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Abstract—Traditional Intrusion Detection Systems (IDS) can
be complemented by an Anomaly Detection Algorithm (ADA)
to also identify unknown attacks. We argue that, as each ADA
has its own strengths and weaknesses, it might be beneficial
to rely on multiple ADAs to obtain deeper insights. ADAs are
very resource intensive; thus, real-time detection with multiple
algorithms is even more challenging in high-speed networks. To
handle such high data rates, we developed a controlled load
allocation scheme that adaptively allocates multiple ADAs on
a multi-core system. The key idea of this concept is to utilize
as many algorithms as possible without causing random packet
drops, which is the typical system behavior in overload situations.
We developed a proof of concept anomaly detection framework
with a sample set of ADAs. Our experiments confirm that
the detection performance can substantially benefit from using
multiple algorithms and that the developed framework is also
able to cope with high packet rates.

I. INTRODUCTION

Intrusion Detection Systems (IDS), dedicated network com-
ponents that can alert a security administrator of potential
attacks, have become more and more more popular in the last
decade [1]. For detecting network traffic that might be part of
an attack, traditional IDS often use a signature-based approach
relying on rule sets [2]. However, if a novel attack has not yet
been described in form of such rules, it is impossible to detect
the malicious traffic. Therefore, Anomaly Detection Algorithms
(ADAs) have been studied to identify network traffic deviating
from normal behavior. Because attack traffic frequently shows
different behavior, such traffic often also produces some kind
of anomalies [1], [3]. Thus, ADAs can also help in detecting
attacks on a network.

Many different ADAs have been developed for different
types of anomalies, each having its own advantages and
drawbacks [4]-[11]. In practice, it seems reasonable to make
use of multiple ADAs for identifying attack traffic and combine
their advantages. Because a detected anomaly can only be
considered as a “suggestion” for ongoing attacks, further post-
processing techniques are needed. Examples include ranking
of anomalies by severity, automated forensics, or recording for
later inspection by security experts.

The focus of this work, is on using multiple ADAs on one
multi-core machine, together with controlled load allocation.
To the best of our knowledge, there is no system available that
extensively makes use of multiple ADAs on one machine in
the contexts of high speed network monitoring and intrusion
detection. The advantage of combining ADAs on one machine

in comparison to clustering them over a network is that there
is no network flow distribution offset.

Because anomaly detection can be very resource-intensive,
especially in high-speed networks, a controlled load allocation
scheme is required, which takes into account the complexities
of different ADAs. In particular, slower algorithms using
more complex operations should not prevent faster algorithms
from being applied. Algorithms may be skipped if no more
processing resources are available in order to ensure real-
time monitoring in high-speed networks. The framework also
features techniques for filtering anomalous traffic by certain
criteria and for gathering statistics to evaluate ADAs that have
been integrated into the framework.

We developed a modular framework supporting anomaly
detection in computer networks. Our system has been imple-
mented as part of Vermont, which is a highly flexible software
toolkit used for network monitoring [12]-[14]. Vermont, being
equipped for high speed flow monitoring, also provides all
the necessary functionality to run single modules on different
CPU cores in parallel. Our adaptive load allocation algorithm
extends Vermont by integrating load distribution techniques
using controlled skips. We integrated two well-known anomaly
detection algorithms that we used in our experiments.

Our key contributions can be summarized as follows:

e As a novel concept, we make use of multiple anomaly
detection algorithms on one machine to obtain better
insights into the network traffic.

« We developed a controlled load allocation scheme sup-
porting parallel execution of those algorithms on multiple
CPU cores without slowing down the processing.

« For the first time, we integrate anomaly detection with high
speed flow monitoring to provide additional information
for efficient post processing.

II. FUNDAMENTALS AND RELATED WORK

Anomaly detection refers to the process of identifying proper-
ties within a certain data set that deviate from normal behavior.
Usually this is done by applying an application-specific ADA
on a data set that should be examined for anomalies. Anomalies
may be classified by type, severity or any other relevant property
and therefore often are assigned attributes like floating-point
scores or numeric class values. The computational complexity
of ADAs has to be considered because this might be a limiting
factor. On the other hand, signature-based IDS achieve high

792



Packet Source

[
|
|
Packet Conversion
|
|
i

\

Load Allocator
va

Analysis of Packets

Packet Conversion

Packet Filtering IDMEF Reporting

Statistics Collection

l ——> Untagged Packet =3 Anomaly-tagged Packet

----------------- Control Path l

Figure 1.
tag packets with an anomaly score for downstream processing.

detection rates for intrusion patterns of known exploits, but they
provide only poor performance in detecting novel attacks [6].

Examples of anomaly detection systems include SPADE
[7] and NIDES [10]. Depending on the used algorithms, each
system might have its own weaknesses which prevent certain
anomalies from being detected. Algorithms that only rely on IP
addresses and port numbers for anomaly detection in particular,
are not sufficient to provide reliable attack detection.

Because both signature-based and anomaly-based techniques
have their own drawbacks, there are good reasons to combine
both approaches into a hybrid IDS. An experimental system has
been proposed in [8]. As a key concept, a weighted signature
generation scheme has been developed in order to classify
anomalies by assigning anomaly scores and normality scores
to each network connection.

Approaches such as Time Machine [15] or Front Payload
Aggregation (FPA) [16] suggested the use of flow monitoring
techniques with added payload information to speed up the
network monitoring performance. As an example, the first NV
bytes of packet payloads can be embedded into the flow data,
which allows significantly reducing the amount of data that has
to be processed by an IDS but still gives access to parts of the
payload information. It turned out that attacks are frequently
not detectable using this concept as the attack pattern only
shows up after some initial higher layer protocol exchange.
Dialog based Payload Aggregation (DPA) goes well beyond
Time Machine and FPA as it focuses on the relevant parts of
the entire session instead of the first NV bytes [14].

We make use of these ideas, both anomaly detection and
DPA, to design an attack detection framework that is able
to cope with high-speed networks well beyond data rates of
1 Gbits™! using commodity hardware. Our system is imple-
mented in the Versatile Monitoring Toolkit (Vermont) [12].

III. ARCHITECTURE

Figure 1 outlines the architecture of the developed frame-
work, including the underlying data flow. Any packet source,
which can be either live traffic or a trace, may be used to
provide the input data for the anomaly detection framework,
and hence the implemented algorithms.

A. Packet Analysis

In order to classify anomalies, packets have to be tagged
with information provided by the different ADAs. Usually,
these algorithms generate score-based values that are assigned

Architecture overview. A controller feeds packets to as many Anomaly Detection Algorithms (ADAs) as system load tolerates, each of which can
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Figure 2. The controlled load allocation scheme can skip individual ADAs
if load gets too high.

to the individual packets. We therefore tag network packets
with an anomaly score and add a list for all these values. Thus,
we allow each ADA to tag the packet structure internally. Such
anomaly tags also contain a unique algorithm instance key.
This is required to distinguish between anomaly scores from
different algorithms in the post-processing step and also allows
to use multiple instances of the same algorithm, even with
different configurations.

It is important that our framework is able to support algo-
rithms of different types, including semi-supervised algorithms
requiring an initial training time interval and unsupervised
algorithms which do not require any user interaction. As a
proof of concept, we implemented two basic packet-based
anomaly detection algorithms: Packet Header Anomaly De-
tection (PHAD) [4], which examines header field values of
different protocols at link, network, and transport layer; and
Network Traffic Anomaly Detector (NETAD) [5], which also
incorporates packet payloads for anomaly detection. The choice
fell on these two to have one ADA inspecting only protocol
headers and one focusing also on the payload. All implemented
ADAs are implicitly part of the framework’s controlled load
allocation scheme.

B. Controlled Load Allocation Scheme

The key challenge in using multiple packet-based anomaly
detection algorithms is that they strongly differ in their
computational complexities and, therefore, the processing
rates can be very different. For optimal performance, faster
algorithms should be able to analyze a larger amount of packets
compared to slower algorithms. The main objective of our
controlled load allocation scheme is thus to provide anomaly
detection on an “as-much-as-possible” basis. If enough CPU
cycles are available, the allocator should not interfere so that
every single packet can be analyzed by all algorithms.

The solution that provides us with the most flexibility at low
complexity is the processing scheme as depicted in Figure 2, we
used sequential processing with packet skipping. Figure 2 shows
the principles of skipping an ADA stage (simply discarding
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such packets would not be desirable, as there might be another
(faster) algorithm in the pipeline that has enough resources
to process the packet). Every ADA is implemented within a
single (lightweight) module that can run on a separate CPU
core, which nicely fits into Vermont’s overall architecture. The
sequential processing is traditionally organized in form of a
pipeline. We therefore added a controller (cf. Figure 1) that
is able to identify congestion and to throttle the amount of
packets that are processed by the slowest algorithm instances.
This is done by skipping packets and immediately pass them
to the next pipeline stage without adding an anomaly score
entry. Instead of using a window-based approach for skipping
packets (which may have even a negative impact if all ADAs
have similar computational complexities), we investigated a
probabilistic approach. This allows fine-grained adjustments
of skip rates.

The main pipeline controller performs two different tasks:
identification of congestion that are caused by one or more
pipeline stages and throughput control by adjusting the skip
probabilities in the individual pipeline stages. For identifying
congestions in the packet processing, we have defined a
congestion criterion:

A d(QOut) < tout (l)

The congestion criterion relies on the fill level of the input
d(qg») and the output queue d(qoy:) together with threshold
values for each queue. If the input queue exceeds a defined
threshold ¢;,,, while the filling degree of the output queue is
below a certain threshold ¢,,, that the pipeline is congested.
Throughput control is performed by using a feedback
control algorithm that is invoked in regular time intervals.
The algorithm initially uses a learning phase during which
throughput quotas are determined for each individual pipeline
stage based on its throughput performance. From these quotas,
skip probabilities are derived for every pipeline stage in order
to balance the amount of input data that is going to be
processed by the ADAs. The skip probabilities calculated by the
feedback control algorithm follow a Multiplicative Increase /
Multiplicative Decrease (MIMD) approach based on quotas.

C. Post-Processing of Packets

After packets have been analyzed by algorithms, we have
different options for post-processing the anomaly-tagged pack-
ets. The framework’s filtering engine can be used to select
packets based on the anomaly scores. If an algorithm generates
score-based results, only packets with scores that exceed a
certain threshold are of interest. However, an ADA may also
be used to categorize packets (this can basically be interpreted
as assigning an integer ¢ € S from a finite set of classes to
each single packet). In this case, the filtering engine can be
configured to select packets matching a certain class.

For analyzing the performance and the behavior of the
implemented ADAs, we implemented a statistics collector that
provides information about the distribution of the generated
anomaly scores for certain packets.

IV. EVALUATION

We thoroughly evaluated the performance of our proposed
system that combines multiple Anomaly Detection Algorithms
with our load allocation scheme. We stepwise evaluated all
core components that have been developed as part of the
anomaly detection framework. Our aim is to show that there
is a substantial benefit of using multiple ADAs, even when
only using three different instances of two distinct algorithms.
Furthermore, we demonstrate the capability of the controlled
load allocation scheme to ensure high detection rates in
high-speed networks without dropping packets due to the
computational complexities of the used ADAs.

For all the experiments, we used network traces as input data
to be able to compare results of different test runs. The anomaly
trace has been generated by recording traffic from the network
link of a “typical” home computer together with background
traffic generated by the operating system and other installed
applications. We artificially injected anomalies of 12 different
types by either generating entirely new packets or by modifying
recorded packets. The attack trace is based on the 1999 DARPA
Intrusion Detection Data Sets [17]. For our evaluation, we have
created a network trace by concatenating traffic from this data
set, including attack-free traffic for training of the algorithms
(if required) and traffic containing 8 different types of attacks.
The load allocation trace has been captured from the Gigabit
Internet uplink of a university. Thanks to the relatively high data
rate of 450 Mbits™' and by replaying the trace with different
speed multipliers, we have been able to stress our anomaly
detection framework, including the implemented algorithms
and the developed controlled load allocation scheme. Finally,
the detection rate trace is an artificially created trace consisting
of three types of packets, all identified by the used IP address:
the first type represents normal traffic, the second and third
type represent anomaly traffic. The two types of anomaly traffic
each contain exactly 500 packets that are equally distributed
over the trace in bursts of 10 packets. The duration of the
entire trace is 568 s (if replayed at a rate of 75 kpps; with the
used small packet size this results in 35 Mbits™").

A. Anomaly Detection Algorithms

First, we verified that the implemented algorithms work
as expected by performing several tests with the anomaly
and attack detection trace. Because a detailed analysis of the
implemented ADAs has already been provided in the publica-
tions of the authors, the aim of our evaluation is to show that
anomaly detection (and therefore attack detection) in general
can benefit from using multiple algorithms simultaneously. For
this evaluation the anomaly detection framework has been
configured to use a total number of three ADA instances,
namely the semi-supervised PHAD algorithm and the NETAD
algorithm in both, semi-supervised and unsupervised (auto)
operation mode. Based on the overall distribution of anomaly
scores we defined three sensitivity levels so that only packets
with anomaly scores in the top 0.01% / 0.1% / 1% pass the
filter.
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Figure 3 shows the number of anomaly types (anomaly trace)
and attack types (attack trace) that could be detected by using
multiple algorithms instead of one. The maximum number of
detectable anomaly/attack types is 12 for the anomaly trace and
8 for the attack trace, but not all anomalous packets passed the
filter. There were no false positives in the detected anomalies.

From that we can conclude that using multiple algorithms
has a positive impact on the overall detection performance,
even when only using a small number of different algorithms. If
additional algorithms would be integrated into the framework
we expect that detection performances could be increased
further. Clearly, more of our anomalies and attacks can be
detected if lower anomaly score thresholds are configured, but
this may also increase the number of false positives which is
not desired in practice. In practice detection sensitivity will
always be low. Figures 3a and 3b confirms this is exactly where
the combination of ADAs shows the highest benefits.

the congestion criterion. There have been almost no congestions
(and thus d(g;,) < 0.7) when replaying the input data with
the original speed, because (according to the average skip
probability of 0.0) every single packet could be analyzed. Also
when doubling the average packet rate, the pipeline does not
suffer from congestion with a probability of approx. 0.9.

In Figure 4c we can see that the data rate burst which has
caused a temporary congestion (and therefore an increase of
skip probabilities) when replaying the input data with original
speed only had a small impact on the number of detected
anomalies. Clearly, the overall detection performances decrease
if speed multipliers get larger. If we are doubling the speed,
only about 40 % of the original anomalies could be detected.
For a speed multiplier of 8, we have been able to detect only
12 out of 133 anomalies. This relationship can also be observed
in the increasing values of skip probabilities (cf. Figure 4a).

C. Behavior under Stress

To obtain more insights on the behavior under heavy load,
we analyzed the packet detection rate using the described
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Figure 5. Performance with increasing ADA load
detection rate trace. For this experiment, we implemented a
quite simple ADA, which only checks the IP source address
of the incoming packets and assigns a high anomaly score if it
matches. This guarantees that the number of detected anomalies
is not dependent on the packet arrival times or changes if
dropped packets lead to other internal system states. The most
important feature is that its CPU load can be manipulated. This
mechanism is used to investigate increasing skip probabilities.
The test configuration consists of two of the above simple
ADAs, one configured to give a high anomaly score to the first
type of anomaly traffic and the second is configured to give
a high anomaly score to the second type of anomaly traffic.
Thus, 50 % of the anomalies are supposed to be detected by
the first ADA and the other 50 % by the second ADA. The
test has been repeated multiple times, always increasing the
load on the second ADA (load value in the presented results).
Figure 5 shows the results of the experiment. As can be
seen, the anomaly detection systems without controlled load
allocation drops substantially more packets with increasing
load (more than 90 % at high load) with strongly decreasing
detection rates (about 8 % at high load). In contrast, the
proposed controlled load allocation scheme achieves much
higher detection rates. Instead of random packet drop, packets
skip only one (the more computationally expensive) ADA while
being processed by the other ADA. The resulting detection
rate is substantially higher (335 out of 1000 anomalies) while
the number of dropped packets is negligible.

V. CONCLUSION AND FUTURE WORK

We proposed an anomaly detection framework to optimize
attack detection in computer networks that has been imple-
mented as part of an existing network monitoring toolkit.
The framework features a controlled load allocation scheme
and can be used with different types of ADAs. However,

neither the framework nor anomaly detection in general
intends to replace existing (signature-based) techniques for
attack detection. Instead, anomaly detection should serve as a
supplement to traditional techniques for detecting novel attacks
that have not yet been described by signatures or rules.

Our framework provides an efficient way for packet-based
anomaly detection in computer networks, even in high-speed
networks. Although it currently only implements two different
ADAs, we could show that detection performances can benefit
from using multiple algorithms. As a next step, the integration
of additional ADAs should be considered in order to further
improve the overall detection rates. The adaption of existing
algorithms to protocols not yet supported might also be desired,
particularly when protocols like SCTP and DCCP become more
popular. To provide a mixture of packet-based and flow-based
processing, also anomaly detection for packet payloads stored
within flow data (like Internet Protocol Flow Information Export
(IPFIX) records) may be considered as a further enhancement.
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