
An Architecture for Sender-based Addressing for
Selective Sensor Network Wake-Up Receivers

Johannes Blobel, Janis Krasemann and Falko Dressler
Distributed Embedded Systems (CCS Labs), Heinz Nixdorf Institute, Paderborn University, Germany

{blobel,dressler}@ccs-labs.org, janiskra@mail.uni-paderborn.de

Abstract—Duty cycling has been the main concept for saving
energy in sensor networks for a long time. Yet, additional
overhead for synchronization and the fact that overhearing and
idle listening cannot completely be prevented, motivated further
research. Wake-up receiver, i.e., additional ultra-low power radios
that are not switched off and can receive a so called wake-
up signal, aim to fill this gap. The wake-up signal can either
be a simple energy burst that wakes up all nodes in reception
range or can include an address to wake up individual nodes. In
this paper, we introduce a novel addressing scheme for wake-up
receivers that supports broadcast, multicast, and unicast wake-
ups, and which can be realized in hardware with little additional
complexity at the receiver. We implemented a prototype based on
a commercially available wake-up receiver to show the feasibility
of our approach. We discuss the tradeoff between the length of
the wake-up signal and the possible energy savings and show
an application example for sending software updates to sensor
nodes in an energy saving way.

I. INTRODUCTION

A crucial property of Wireless Sensor Networks (WSNs)
is the limitation of resources, foremost their restricted energy
capacity and, thus, network lifetime [1], [2]. As a powerful
concept, duty cycling is used for many of such networks where
a node is in a low-power sleep mode for most of the time
and only wakes up shortly to fulfill its task like collecting
sensor data and exchanging information with other nodes. Since
communication between nodes can only be successful if all
participating nodes are awake at the same time, the nodes have
to be synchronized. This synchronization can been achieved by
specialized MAC protocols, like S-MAC, T-MAC, or WiseMAC
[3]. However, the additional overhead used for synchronization
is not acceptable in ultra low-power scenarios. Also, the existing
protocols cannot prevent the waste of energy by overhearing
or idle listening completely, which leaves room for further
optimizations.

Wake-up Receivers (WuRxs) are a promising approach to
solve these shortcomings [4]. They approach the problem of
synchronization by adding the ability to wake-up a remote node
using a radio signal. Of course, this requires the receiver of the
wake-up signal to be turned on the whole time, which means
that the main transceiver of a node cannot be used. Instead
an additional receiver – the Wake-up Receiver – is added to a
node which has very low power consumptions (typically a few
µA down to nA [5]) and can therefore be in receiving mode all
the time. The low power consumption comes at the cost of a

low achievable data rate or low sensitivity. Since this receiver
is not used to transmit the actual payload of a node this is an
acceptable limitation.

The wake-up signal itself can also contain modulated data
that can be used to include additional information to the signal
[6]. Today, commercially available wake-up receivers already
allow the user to choose between a simple broadcast mode
and a pattern recognition mode. In the first mode, the node is
woken up upon the reception of a simple energy burst on the
carrier frequency. Since this is prone to false wake-ups due
to other transmissions on the same frequency and noise, the
pattern recognition mode only wakes up a node if a predefined
pattern is received. The name “pattern” instead of address
already suggests that this is mainly used to reduce the amount
of false wake-ups rather than adding an addressing scheme.

In this paper, we show how the ability to encode data
within the wake-up signal can be used to implement a versatile
addressing scheme for wake-up receivers. With this technique
it is possible to send a broadcast, multicast, or unicast wake-up
signal. A key feature of our architecture is that the sender
of the signal can precisely determine which nodes should be
woken-up, which adds exiting new possibilities to the whole
field of WSNs. We call this a Selective Wake-up Receiver
(SWuRx). One key application is the use for software updates
in our BATS project. Here, ultra-low power sensor nodes are
used to track and localize bats in their natural environment [7].
The developed SWuRx helps to wake-up only those nodes
selectively that need to interact with the sender, e.g., for
reconfiguration. We developed an hardware prototype for first
direct measurements and also analyzed the performance of the
resulting system.

Our key contributions can be summarized as follows:
• We introduce a novel addressing scheme for wake-up

receivers supporting unicast, multicast, and broadcast and
the corresponding hardware architecture (Section III).

• We develop a prototype hardware solution that can be
combined with a variety of commercially available wake-
up receiver chips and measured the resulting performance
(Section IV).

• Using the BATS project example, we investigate the
capabilities of the system for normal communication as
well as software updates of our mobile systems using
simulation (Section V).

• We analyze the potential energy savings in homogeneous
networks (Section VI).978-1-5090-2185-7/16/$31.00 ©2016 IEEE

II. RELATED WORK

One of the first papers on WuRxs already included a simple
addressing scheme based on the utilization of multiple radio
frequencies [8]. Since then many systems have been proposed,
that differ in sensitivity (which determines the wake-up range),
power consumption, delay, and addressing capabilities. An
overview and comparison of different WuRx implementations
along with a discussion of their benefits and drawbacks can
be found in [9] and [4].

Addressing is often done with the help of the microcontroller
or with a correlator within the WuRx [9]. A different approach
for address matching using the timing between two consecutive
signals and the help of the microcontroller was proposed in
[10]. The address is encoded within the time between two
consecutive signals. Each signal wakes up the microcontroller
very shortly to measure the timing and check for a match. The
authors compare their addressing scheme to the correlator-based
address matching and microcontroller-decoding of the signal.
While this scheme only uses very little power, the duration of
a wake-up signal is rather long (48 ms to 68 ms), since each
address bit is encoded using a delay between two signals.

Bloom-filters for group based ID matching in a WuRx has
been presented in [11]. The transmitted wake-up signal includes
a bloom-filter to specify a group of nodes that should be woken
up. Each node has its own bloom-filter, that specifies the groups
it belongs to. If the received signal matches, i.e., the node
belongs to the transmitted group, the node is woken up. This
scheme cannot wake-up single nodes, but only groups of nodes.

Many WuRx implementations only have a very poor sensi-
tivity, which limits the reception range to less then 10 m. The
WuRx presented in [12], however, can reach a sensitivity of
−83 dBm This allows for a wake-up distance of 1200 m (when
sending with 10 dBm). However, the low current consumption
of 3 µA and the good sensitivity comes at the cost of a very
high latency of 484 ms.

III. SELECTIVE WAKE-UP RECEIVER

A. Addressing Concept

Today, commercially available wake-up receivers like the
AS3933 from AMS can decode an On-Off-Keying (OOK)
modulated signal and check whether this signal contains a
certain predefined pattern. The pattern can be configured by
the nodes microcontroller via an SPI interface and can be
changed during runtime. Even though the main reason for
using this pattern recognition is to prevent false wake-ups due
to other signals on the same channel, it can also be used as an
addressing scheme. If all nodes are set to the same pattern, a
wake-up signal containing this pattern will wake up all nodes in
communication range and can therefore be seen as a broadcast.
If all nodes have a unique pattern configured, this pattern serves
as an address and a unicast wake-up is possible. A mix of
these two options would be possible if groups of nodes have
common patterns configured which would allow a multicast
wake-up. The problem with this existing solution is the fact
that, the communication scheme has to be pre-configured by

Configured Pattern 1 0 1 1
Received Address 1 0 0 0
Received Mask 1 1 0 0
Match 1 1 1 1

Figure 1. Example of the pattern matching for a multicast wake-up

the receivers. A switch from broadcast to unicast wake-ups
would require all nodes to wake-up and reconfigure their wake-
up receiver to listen to a unique pattern. To switch back to
broadcast each node would have to be woken up separately to
change the pattern back to the common broadcast pattern.

Our selective wake-up receiver adds the possibility to choose
the communication scheme by the sender of the wake-up signal
without the need to reconfigure each node. Before we explain
the logic design, let us consider the basic working principle:

• Each node has a unique pattern configured which serves
as an address

• The wake-up signal contains an address and a mask
• A node is woken up if the bits of the received address

determined by the mask match the configured pattern
Figure 1 illustrates a multicast wake-up. The unique pattern

configured in the nodes WuRx is shown in the first row (blue).
The received signal (address and mask) is shown in the next
two rows (green). The first two bits of the mask are set to 1,
therefore, the stored pattern and the received address have to
be equal at this positions in order to get a match. The last
two bits of the mask are 0, indicating that these bits are not
relevant for the address matching, therefore these two bits will
always match.

Using this technique, the sender can determine the com-
munication scheme by sending a specific mask. If all mask
bits are set to 1 only one node with the matching pattern will
wake up, which is a unicast wake-up. For a broadcast all bits
of the mask are set to 0 which means that every pattern will
match any address and all nodes receiving this signal wake up.
To send a multicast wake-up signal a subset of bits, that are
relevant, are set to 1, which will only wake up a subgroup of
nodes.

B. Logic Design

The above mentioned functionality can be added to existing
techniques with only very little additional hardware. In fact,
only a couple of additional logic gates are required to
implement the aforementioned logic. A conventional correlator
simply bit-wise compares the received address, that is stored
in a register, with a predefined pattern. If all bits match, an
interrupt pin is set high, waking up the microcontroller [9].

By using some more logic gates the correlator can be
extended to also check the mask of the received signal. As
before, the received signal is shifted into a register to store it
and then parallel logic gates correlate the received signal with
the predefined pattern.

Figure 2 shows the conceptual structure of the SWuRx. The
pattern P = [p1, p2, . . . , pn] is set by the microcontroller and is
stored in a register. The address A = [a1, a2, . . . , an] and mask
M = [m1,m2, . . . ,mn] are received by the wake-up receiver

Mask

Address

Patternfrom µC

from
WuRx

=1
≥1 &

wake-up
interrupt

a) b) c)
pi

ai

mi

ei bi r

¬mi

Data

Clock

Counter

&

Data

Figure 2. Logical Structure of the SWuRx. The data is shifted into the registers. From there the logic combinations are done in parallel for each bit and finally
combined to the resulting signal r. After n clock cycles, the output of the counter goes high, signaling that r is now stable.

and are also shifted into registers. For all bits i ∈ {1 . . . n},
the following logical combinations are realized in three steps:
(a) ei = XNOR(ai, pi): True if pattern and address are equal.
(b) bi = OR(ei,¬mi): True if either ei is 1 or mask is 0.
(c) r = AND(bi∀i ∈ {1 . . . n}): True if all bits match.

In other words, the output of the correlator for bit i is either
1 if the mask is 1 and the address and pattern are equal or it
is 1 if the mask is 0. In the end, all results bi from phase (b)
are merged with one n-AND gate. As a result, the wake-up
interrupt will only be generated if for all bits the result of step
(b) is 1.

During the shifting of the data into the registers, the result
of the correlator can change and be in an undefined state, since
the shift register has no latch functionality. Therefore, the clock
signal from the WuRx is also send to a counter. After 2n clock
cycles (n-bit for the address and n-bit for the mask), the output
of the counter switches to 1. This signal signifies the end of the
reception and therefore means, that the output of the matching
logic in step (c) is now stable. If this timer signal and the
logic signal are both 1, the interrupt of the microcontroller is
triggered which wakes it up from the sleep state.

C. Broadcast Optimization and Mask Encoding

Based on this scheme some modifications are possible to
reduce the required number of bits in the wake-up signal. When
a broadcast signal is send, all mask bits are set to 0 and the
content of the address is completely irrelevant. It is therefore
not necessary to actually transmit these bits. If we change
the architecture to send the mask first, an interrupt can be
raised immediately if n consecutive 0s are received. This can
be implemented by using the already existing counter which
creates a signal after n clock cycles. This is combined with
the inverted mask signals. Using this shortcut, the energy for
using a broadcast wake-up signal can be halved.

Further reduction of the wake-up signal can be done, if it is
not necessary to mask every address bit individually but only
the first m bits. In this case, the mask can be send as a binary

Figure 3. Our SWuRx prototype using standard logic ICs. The green PCB on
the top left side contains the WuRx, the red board the microcontroller. Debug
LEDs show the content of the registers.

encoded number, specifying the number of masked bits. The
received mask signal would then have to be decoded before
being used in the aforementioned logic.

IV. HARDWARE PROTOTYPE

We have built a hardware prototype of the SWuRx using
discrete standard logic gates and shift registers. A picture of
the prototype can be seen in Figure 3.

Since most standard ICs are available as quadruple gates,
our prototype has an address and mask width of 4 bits. The
ICs used are from the 74HCxx series, the AND gate from step
(c) in the previous section, for example, is a 74HC08 quad
2-input AND gate. As Wake-up Receiver, we used an AS3933
which can receive an OOK modulated, Manchester encoded
wake-up signal. In order to be able to use standard transceivers,
the antenna input of the AS3933 is preceded by an envelope
detector that extracts the envelope of the received RF-signal
(868 MHz) and feeds a 125 kHz signal to the WuRx. By using
Manchester coding for the wake-up data, the chip can not only
retrieve the data signal itself, but can also recover the clock

0
1
2
3
4

0
1
2
3
4

0
1
2
3

0
1
2
3
4

D
at

a
 in

 V
Cl

oc
k

 in
 V

In
te

rr
up

t
 in

 V
Cu

rr
en

t
 in

 m
A

0 2 4 6
Time in ms

(a) The received address does match the preconfigured pattern: an interrupt is
raised.

0
1
2
3
4

0
1
2
3
4

0
1
2
3

0
1
2
3
4

D
at

a
 in

 V
Cl

oc
k

 in
 V

In
te

rr
up

t
 in

 V
Cu

rr
en

t
 in

 m
A

0 2 4 6
Time in ms

(b) The received address does not match the preconfigured pattern: no interrupt
is raised.

Figure 4. Signals and current consumption of the testbed during reception of a unicast wake-up signal.

signal. Both signals, data and clock, are fed to the SWuRx
prototype circuit.

The received address and mask are stored in a shift register
(74HC164). The outputs of the shift registers are connected
to the corresponding logic gates. As a counter we used the
74HC193 4-bit binary counter. The fourth output Q3 of this
counter goes high after 8 clock cycles. This counter signal is
also fed to an RC delay filter, which resets the whole circuit
after 1 ms.

As microcontroller, we used an MSP430G2553 on a TI
Launchpad. The microcontroller configures the AS3933 WuRx
over its SPI interface and writes a pattern to the corresponding
shift register of our circuit. It then goes into the low-power
mode LPM4, from which it can only be woken up via an ex-
ternal interrupt. If such an interrupt occurs, the microcontroller
runs for 3 ms and then goes to the sleep mode again.

The wake-up signal is generated using GNU Radio, a real-
time signal processing framework for use in SDR platforms
and send with an Ettus B210 USRP. This allows for a precise
control of the wake-up signal and the transmitted data.

A. Qualitative Measurements of Prototype

The developed prototype shows the feasibility of our pro-
posed architecture. We conducted experiments to investigate
how the wake-up receiver reacts to different signals and
measured the current that was used by the system.

Figure 4a shows the incoming signals Clock and Data from
the AS3933, the wake-up interrupt signal, and the current
consumption of the whole testbed. In this example a unicast
wake-up signal was received (the last 4 bit are 1) which matches
the pattern that was preconfigured by the microcontroller.
Therefore at the end of the reception, the wake-up interrupt
is raised and the microcontroller wakes up. The total power
consumed was 46 mJ. It can be seen that during the reception
of the signal, the current consumption is slightly higher. The
large discrete logic gates and the charging of the capacitor of
the RC delay filter consume considerable power. If the logic

would be directly integrated into a silicon chip the additional
power required would be much lower.

When a signal is sent that does not match a nodes address,
the microcontroller is not woken up. This can be seen in
Figure 4b where a unicast signal with a wrong address is sent.
As before, the logic circuit consumes a little power during the
reception of the signal, but since no interrupt is raised, the
microcontroller is not woken up. The total power consumed
was 14 mJ.

V. SWURX FOR SOFTWARE UPDATES OF LOW-POWER
SENSOR NODES

In this section we introduce an application example for
our proposed SWuRx. It was developed in the context of our
current Dynamic Adaptable Applications for Bats Tracking by
Embedded Communicating Systems (BATS) project [7]. The
project’s goal is to enable biologists to observe bats in their
natural habitat. This is done by attaching sensor nodes to the
animals’ bodies, which send collected data to several ground
nodes that are distributed within the observation region. The
constraints regarding weight and energy usage of these sensor
nodes are very strict, since bats are rather small animals and
the nodes must not influence their natural behavior. The total
weight of the sensor including the battery must not exceed 2 g.
Since the bats move very quickly, the communication channel
is highly unreliable. For the downlink from the sensor nodes
to the ground stations, we successfully used Erasure Codes
(ECs) as a forward error correction mechanism [13].

In the other direction, we investigated the usage of rateless
ECs, namely fountain codes, to send firmware updates and
reconfigurations to the mobile nodes. We developed a com-
munication protocol that uses a SWuRx and fountain codes
[14] in order to offer a reliable uplink to the sensor nodes
while being as energy efficient as possible. When using fountain
codes, a message is divided into several source packets. In each
encoding step, a subset of these source packets is then encoded
using a generator function and send to the receivers. Since

this is a rateless EC, arbitrary many packets can be generated.
This approach eliminates the need for retransmissions when a
certain packet cannot be received by one of the mobile nodes.
A node only has to receive enough other packets in order to
decode the original message. The drawback of fountain codes
is that the recipient may not be able to decode the message
as soon as the minimum number of packets is received (this
depends on the combination of source packets that were used
by the generator function to generate each packet). To send an
update, a ground station just has to send fountain code encoded
packets until all nodes acknowledged the successful reception
of the update.

Because of packet erasure (we assume a binary erasure
channel here, i.e., a packet is either entirely lost or successfully
transmitted), some nodes may finish decoding the message
sooner than others. If a node receives a packet that belongs to
an update it has already decoded, we consider this a false wake-
up. The goal of the update protocol is to use the addressing
and masking capabilities of the SWuRx in order to minimize
such false wake-ups.

The ground station protocol starts sending packets to all
nodes by first waking them up with a broadcast wake-up signal
and then sending the packet over the main transceiver. If nodes
start to successfully decode the update message and signal
this by sending an acknowledgment, the algorithm changes
the wake-up signals to multi- or even unicast signals. This
prevents nodes that already received the update from waking
up unnecessarily, which can save a lot of energy.

In order to minimize the number of false wake-ups, we
developed an algorithm that tries to narrow down the set of
possible recipients every time an acknowledgment arrives by
creating new multicast groups that address a smaller number
of nodes than before. The quality of this grouping depends
on the length of the wake-up signal. If it is too small, only
imperfect groups can be created, which leads to false wake-ups.
If the length of the wake-up signal is sufficient, the sender
can address every node individually and therefore reduce the
number of false wake-ups to zero. This only works if the sender
knows that the specific node successfully decoded the message,
i.e., false wake-ups are still possible if acknowledgments are
lost due to packet erasure.

We evaluated the performance of this protocol and the
SWuRx using OMNeT++ [15] and MiXiM [16]. In the
experiment, a single ground station sends an update message,
that requires at least ten packets to be decoded, to 128
nodes. We measured the amount of false wake-ups when using
different wake-up signal lengths and under different packet
loss probabilities. In our simulations, the SWuRx uses a binary
encoded mask instead of the direct representation as proposed
in Section III-C. We used the following wake-up pattern:

• 1 bit (1 bit for the mask, 0 bit for the address): Only
broadcasts are possible; the results for this configuration
are used as a reference as to how energy efficient the
SWuRx really is.

• 2 bit (1 bit for the mask, 1 bit for the address): This allows
the protocol to do broadcasts and multicasts to two groups

0

500

1000

1500

1 2 5 10
Wake-up Signal Length in bits

N
um

be
r o

f F
al

se
 W

ak
e-

U
ps

Error Rate
0
0.05
0.3
0.5

Figure 5. Number of false wake-ups during the update process.

with 64 nodes.
• 5 bit (2 bit for the mask, 3 bit for the address): The protocol

allows multicasts to groups of 16.
• 10 bit (3 bit for the mask, 7 bit for the address): This is the

optimal configuration for 27 = 128 nodes, as it allows the
sender to address every node individually, if necessary.

Other OOK lengths (such as 8 bit) are not considered, as the
protocol could not make full use of the mask because there
are not enough address bits in the wake-up message. We used
the mobility model from [17] for the bats in the simulation,
which means that it is possible that a node temporarily moves
out of communication range of the ground node.

Figure 5 shows the mean and the standard deviation of the
number of false wake-ups depending on the packet error rate
and the wake-up signal length. The results indicate that the
number of false wake-ups decreases the more bits are used
for the wake-up signal, with the best value being reached for
10 bit. If the communication channel is not perfect, the number
of false wake-ups using the broadcast scheme (signal length of
1 bit) is very high. But when using a sufficiently large wake-up
signal this effect is drastically reduced. We also observe that
the positive impact of a longer wake-up signal is larger for a
worse communication channel. The relative difference in false
wake-ups between the 1 bit and 10 bit configurations increases
with the packet error rate.

Our simulations show that the use of a SWuRx can greatly
reduce the number of false wake-ups in a system, where
information should be send to individual nodes or groups of
nodes. This can save energy on the nodes that are not woken
up unnecessarily. This system could also be used to reconfigure
only a subset of the mobile nodes.

In the BATS project, the mobile nodes send their data to the
ground nodes when they are woken up. The transmitted RF
signal is not only used for sending the data, it also allows to
track the position of the bat. Using a SWuRx for waking up
the nodes makes it possible to track different individuals with
different time resolutions. If the biologists notice something
interesting during a running experiment, they can increase the
rate of wake-up signals for single individuals without increasing
the energy consumption for the other nodes.

VI. ANALYSIS OF ENERGY SAVINGS IN HOMOGENEOUS
NETWORKS

The main incentive for using a wake-up receiver in sensor
networks is to save energy by avoiding idle listening and
overhearing while keeping the communication latency low. So
far, we only focused on the reception of a wake-up signal
which can be done with very little additional energy. Yet, the
power required for the transmission of a signal also plays an
important role for the applicability and usefulness of such a
system. In the presented application example, the wake-up
signal was send out by the ground stations that serve as data
collectors and do not have such tight energy budgets as the
mobile nodes. This is a typical scenario in WSNs and it has
been shown that the energy savings using a WuRx can be very
high in comparison to a duty-cycle based system [18].

On the other hand, when wake-up signals should be send by
sensor nodes as well, the energy consumption for sending this
signal has to be taken into consideration. The achievable data
rate of a wake-up receiver is often much lower than that of the
main transceiver [9]. That means that the transmitter has to be
powered on for a rather long time to send the wake-up signal.
In order to save energy within a network using the SWuRx,
the total energy saved by not waking up nodes unnecessarily
must be greater than the energy used for sending the signal.

For the analysis, we consider the following scenario. In a
WSN one initiating node sends a wake-up signal in order to
wake up nodes it wants to communicate with. When using a
WuRx without addressing capabilities, all nodes receiving this
signal wake up, enable their main transceiver and receive some
data from the initiating node. If the data was not destined for
a node, this means that it was woken up unnecessarily. This
node would then discard the received message and return to
sleep mode. When using our SWuRx, such false wake-ups
can be prevented, which saves energy. The number of false
wake-ups highly depends on the considered scenario and the
density of the network. Also the power consumption required
for transmitting and receiving determines the usefulness of our
proposed solution.

The energy saved per wake-up event E depends on the
number of nodes n that are not falsely woken up (prevented
false wake-ups) by using the selective wake-up receiver and
the energy used for sending the wake-up signal:

E = (PRX · TRX + PµC · TON) · n︸ ︷︷ ︸
energy saved by not waking up

−PTX · TWuRx︸ ︷︷ ︸
wake-up signal

, (1)

Burst

0.8 ms

Separation Bit
and Preamble

0.875 ms

Wake-up Data

2 ms

Figure 6. Structure of a wake-up signal for the AS3933 WuRx. The signal
consists of a preceding burst, followed by a preamble and the actual data.

where PRX and PTX are the power consumptions for receiving
and transmitting over the main transceiver, TON is the time a
falsely woken up node is powered on and uses a power of PµC .
TRX determines the time that a node requires for receiving a
message after wake-up. The energy required to send a wake-up
signal is given by the transmit power consumption PTX and
the duration of the wake-up signal TWuRx

As an example we use the values from our mobile nodes in
the BATS project which can be found in [19]. The AS3933
that we used for our hardware prototype can receive at most
4 kbit (Manchester symbols) per second which corresponds to
a symbol duration of 250 µs. The wake-up signal has to follow
the protocol determined in Figure 6. At the start of the signal a
carrier burst of 0.8 ms is send followed by a separation bit and
a preamble of 6 bit. Each bit of the preamble has a duration of
half a Manchester symbol which gives a total of 0.875 ms. For
our prototype we then have to send 8 bit of data which takes
additional 2 ms. In total the transmission of a wake-up signal
takes TWuRx = 3.675ms.

Following Equation (1), we can calculate the minimum
number of false wake-ups that have to be prevented with our
system in order to actually save energy (the break even point):

n =

⌈
PTX · TWuRx

PRX · TRX + PµC · TON

⌉
(2)

We already fixed the time for sending a wake-up signal to
TWuRx = 3.675ms. Based on our previous work [19] using the
CC430, we assume the power required by the microcontroller in
active mode to be PµC = 10.5mW. The power consumption
for sending is PTX = 99mW and for receiving PRX =
45mW. The reception duration TRX depends on the number
of received bytes and the datarate of the main transceiver. For
this example we use a data rate of 200 kbit/s. We assume that
a falsely woken up node will be turned on for TON = 2ms.

Table I
MINIMAL NUMBER OF PREVENTED WAKE-UPS REQUIRED IN ORDER TO

REACH THE BREAK EVEN POINT.

Received Bytes per wake-up 2 8 16 32
Number of prevented false wake-ups required 16 10 7 5

Given these values, we can calculate the minimum number
of prevented false wake-ups in order to reach the break even
point depending on the amount of received data per wake-
up, which is shown in Table I. The analysis shows, that the
additional energy used for sending a selective wake-up signal
only pays off, if sufficiently many nodes are not falsely woken
up. If a node only receives few data, the energy losses for a
false wake-up are not that high compared to the energy used
for sending the wake-up signal. In networks with low density
or if only little data is exchanged, it could be better to use a
shorter wake-up signal without addressing, that requires less
energy. Another option would be to use the proposed broadcast
shortcut from Section III-C if this would cause only few nodes
to wake up unnecessarily. This would reduce the energy for
sending the wake-up signal by 50 %.

VII. DISCUSSION AND CONCLUSION

We presented a new approach for using wake-up receivers
in a more flexible way. Instead of waking up all nodes within
reception range, our architecture also allows to selectively wake
up single nodes or groups of nodes. The decision which wake-
up scheme should be used is done by the sender of the signal
and does not require any reconfiguration of the mobile nodes.
This great increase in flexibility makes it possible to use the
wake-up technique in a more fine granular way which can
save even more energy. To implement this functionality only
little additional logic is required on the wake-up receiver. We
have built a hardware prototype to show the feasibility of our
approach and conducted first experiments and measurements.

As a first application example we used the new scheme
to distribute a software update to sensor nodes in an energy
efficient way. With the possibility to select nodes very fine
granular only those, that have not received the complete update
yet have to be woken up. This saves energy on all other
nodes and can therefore prolong the network’s lifetime. In
heterogeneous scenarios, where the wake-up signal is send out
by nodes with sufficient energy available (like data collectors,
base stations), the energy savings can be very high. If the
wake-up signal is also send by energy constrained mobile
nodes the energy savings depend on the scenario. We plan to
do further measurements and experiments and investigate other
application areas.

VIII. ACKNOWLEDGMENTS

This work has been supported by the German Research
Foundation (DFG) under grant no. FOR 1508.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A
Survey on Sensor Networks,” IEEE Communications Magazine, vol.
40, no. 8, pp. 102–114, Aug. 2002.

[2] I. Dietrich and F. Dressler, “On the Lifetime of Wireless Sensor
Networks,” ACM Transactions on Sensor Networks (TOSN), vol. 5, no.
1, pp. 1–39, Feb. 2009.

[3] P. Huang, L. Xiao, S. Soltani, M. W. Mutka, and N. Xi, “The Evolution
of MAC Protocols in Wireless Sensor Networks: A Survey,” IEEE
Communications Surveys Tutorials, vol. 15, no. 1, pp. 101–120, Feb.
2013.

[4] I. Demirkol, C. Ersoy, and E. Onur, “Wake-up receivers for wireless sen-
sor networks: benefits and challenges,” IEEE Wireless Communications,
vol. 16, no. 4, pp. 88–96, Aug. 2009.

[5] S. Marinkovic and E. Popovici, “Nano-Power Wireless Wake-Up
Receiver With Serial Peripheral Interface,” IEEE Journal on Selected
Areas in Communications, vol. 29, no. 8, pp. 1641–1647, Sep. 2011.

[6] R. De Francisco and Y. Zhang, “An Interference Robust Multi-Carrier
Wake-up Radio,” in IEEE Wireless Communications and Networking
Conference (WCNC 2011), Cancun, Mexico: IEEE, Mar. 2011, pp. 1265–
1270.

[7] F. Dressler, S. Ripperger, M. Hierold, T. Nowak, C. Eibel, B. Cassens,
F. Mayer, K. Meyer-Wegener, and A. Koelpin, “From Radio Telemetry
to Ultra-Low Power Sensor Networks - Tracking Bats in the Wild,”
IEEE Communications Magazine, vol. 54, no. 1, pp. 129–135, Jan.
2016.

[8] L. Gu and J. A. Stankovic, “Radio-triggered wake-up for wireless
sensor networks,” Real-time Systems, vol. 29, pp. 157–182, 2005.

[9] J. Oller, I. Demirkol, J. Casademont, J. Paradells, G. Gamm, and
L. Reindl, “Performance Evaluation and Comparative Analysis of
SubCarrier Modulation Wake-up Radio Systems for Energy-Efficient
Wireless Sensor Networks,” MDPI Sensors, vol. 14, no. 1, pp. 22–51,
Dec. 2013.

[10] J. Oller, I. Demirkol, J. Paradells, J. Casademont, and W. Heinzelman,
“Time-Knocking: A novel addressing mechanism for wake-up receivers,”
in 8th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob 2012), Barcelona, Spain:
IEEE, Oct. 2012, pp. 268–275.

[11] S. Ishida, T. Takiguchi, S. Saruwatari, M. Minami, and H. Morikawa,
“Evaluation of a wake-up wireless module with Bloom-filter-based
ID matching,” in 8th Asia-Pacific Symposium on Information and
Telecommunication Technologies (APSITT 2010), Kuching, Malaysia:
IEEE, Jun. 2010, pp. 1–6.

[12] H. Milosiu, F. Oehler, M. Eppel, D. Fruhsorger, S. Lensing, G. Popken,
and T. Thones, “A 3-µW 868-MHz wake-up receiver with -83 dBm
sensitivity and scalable data rate,” in ESSCIRC 2013, Sep. 2013, pp. 387–
390.

[13] F. Dressler, M. Mutschlechner, B. Li, R. Kapitza, S. Ripperger, C. Eibel,
B. Herzog, T. Hönig, and W. Schröder-Preikschat, “Monitoring Bats
in the Wild: On Using Erasure Codes for Energy-Efficient Wireless
Sensor Networks,” ACM Transactions on Sensor Networks (TOSN), vol.
12, no. 1, Feb. 2016.

[14] D. MacKay, “Fountain codes,” English, IEE Proceedings - Communi-
cations, vol. 152, no. 6, 1062–1068(6), Dec. 2005.

[15] A. Varga, “The OMNeT++ Discrete Event Simulation System,” in
European Simulation Multiconference (ESM 2001), Prague, Czech
Republic, Jun. 2001.

[16] A. Köpke, M. Swigulski, K. Wessel, D. Willkomm, P. K. Haneveld,
T. Parker, O. Visser, H. S. Lichte, and S. Valentin, “Simulating Wireless
and Mobile Networks in OMNeT++ – The MiXiM Vision,” in 1st
ACM/ICST International Conference on Simulation Tools and Tech-
niques for Communications, Networks and Systems (SIMUTools 2008):
1st ACM/ICST International Workshop on OMNeT++ (OMNeT++
2008), Marseille, France: ACM, Mar. 2008.

[17] M. Mutschlechner, B. Li, R. Kapitza, and F. Dressler, “Using Erasure
Codes to Overcome Reliability Issues in Energy-Constrained Sensor
Networks,” in 11th IEEE/IFIP Conference on Wireless On demand
Network Systems and Services (WONS 2014), Obergurgl, Austria: IEEE,
Apr. 2014, pp. 41–48.

[18] J. Oller, I. Demirkol, J. Casademont, J. Paradells, G. U. Gamm,
and L. Reindl, “Has Time Come to Switch From Duty-Cycled
MAC Protocols to Wake-Up Radio for Wireless Sensor Networks?”
IEEE/ACM Transactions on Networking, 2015, to appear.

[19] F. Dressler, B. Bloessl, M. Hierold, C.-Y. Hsieh, T. Nowak, R. Weigel,
and A. Koelpin, “Protocol Design for Ultra-Low Power Wake-Up
Systems for Tracking Bats in the Wild,” in IEEE International
Conference on Communications (ICC 2015), London, UK: IEEE, Jun.
2015, pp. 6345–6350.

