
the pipes. If there is only one route, a multipath routing protocol (e.g., SMR [10], YAMR
[35]) may be initiated to find the multiple paths.

In order to be independent of the multiple path implementation, we refer to the term pipe
instead of path in the remainder of this report. We assume that pipes may be accessed/used
by SCAPs to send TCP data/ACK packets via them.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 19

TU Berlin

(a) SCA Uses Interfaces of a Multi-Homed Host as Pipes (b) SCA Uses Routing Table Entries as Pipes

Figure 3.3: Example Pipes

3.3 Overview of The SCA Components

SCA includes components related to the management of TCP connection records, processing
of TCP data and ACK packets, and SCA signaling packets (Figure 3.4):

• Packet Classifier captures TCP packets from the lower/upper layer and classifies them
based on the header information. It passes TCP packets to the related SCA component
(e.g., FIN packets showing a connection release are passed to the Connection Handler,
whereas Data/ACK packets must be processed by the Data/ACK Processor).

• Multiple Pipes Adapter provides a common interface to use pipes in the underlying
network.

• Connection Handler reacts to new TCP connections by creating records of the new
TCP connection and discarding connection information in case of a TCP connection
release.

• Data/ACK Processors process the data/ACK packets of the TCP connections.

• Signaling Unit processes the SCA signaling packets.

• Configuration and Management Unit is used to configure parameters used by the com-
ponents.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 20

TU Berlin

Figure 3.4: SCA Components

3.4 Packet Classifier

Packet Classifier is responsible for looking at the TCP header to determine the packet type.
An admission control policy may be applied to packets (Section 3.9) before accepting them
into the SCAP. The packets that are not admitted will be passed to the lower/upper layer
without SCAP processing.

SCAP-accepted TCP packets will be passed to the related SCA component:

• SCA signaling packets are used to detect and coordinate SCAPs on the pipe between
the TCP sender and receiver. All the signaling packets are handled by Signaling Unit.

• TCP connection establishment packets (i.e., packets with SYN flag set) are passed to
Connection Handler to construct/select entries of multiple paths.

• Data/ACK packets are passed to Data/ACK Processor.

• TCP connection release packets are passed to Connection Handler to remove entries of
multiple pipes assigned for the flow.

3.5 Connection Handler

Connection Handler manages the records of the TCP connections. A new connection request
is detected by means of TCP segments which have SYN flag is set and ACK flag is not set.

Connection identifiers (conn ids) are assigned to the connections based on their TCP sender
and receiver end points (i.e., sender and receiver IP addresses and port numbers).

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 21

TU Berlin

After a connection request is detected, Connection Handler assigns pipes for the connec-
tion. The list of available pipes are obtained from the Multiple Pipes Adapter by means of
find pipes() API call (Section 3.6.1).

Multiple Pipes Adapter finds the list of available pipes to the receiver, assigns a pipe identifier
(pipe id) to each pipe and returns back the list of pipes to the Connection Handler. In this
phase, each pipe may be identified with the (conn id, pipe id) pair. The list of pipes is passed
to the Pipe Selection Policy to get a subset of these pipes. New connection is marked as a
pending connection (three-way handshake is not complete for the connection establishment).

When a TCP segment with SYN and ACK flags are set has arrived for a pending con-
nection, then connection establishment is confirmed. This also shows that SCA is on the
reverse path of the connection. That is, we may expect ACK packets pass through the SCA
in addition to the data packets. Connection is marked as an active connection.

When TCP connection release packets (i.e., packets with FIN and RST flags set) are re-
ceived, the TCP connection release procedure is followed. When the connection tear-down
is complete, the connection is marked as closed and connection related records are deleted
(e.g., withdraw pipes() (Section 3.6.4) is called from the Multiple Pipes Adapter).

3.6 Multiple Pipes Adapter

SCA must be used on network elements which support multiple pipes that are within the
forwarding layer. Since the pipes may be available in different forms (e.g., multiple next
hops for the same destination in a routing table, multiple interfaces of a multi-homed host to
different networks) or must be constructed by means of different algorithms (e.g., by means
of using a multi-path routing algorithm), Multiple Pipes Adapter is defined as a component
which interacts via specified APIs to other components of the SCA and handles interaction
with the forwarding layer.

Multiple Pipes Adapter interacts with the forwarding layer to access and use the avail-
able multiple pipes. Other SCA components use the Multiple Pipes Adapter APIs to get
information about the pipes that may be used and to send data via them.

3.6.1 Get The List of Multiple Pipes

PIPE-LIST find pipes(conn id, destination address)

API is used to find pipes that may be used to send TCP data packets to the destination address
and returns the list of them, if any.

tcp conn id is used to identify the connection that needs the pipes to be assigned. Mul-
tiple Pipes Adapter may access information about the connection (e.g., source/destination
TCP end-point) by using the tcp conn id. The API also associates the list of pipes found
with the connection.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 22

TU Berlin

The PIPE-ID-LIST contains pipe ids which are assigned by the Multiple Pipes Adapter to
the available pipes (i.e., each pipe has a unique pipe id).

Pipe implementation is shielded from the other components by means of pipe ids: other
components only know pipe ids and Multiple Pipe Adapter handles pipes (Section 2.2).

3.6.2 Probe For Pipes Characteristics

PIPE-PROPERTIES get pipe properties(tcp conn id, pipe id)

API is used to probe for characteristics of a pipe. PIPE-PROPERTIES includes the pipe
parameters probed by the SCAP (e.g., bandwidth, delay, utilization, packet loss rate, etc.).

In order to get pipe parameters, following methods may be used: packet-pair based esti-
mation of the pipe delays and capacities [22, 34], tracking the TCP timestamps [3], SACK
[6] or D-SACK [9, 21] to estimate packet arrivals at the receiver, or probing pipe capacities
with TCP-like cwnd increase and decrease [39, 42].

In addition, the local MIB information (e.g., [8, 20, 26, 29]) may be used to set the ini-
tial values just after the pipes are found by Multiple Pipes Adapter (e.g., packet loss rate of
an interface, number of active TCP connections, etc.). These values may be used as the ini-
tial values. Multiple Pipes Adapter or Signaling Unit is responsible for monitoring the pipes
during the connection (e.g., does the pipe still usable? What are the current estimations for
the pipe capacity/delay/loss rate?, etc.).

If tcp conn id is NULL, then the total pipe characteristics are returned. Otherwise, tcp conn id
is used to get pipe characteristics relevant to a TCP connection. For example, the bandwidth
used by a TCP connection may be asked as well as the total bandwidth of the pipe.

3.6.3 Employ Newly Available Pipes

PIPE-ID-LIST employ pipes(tcp conn id, pipe id list)

API is used by Multiple Pipes Adapter to associate pipes which become available after the
connection establishment. The API may be called when an interface becomes active or a host
associates with an AP/router after the pipes were assigned to the TCP connection by use of
the find pipes() API.

Pipes in the pipe id list are associated with the connection with tcp conn id.

3.6.4 Delete Pipes

PIPE-ID-LIST withdraw pipes(tcp conn id, pipe id list)

API is used when a connection terminates or connection doesn’t need some pre-assigned
pipes. Pipes in the pipe id list are disassociated from the connection with tcp conn id.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 23

TU Berlin

The API must be called after the connection termination and may be called during the
connection to cancel the use of some pipes which are previously assigned to the connection.

In addition, Multiple Pipes Adapter may use this API to disassociate some pipes which
become unavailable during the connection. For example, an interface becomes inactive or a
host looses its connection to an AP/router.

3.6.5 Select A Pipe Subset

PIPE-ID-LIST select pipes(tcp conn id, pipe id list)

API is used to select a subset from a set of pipes based on a pipe selection policy (Section 3.9).

tcp conn id is used to determine the pipe selection policy for the connection. The withdraw pipes()
API is used to disassociate filtered pipes by the pipe selection policy and remaining pipes are
returned back.

3.6.6 Send A Packet via one of The Multiple Pipes

send mp packet(tcp packet, tcp conn id, pipe id)

API is used to send a packet via one of the multiple pipes.

Since other SCA components only know the pipe ids and do not know what the real pipes
are, they use this API to send a tcp packet which belongs to the connection with tcp conn id
by using the pipe with pipe id.

tcp conn id is supplied to enable update for pipe characteristics related with the TCP connec-
tions. For example, if a pipe is assigned to more than one TCP connection, what proportion
of the pipe is used by the assigned TCP connections.

3.6.7 Hide The Use of Encapsulation

TCP-PACKET check encapsulation(tcp packet)

API is used to check whether tcp packet is encapsulated or not. As stated in Section 3.2,
packets may be sent/received encapsulated. Since other components are shielded from the
use of encapsulation, only the Multiple Pipes Adapter knows about the encapsulation.

send mp packet() API encapsulates packets before sending them when encapsulation is nec-
essary.

When packets are received, check encapsulation() is used to get decapsulated packets, if
encapsulation is used for the connection. It returns the packet immediately if encapsulation
is not used.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 24

TU Berlin

3.7 Data/ACK Processor

Data/ACK Processor is responsible for handling data/ACK packets. They deal with the
problems of preventing/handling out-of-order packet receptions (Section 2.1) and scheduling
of packets to the pipes (Section 2.4).

It may apply to a TCP data/ACK packet one of the following operations (4-D):

1. duplicate: TCP packets may be (one or more times) duplicated (e.g., [18]) and scheduled
to multiple pipes to create robustness against packet errors.

2. delay: TCP packets may be buffered and delivered later, based on a timer or a condition.
For example, some packets of a TCP flow may be intentionally delayed to shape the TCP
traffic (e.g., to reduce number of out-of-order packet arrivals at the receiver side [34],
or to seperate sent packets by a given interval [18, 22]). Another example is to buffer
out-of-order packets at the receiver before passing them to the TCP receiver [22].

3. deliver: TCP packets may be released immediately after their capture, or after the
delay or duplicate operation. Delivery may be done locally for incoming packets or over
any available pipe to outgoing packets. For outgoing packets, one of the available pipes
must be selected to efficiently utilize the pipes.

4. drop: TCP packets may be dropped by SCA. For example, assume that a packet is
buffered for early retransmission purposes. However, the ACK for that packet arrived
and the buffered packet is not needed to be kept any more, and thus, may be dropped.

3.8 Signaling Unit

SCAPs on different SCAP devices may exchange signaling information by means of the fol-
lowing methods:

1. SCA in-band signalling may use TCP options to carry signalling information. The
SCAP that wants to send a signaling information will generate an SCA option and add
it to the TCP packet. The peer SCAP will use the content of the SCA control option
and remove it from the packet.

The main drawback of the in-band signaling is that its size is limited by the TCP option
space allowed. 16-21 bytes of space is left for the SCA options when the most common
TCP options are encountered [41].

2. SCA out-of-band signaling may use signaling channels established between the SCAPs.

SCAPs may use a well-known port number to exchange signaling packets (e.g, RIP
routing processes use UDP port 520 [7] or BGP systems use TCP port 179 [25]).

Signaling TCP packets will be generated to pass control information from one SCAP
to the other. Using TCP packets along with the signaling ports gives freedom in using
as much space as need by means of data portion of the TCP packets.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 25

TU Berlin

3. SCA hybrid signaling may use in-band signaling to carry out-of-band signaling chan-
nel end-point information between SCAPs. First a connection between the signaling
channel end-points will be established. Then, out-of-band signaling over the connection
may be used to exchange the signaling data.

3.9 Configuration and Management Unit

Configuration and Management Unit is used to set parameters for the SCA components. The
configuration parameters may be defined for each component:

• Packet Classifier may accept packets into the SCAP or reject them based on an admis-
sion control policy.

Based on the TCP end-points, some applications or hosts may not benefit from the
SCA:

– Splitting the traffic may not be necessary for some applications. For example,
short-lived flows like web traffic may be carried over only one path instead of
multiple paths as they will most likely end within a couple of packets anyway.
Thus, they may not be accepted for the SCA processing.

– Splitting the traffic may not be necessary for some applications. For example,
short-lived flows like web traffic may be carried over only one path instead of
multiple paths as they will most likely end within a couple of packets anyway.
Thus, they may not be accepted for the SCA processing.

• Connection Handler may configure the number of acceptable connections based on the
current number of connections or the total number of pipes used by the connections.

• Multiple Pipes Adapter may use a pipe selection policy to select a subset of the pipes
from the set of available pipes. Using different policies in pipe selection gives additional
flexibility to the SCA.

Pipe selection policy may be based on the pipe parameters (e.g., delay, loss rate,
throughput, etc.) to decide which pipes will be selected. For example, only the pipes
that have close RTT values may be selected or some pipes with high BERs may be
excluded.

In addition, pipe selection policy may be based on the TCP end- points. For example,
some privileged flows (e.g., flows originated from some IP addresses) may be assigned
more pipes and some other flows may be penalized and forced to use only a single pipe.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 26

TU Berlin

Chapter 4

SCA Deployment

SCA deployment will take some time. We envision that SCAPs may work in three modes
based on their deployment level:

1. Standalone SCAP: If there is only one SCAP on the path between the TCP sender and
the receiver, SCAP must work alone

2. SCAP Pair: If there are two SCAPs on the path, then they may work as a peer

3. SCAP Chain: If there are multiple SCAPs on the path, then they may be used as
cascaded chains

We will use the network architecture in Fig. 4.1 to discuss how SCAPs may be used in
different network scenarios.

Figure 4.1: Common Network Architecture

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 27

TU Berlin

Our example network consists of two local networks (LANs) connected to each other via a
core network (CN). LAN clients may have wired or wireless (e.g., Femtocells or LTE) inter-
faces. LANs are connected to CN via multiple gateway (GW) links (e.g., for redundancy or
since GW links have low capacities)..

Fig. 4.1 shows CN as a mesh network of routers. The routers may be connected via wired as
well as wireless links (e.g., a wireless mesh network backbone). In addition, LAN GW links
may be connected to separate CNs (e.g., different ISP networks).

4.1 SCAP on a Single Network Element

A possible scenario that SCAPs will be used includes wireless access networks (e.g., WLANs
or WMNs) that are connected to the backbone via low-capacity GW links. Thus, the first
SCAP deployments will be on some access networks. In that case, SCAPs used on an access
network may not find a peer SCAP to collaborate.

Fig. 4.2 shows SCAPs located only on the LAN-1 routers, LR-1 and LR-2. In that case,
SCAPs may act as a splitter and combiner for the uploaded data since there are more than 1
path for the upload data traffic. For the downloads, they have to forward packets via 1 path
since there are no other paths.

Figure 4.2: Standalone SCAP

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 28

TU Berlin

Fig. 4.2 shows two TCP flows: data transfer from FH-2 to FH-4 and from MH-3 to MH-1.
Since there is no peer for the SCAPs, they have to work alone in both cases. In the flow from
FH-2 to FH-4, SCAP on LR-2 detects the TCP connection and distributes data packets to
its neighbors (i.e., LR-5 and LR-6). If GW links have low capacities (e.g, 1.544 Mbps T1
links or DSL lines), then the TCP connection may benefit from the aggregated capacities of
the both GW links. In addition, the SCAP may process the incoming ACKs to prevent TCP
sender from the side-effects of data packet distribution. An example of this kind of SCAP is
presented in Chapter 5.

Contrary, in the flow from MH-3 to MH-1 SCAP on LR-1 detects the TCP connection but
can’t distribute the data packets because of the data packet flow direction.

4.2 SCAP Pairs

When SCAPs are adopted, they will have high deployment on LANs. It will be easy for a
SCAP to find a peer to collaborate: SCAPs that are located on LANs of the TCP sender
and receiver may work as a peer, as shown in Fig. 4.3.

In that case, one SCAP may operate as the splitter and the other one as the combiner.
Splitter may distribute data packets to multiple pipes and the combiner may collect and
reorder the distributed packets. The receiver may only get the packets in-order. In Figure
4.3, LR-7 and LR-2 work as splitters, while LR-1 and LR-8 work as combiners.

Signaling between the SCAP pairs may be provided, for example, by means of pTCP headers
[19] or IETF MPTCP options. MPTCP TCP options or pTCP headers may be added by
splitter SCAP and removed by the combiner SCAP. Then, the hosts with single interfaces
may benefit from the multiple paths within the core network.

Figure 4.3: SCAP Pairs

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 29

TU Berlin

4.3 SCAP Chains

After high deployment of SCAPs on LANs, we expect them also to appear in CNs. CNs may
use SCAPs for load balancing. When SCAPs are deployed on CNs, we expect to see SCAPs
as chains, as shown in Fig. 4.4.

In this scenario, we show SCAPs on CN routers. BR-4 works as a splitter. It captures
packets from the TCP sender (FH-1) and distributes them via disjoint paths to the first
combiner (BR-10). BR-10 works as both a combiner and a splitter. It combines packets dis-
tributed by BR-4 and distributes them via disjoint paths to the next level combiner (BR-17).
BR-17 combines packets and sends them in-order to the TCP receiver (FH-3).

Since (BR-4,BR-10) and (BR-10, BR-17) constitute SCAP peers, they may use SCA sig-
naling packets in this design as mentioned above, in Section 4.2.

Figure 4.4: SCAP Chain

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 30

TU Berlin

Chapter 5

A Standalone SCAP

We started our work with the case that there is only one SCAP on the path between the TCP
sender and the receiver. Therefore, our standalone SCAP may work on a network scenario
as shown in Figure 4.2.

Our solution defines an algorithm to improve TCP performance with RTT based DUPACK
Estimation and Filtering (DEF). It mainly deals with out-of-order packet receptions problem
mentioned in Section 2.1.

5.1 DEF Assumptions

DEF may be used in any network which satisfies the following assumptions:

1. There are multiple paths between the split point and the TCP receiver.

2. TCP sender uses only one interface to send/receive data.

3. There is only one path between the TCP sender and the split point.

4. Path RTTs between the SCAP and the receiver are stable (i.e, path RTT variance is
low).

5. TCP sender and receiver have enough buffer spaces to keep out-of-order packets.

Figure 5.1 shows an example network for the DEF: TCP sender uses one interface to send
the TCP packets. DEF is placed on a router (i.e., split point) in between the TCP sender
and receiver. It works under the network layer and above the data link layer. There is only
one pipe between the TCP sender and the split point. There are multiple pipes between the
split point and the TCP receiver.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 31

TU Berlin

Figure 5.1: DEF Position on the Network

5.2 DEF States

As shown in Fig. 5.2, DEF uses either all the available paths of the connection based on the
round robin (RR) data scheduling (NO LOSS state) or only the shortest path (RETRANS-
MISSION state). All the packets are scheduled to the shortest path in RETRANSMISSION
state to minimize further DUPACK generation.

Figure 5.2: DEF State Transitions

5.2.1 NO LOSS State

When data transmission of a connection is started, DEF enters NO LOSS state till a re-
transmission is observed. In order to detect retransmissions, DEF keeps track of the highest
data sequence number sent by the sender so far. When a packet is received from the sender,
this variable is updated. If a data packet is received with smaller sequence number than this
variable, then a retransmission is inferred and RETRANSMISSION state is entered.

5.2.2 RETRANSMISSION State

DEF stays in RETRANSMISSION state till the TCP sender recovers from the packet re-
transmissions. We defined three requirements for DEF to exit RETRANSMISSION state:

1. A new ACK must be received: TCP sender recovery phase may not be completed if
there are still DUPACK receptions.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 32

TU Berlin

2. All the data packets scheduled for the paths before entering the RETRANSMISSION
state must reach to the receiver: so that packets scheduled for longer paths before
entering the RETRANSMISSION state doesn’t generate unexpected DUPACKs.

3. All the packets before entering the RETRANSMISSION state must be recovered: so that
DEF doesn’t switch between RETRANSMISSION and NO LOSS states unnecessarily.
When TCP sender receives partial ACKs, it may retransmit some segments which may
cause DEF to enter RETRANSMISSION state again just after it enters NO LOSS state.

5.3 DUPACK Estimation and Filtering Algorithm

As shown in Fig. 5.2, DEF algorithm is enabled only in NO LOSS state in which multiple
paths are used. When DEF data processor schedules a packet to a path, it estimates whether
the packet arrival to the receiver will generate a DUPACK or not. In order to decide, DEF
keeps track of following values for each path:

• path rtt is the estimated RTT of the path.

• highest data seq is the highest data sequence number scheduled for the path.

• highest data time is the estimated arrival time for the highest-sequenced data packet
scheduled for the path. Since ACK packets follow the same route, independent of the
path the data packet is sent to, RTTs, instead of one-way delays, are used to estimate
data packet arrival times.

DUPACK estimation works as follows. When a packet with sequence number seqi is sched-
uled for the path pi at time ti, its arrival time is estimated as arri = ti + pi.path rtt.
DEF checks all paths to find the path which has (seqi > pj .highest data seq) and (arri <
pj .highest data time). If such a path pj exists, then the segment will reach to the receiver
out-of-order. In that case, anestimated dupacks counter is incremented by 1.

DEF ACK processor keeps track of highest ACK number received so far for the connection.
It uses this value to check whether a received ACK is a DUPACK or not. If a DUPACK is
received, then the estimated dupacks counter is checked. If it is non-zero, then the ACK is
an expected RTT-difference-based DUPACK. DEF ACK processor simply filters (i.e., drops)
the DUPACK and decrements the estimated dupacks counter by 1. In that way, the TCP
sender is prevented from reception of unnecessary DUPACKs.

5.4 Retransmission Detection and Response Algorithm

DEF uses the highest sequence number of data packets sent so far to decide on retransmission
events. In the NO LOSS state, if a packet is received with sequence number lower than this
value, then a retransmission is inferred.

DUPACKs are harmful when the TCP sender is in the NO LOSS state (i.e., either in slow-
start or in congestion avoidance phase) with increasing sequence numbers. However, when

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 33

TU Berlin

TCP sender is in the RETRANSMISSION state (i.e., in fast retransmit/recovery), DUPACKs
are useful since they provide the information about the number of in-flight packets and may
give an opportunity to increase the TCP congestion window (cwnd). Thus, before entering
the RETRANSMISSION state, DEF data processor sets value of estimated dupacks counter
to 0, disabling the DUPACK filtering.

DEF data processor sets the following variables of the connection before entering the RE-
TRANSMISSION state to fulfill the criteria specified in Section 5.2:

• checkpoint data time is set as the highest estimated data arrival time when the RE-
TRANSMISSION state is entered (Criteria 2).

• checkpoint data seq is set as the value of highest data seq variable when the RETRANS-
MISSION state is entered (Criteria 3).

DEF ACK processor checks these variables upon reception of a new ACK (Criteria 1). If all
three criteria are satisfied, then DEF leaves the RETRANSMISSION state and enters the
NO LOSS state again.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 34

TU Berlin

Chapter 6

The Standalone SCAP: Prototyping
and Performance Evaluation

We implemented DEF as a pluggable netfilter [44] module in Linux. NF INET POST ROUTING
hook was used to capture and process TCP packets after the packets are processed by the
network layer code of the Linux.

We used NCTUns 6.0 [45] simulation and emulation tool to evaluate performance of the
DEF algorithm. NCTUns uses real Linux kernel TCP/IP implementation by means of a
kernel re-entering methodology when simulating networks [16]. It uses tunnels to direct real
TCP packets to the related simulation entity. Thus, TCP packets pass through the real
Linux kernel TCP/IP protocol stack several times till it reaches to its destination entity in
the simulation environment.

Our testbed consists of two Pentium dual-core E5300 2.60GHz CPU machines with 2 GB
memory as shown in Fig. 6.1. Two machines are connected to the same local network via
a switch. One of the machines is used to run NCTUns simulations. Since we want to test
DEF with different OSs, we used the second machine as a Windows XP, Ubuntu 11.04, and
PC-BSD 8.2 TCP sender. We used the emulator capability of NCTUns [37] for this purpose.
We defined TCP sender as an ”external” host that is included within the simulation scenario
(Figure 6.2).

Figure 6.1: Test-bed for DEF Performance Evaluation

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 35

TU Berlin

Our scenario (Fig. 6.2) consists of an external TCP sender host (node1), 4 routers within
the local backbone (nodes 2 to 5), 3 GW links, each with the capacity of 1.544 Mbps (as in
T1), 3 paths within the Internet with 10 Mbps capacities and different delays (D1, D2, and
D3, respectively), and a simulated TCP receiver host (node10).

Figure 6.2: NCTUns Emulation Scenario for DEF Performance Evaluation

As shown in Table 6.1, the paths delays are set as follows: D1 is constant and has a value
of 10 ms in each direction. Two (D1 and D2) and three path (D1, D2 and D3) cases are
considered, with delay differences between the paths ranging from 0 ms (all the paths have
the same delay) to 160 ms (consequtive paths have 160 ms delay difference) in 40 ms steps.

Table 6.1: Path Delays and RTTs used in NCTUns Emulations

Different OSs may use different variants of TCP by default or support different TCP variants
which may be set by the end-users [40]. Since DEF is aimed at high deployment, we used
an external machine as the TCP sender host to test how DEF performs with different OS
TCP implementations. We selected representatives from the different OS families: Microsoft
Windows XP Professional Version 2002 Service Pack 3 (Windows), Ubuntu 11.04 (Linux),
and PC-BSD 8.2 (BSD).

Default values of TCP related OS parameters (e.g., send/receive buffer sizes, TCP window
size. . .) may not allow TCP to achieve high data transfer rates. Since data packets must
be buffered by the receiver before the in-order packets come from the longest path, TCP
receiver must have enough buffer space. Similarly, TCP sender must keep these packets in its
send buffer till it receives ACKs for the packets. Thus, TCP sender must also have enough

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 36

TU Berlin

buffer space. In addition, TCP window size must be large enough to allow high volumes
of data transfers. We executed our experiments following the suggestions in [30, 46, 47] to
configure OS parameters related to the TCP performance. Table 6.2 shows the configured
system parameters of the OSs.

Table 6.2: Configured OS System Parameters

DEF filtering prevents DUPACKs from arriving to the sender. However, other information
on the DUPACKs are also filtered out: SACK blocks and timestamps. Availability of these
information may increase the performance of the TCP sender. Thus, we executed our tests
when SACK/Timestamps are enabled/disabled to see whether DEF/RR performance is af-
fected or not.We have presented results for SACK and timestamps are enabled (SACK+TS),
SACK and timestamps are disabled so that only cumulative ACKs are used (CACK), only
SACK is enabled (SACK), and only timestamps is enabled (CACK+TS).

DEF and RR modules are located at Node2 and TCP data packets are distributed to the
multiple paths there. TCP data packets are handed by the RR scheduler to the neighbors of
Node2 within the local backbone. We collected the results for DEF as well as RR scheduling
of packets to the multiple paths.

As shown in Figure 6.3, TCP receiver downloads data from the TCP sender for 600 sec-
onds. TCP goodput is calculated by dividing downloaded amount of data to the download
time. Goodput samples are collected till 95% of the values are within the ±5%vicinity of the
average goodput (at least 3 samples are collected).

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 37

TU Berlin

Figure 6.3: Average TCP Goodput Calculation for The Experiments

6.1 Experiment Results

We calculated TCP Goodput percentages with respect to single path (i.e., neither RR nor
DEF is used) goodputs (≈1.40 Mbps for each OS) as:

((DEF|RR Goodput) / (Single Path Goodput)) * 100

We present results in Figure 6.4, 6.5, and 6.6. As expected [12], the Windows XP and PC-
BSD TCP goodputs degrades sharply in RR with the increasing path RTT difference and it
is worse than the single path case when there is even a small path RTT difference (e.g., 40
ms). On the other hand, DEF gets better TCP goodputs than single path use (i.e., TCP
data transfer over one path, without DEF or RR) in all cases.

We observed 76% to 98% increase in the TCP goodput when 2 paths are used and 125%
to 197% increase when 3 paths are used, as compared to the single path use. Because of
the network dynamics, we see some fluctuations in DEF performance (not more than 10%
when 2 paths are used and not more than 20% when 3 paths are used, between the best and
the worst case for a given OS). It is caused by the buffering in the network which influences
accuracy of the DEF DUPACK estimations, especially when number of used paths increases
and equal-RTT paths are used.

The only exception of performance decrease in the RR regime is Linux OS. Ubuntu TCP
performance is not affected since it implements algorithms to deal with out-of-order packet
receptions as described in [14]. The algorithm mainly works as follows. Before a packet is re-
transmitted, current ssthresh value is stored before it is changed. Timestamps and D-SACK
are used by Linux TCP sender to detect spurious retransmissions:

• D-SACK may report that original transmission of the retransmitted segment has already
arrived at the receiver

• ACK carries timestamp of the first segment sent, instead of the retransmitted segment

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 38

TU Berlin

If a spurious retransmission is detected, ssthresh is reverted to stored value. In addition, Linux
reordering estimator adapts dupthresh value based on the number of spurious retransmissions
(i.e., the threshold value is not always 3 and adjusted based on the reordering in the network).

However. even though Linux has its own mechanisms to cope with the out-of-order packets,
the results show that DEF did not harm the performance of Linux.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 39

TU Berlin

(a) PCBSD 2-Paths DEF Results

(b) PCBSD 2-Paths RR Results

(c) PCBSD 3-Paths DEF Results

(d) PCBSD 3-Paths RR Results

Figure 6.4: PC-BSD 8.2 Results

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 40

TU Berlin

(a) Windows XP 2-Paths DEF Results

(b) Windows XP 2-Paths RR Results

(c) Windows XP 3-Paths DEF Results

(d) Windows XP 3-Paths RR Results

Figure 6.5: Windows XP Results

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 41

TU Berlin

(a) Ubuntu 2-Paths DEF Results

(b) Ubuntu 2-Paths RR Results

(c) Ubuntu 3-Paths DEF Results

(d) Ubuntu 3-Paths RR Results

Figure 6.6: Ubuntu 11.04 Results

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 42

TU Berlin

Chapter 7

Summary and Future Work

In this technical report, we investigated the possibility of distributing TCP flow packets over
multiple paths.

Since TCP design assumes that its packets flow over a single-path within the underlying
network, its performance is affected negatively in case of multi-path use. In Chapter 2, we
investigated the problems that TCP faces with when its segments are split over multiple
paths and presented the solutions of other researchers for these problems.

We defined an architecture, splitter/combiner architecture (SCA), that may be used to develop
agnostic TCP solutions over multiple paths in Chapter 3. The architecture is transparent
to TCP end-points and protocol layers. Thus, no modification on end-systems is required to
benefit from multiple path usage. The implementation of the architecture may be realized
between every protocol layers below transport layer, even directly above the physical layer.
Although SCA is not designed to be located on TCP end-points, its protocol transparency
allows its instances, SCA Proxies (SCAPs), to be used on the end-systems. In that case, it
may integrate some mechanisms of the existing solutions or allow development of new solu-
tions.

In Chapter 4, we discussed three stages for the deployment of SCAPs: (1)single, (2)paired,
and (3)chained SCAP deployment. Since at the initial SCAP deployment stage it will be
hard to find other SCAPs, there may be only one SCAP in between the TCP sender and
receiver. In that case, SCAP must work standalone. At a later stage, it will be easier to
find SCAP peers which allows them to benefit from the signaling information exchange. In
future, we expect high deployment and SCAPs that work as cascaded.

Chapter 5 presents a sample single SCAP which increases TCP performance over multi-
ple paths. The SCAP may work alone and demonstrates the applicability of our ideas. It
differentiates between packet-loss and RTT-difference based DUPACKs and filters the RTT-
difference-based DUPACKs.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 43

TU Berlin

In Chapter 6, simulation based experiments are executed and results are collected to test the
SCAP. The results show the potential in using our architecture to develop TCP multipath
solutions without end-system modifications, which is necessary for high deployments.

Based on the obtained results, we continue our work on single SCAP and plan to extend
our scope to SCAP pairs and chains.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 44

TU Berlin

Bibliography

[1] J. Postel, ”Internet Protocol,” RFC 791, September 1981.

[2] R. Braden, ”Requirements for Internet Hosts –Communication Layers,” RFC 1122, Oc-
tober 1989.

[3] V. Jacobson, R. Braden, and D. Borman, ”TCP Extensions for High Performance,” RFC
1323, May 1992.

[4] W. Simpson, ”IP in IP Tunneling,” RFC 1853, October 1995.

[5] C. Perkins, ”IP Encapsulation within IP,” RFC 2003, October 1996.

[6] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, TCP Selective Acknowledgement
Options, RFC 2018, October 1996.

[7] G. Malkin, ”RIP Version 2,” RFC 2453, November 1998.

[8] K. McCloghrie and F. Kastenholz, ”The Interfaces Group MIB,” RFC 2863, June 2000.

[9] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, ”An Extension to the Selective
Acknowledgement (SACK) Option for TCP,” RFC 2883, July 2000.

[10] S. J. Lee and M. Gerla, ”Split Multipath Routing with Maximally Disjoint Paths in Ad
Hoc Networks,” In Proceedings of The IEEE International Conference on Communications
2001 (ICC ’01), Volume 10, pp. 3201-3205, June 11-14 2001.

[11] J. Liu and S. Singh, ”ATCP: TCP for Mobile Ad Hoc Networks,” IEEE Journal on
Selected Areas in Communications, Volume 19, Number 7, pp. 1300-1315, July 2001.

[12] M.Gerla, S. S. Lee, and G. Pau, ”TCP Westwood Performance Over Multiple Paths,”
UCLA CSD Technical Report #020009, January 2002. Available at: http://nrlweb.cs.
ucla.edu/publication/download/140/2002-tr-0.pdf.

[13] K. Chebrolu and R. Rao, ”Communication using Multiple Wireless Interfaces,” In Pro-
ceedings of The IEEE Wireless Communications and Networking Conference 2002 (IEEE
WCNC 2002), Volume 1, pp. 327-331, March 17-21 2002.

[14] P. Sarolahti and A. Kuznetsov, ”Congestion Control in Linux TCP,” Proceedings of
Usenix 2002/Freenix Track, pp. 49-62, Monterey, CA, USA, June 2002.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 45

http://nrlweb.cs.ucla.edu/publication/download/140/2002-tr-0.pdf
http://nrlweb.cs.ucla.edu/publication/download/140/2002-tr-0.pdf

TU Berlin

[15] Y. Lee, I. Park, and Y. Choi, ”Improving TCP Performance in Multipath Packet For-
warding Networks,” Journal of Communication and Networks (JCN), Volume 4, Number
2, pp. 148-157, June 2002.

[16] S.Y. Wang, C.L. Chou, C.H. Huang, C.C. Hwang, Z.M. Yang, C.C. Chiou, and C.C.
Lin, ”The Design and Implementation of the NCTUns 1.0 Network Simulator,” Computer
Networks, Volume 42, Issue 2, pp. 175-197, June 2003.

[17] K. Chebrolu, ”Multi-Access Services in Heterogeneous Wireless Networks,” PhD Thesis,
ECE Department, U.C. San Diego, May 2004. Available at: http://home.iitk.ac.in/

~chebrolu/docs//thesis.pdf.

[18] J. Chen, K. Xu, and M. Gerla, ”Multipath TCP in Lossy Wireless Environment,” In
Proceedings of The Third Annual Mediterranean Ad Hoc Networking Workshop (Med-
Hoc-Net 2004), Bodrum, Turkey, pp. 263-270, June 27-30 2004.

[19] H.-Y. Hsieh and R. Sivakumar, ”A Transport Layer Approach for Achieving Aggregate
Bandwidths on Multi-homed Mobile Hosts,” ACM/Springer Wireless Networks Journal,
Volume 11, Number 1-2, pp. 99-114, January 2005.

[20] R. Raghunarayan, ”Management Information Base For The Transmission Control Pro-
tocol (TCP),” RFC 4022, March 2005.

[21] K.-H. Kim and K. G. Shin, ”Improving TCP Performance over Wireless Networks with
Collaborative Multi-homed Mobile Hosts,” In Proceedings of USENIX/ACM Interna-
tional Conference on Mobile Systems, Applications, and Services (MobiSys), Seattle, WA,
USA, June 2005.

[22] K. Chebrolu, B. Raman and R. R. Rao, ”A Network Layer Approach to Enable TCP over
Multiple Interfaces,” ACM/Kluwer Journal of Wireless networks (WINET), September
2005.

[23] R. Karrer and E. Knightly, ”TCP-PARIS: A Parallel Download Protocol for Replicas,” In
Proceedings of IEEE International Workshop on Web Content Caching and Distribution
(WCW 2005), Sophia Antipolis, France, pp. 15-25, September 12-13 2005.

[24] F.P. Kelly, and T. Voice, ”Stability of End-to-End Algorithms for Joint Routing and
Rate Control,” ACM/SIGCOMM CCR 35(2) (2005).

[25] Y. Rekhter, T. Li, and S. Hares, ”A Border Gateway Protocol 4 (BGP-4),” RFC 4271,
January 2006.

[26] S. Routhier, ”Management Information Base for the Internet Protocol (IP),” RFC 4293,
April 2006.

[27] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant and D. Towsley, ”Multi-Path TCP: A
Joint Congestion Control and Routing Scheme to Exploit Path Diversity on the Internet,”
IEEE/ACM Transactions on Networking, Volume 14, Issue 6, December 2006.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 46

http://home.iitk.ac.in/~chebrolu/docs//thesis.pdf
http://home.iitk.ac.in/~chebrolu/docs//thesis.pdf

TU Berlin

[28] K.-C. Leung, V. O. K. Li, and D. Yang, ”An Overview of Packet Reordering in Transmis-
sion Control Protocol (TCP): Problems, Solutions, and Challenges,” IEEE Transactions
on Parallel and Distributed Systems, Volume 18, Issue 4, pp. 522-535, April 2007.

[29] M. Mathis, J. Heffner, and R. Raghunarayan, ”TCP Extended Statistics MIB”, RFC
4898, May 2007.

[30] L. Stewart and J. Healy, ”Tuning and Testing the FreeBSD 6 TCP Stack,” CAIA Tech-
nical Report 070717B, July 17 2007. Available at: http://caia.swin.edu.au/reports/
070717B/CAIA-TR-070717B.pdf.

[31] K.-H. Kim and K. G. Shin, ”PRISM: Improving the Performance of Inverse-Multiplexed
TCP in Wireless Networks,” IEEE Transactions on Mobile Computing, Volume 6, Issue
12, pp. 1297-1312, December 2007.

[32] J. He and J. Rexford, ”Toward Internet-Wide Multipath Routing,” IEEE Network ,
Volume 22, Number 2, pp.16-21, March-April 2008.

[33] B. Radunovic, C. Gkantsidis, D. Gunawardena, and P. Key, ”Horizon: Balancing TCP
over Multiple Paths in Wireless Mesh Network,” In Proceedings of The 14th Annual
International Conference on Mobile Computing and Networking (MobiCom 2008), San
Fransisco, California, USA, 14-19 September 2008.

[34] K. Evensen, D. Kaspar, P. Engelstad, A. F. Hansen, C. Griwodz, and P. Halvorsen, ”A
Network-Layer Proxy for Bandwidth Aggregation and Reduction of IP Packet Reorder-
ing,” In Proceedings of The IEEE 34th Conference on Local Computer Networks (LCN
2009), pp. 585-592, Zurich, 20-23 October 2009 .

[35] I. A. Ganichev, B. Dai, P. B. Godfrey, and S. Shenker, ”YAMR: Yet Another Multi-
path Routing Protocol,” EECS Department, University of California, Berkeley, Technical
Report No. UCB/EECS-2009-150, 30 October 2009, Available at: http://www.eecs.

berkeley.edu/Pubs/TechRpts/2009/EECS-2009-150.pdf.

[36] M. Allman, V. Paxson, and E. Blanton, ”TCP Congestion Control,” RFC 5681, Septem-
ber 2009.

[37] S.Y. Wang and R.M. Huang, ”NCTUns Tool for Innovative Network Emula-
tions,” Chapter 13 of The ”Computer-Aided Design and Other Computing Research
Developments” Book, ISBN: 978-1-60456-860-8, Published by Nova Science Pub-
lishers in 2009, Available at: http://nsl10.csie.nctu.edu.tw/products/nctuns/

NovaNCTUnsEmulationNew2009.pdf.

[38] A. Kostopoulos, H. Warma, T. Leva, B. Heinrich, A. Ford, and L. Eggert, ”Towards
Multipath TCP Adoption: Challenges and Opportunities,” 6th EURO-NF Conference on
Next Generation Internet (NGI), pp. 1-8, Paris, June 2-4 2010.

[39] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, ”Design, implementation and
evaluation of congestion control for multipath TCP,” 8th USENIX conference NSDI 2011,
March 2011.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 47

http://caia.swin.edu.au/reports/070717B/CAIA-TR-070717B.pdf
http://caia.swin.edu.au/reports/070717B/CAIA-TR-070717B.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-150.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-150.pdf
http://nsl10.csie.nctu.edu.tw/products/nctuns/NovaNCTUnsEmulationNew2009.pdf
http://nsl10.csie.nctu.edu.tw/products/nctuns/NovaNCTUnsEmulationNew2009.pdf

TU Berlin

[40] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu, ”TCP Congestion Avoidance Algorithm
Identification,” In Proceedings of The IEEE 31st International Conference on Distributed
Computing Systems (ICDCS 2011), pp. 310-321, Minneapolis, June 20-24 2011.

[41] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, ”TCP Extensions for Mul-
tipath Operation with Multiple Addresses,” IETF Internet Draft, draft-ietf-mptcp-
multiaddressed-06 (work in progress), January 2012.

[42] C. Raiciu, M. Handly, and D. Wischik, ”Coupled Congestion Control for Multipath
Transport Protocols,” RFC 6356, October 2011.

[43] M. Scharf and A. Ford, ”MPTCP Application Interface Considerations,” IETF Internet
Draft, draft-ietf-mptcp-api-03, 30 November 2011.

[44] NetFilter Web Site, http://www.netfilter.org/.

[45] NCTUns Web Site, http://nsl.csie.nctu.edu.tw/nctuns.html.

[46] Enabling High Performance Data Transfers [PSC], http://www.psc.edu/networking/
projects/tcptune.

[47] http://fasterdata.es.net/fasterdata/host-tuning/

[48] T. Ayar, B. Rathke, L. Budzisz, and A. Wolisz, ”TCP over Multiple Paths Revisited:
Towards Transparent Proxy Solutions,” accepted to the IEEE International Conference
on Communications 2012 (IEEE ICC’12), June 2012.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-12-001 Page 48

http://www.netfilter.org/
http://nsl.csie.nctu.edu.tw/nctuns.html
http://www.psc.edu/networking/projects/tcptune
http://www.psc.edu/networking/projects/tcptune

	Introduction
	State of The Art: TCP Problems over Mulitiple Paths and The Approaches To Handle Them
	Preventing/Handling Out-of-Order Packet Receptions
	Management of The list of Multiple Paths
	Force TCP Packets to Follow A Specified Path
	Scheduling The Packets to The Paths and Finding The Path Characteristics
	Isolate Losses on One Path From The Other Paths
	Handling Incorrect RTT/RTO Estimations
	Deployment of The Solutions

	TCP Splitter/Combiner Architecture (SCA)
	SCA Protocol Stack Transparency
	Pipes: SCA Abstraction for Multiple Paths
	Overview of The SCA Components
	Packet Classifier
	Connection Handler
	Multiple Pipes Adapter
	Get The List of Multiple Pipes
	Probe For Pipes Characteristics
	Employ Newly Available Pipes
	Delete Pipes
	Select A Pipe Subset
	Send A Packet via one of The Multiple Pipes
	Hide The Use of Encapsulation

	Data/ACK Processor
	Signaling Unit
	Configuration and Management Unit

	SCA Deployment
	SCAP on a Single Network Element
	SCAP Pairs
	SCAP Chains

	A Standalone SCAP
	DEF Assumptions
	DEF States
	NO_LOSS State
	RETRANSMISSION State

	DUPACK Estimation and Filtering Algorithm
	Retransmission Detection and Response Algorithm

	The Standalone SCAP: Prototyping and Performance Evaluation
	Experiment Results

	Summary and Future Work

