
Towards Software-Centric Listen-Before-Talk on
Software-Defined Radios

Sebastian Bräuer, Anatolij Zubow, Falko Dressler
Technische Universität Berlin, Chair of Telecommunication Networks

Email: {braeuer,anatolij.zubow,dressler}@tu-berlin.de

Abstract—Listen-Before-Talk (LBT) is an essential function
of many MAC protocols and a key mechanism of sharing
spectrum in an uncoordinated manner. However, this simple
but effective concept remains a major challenge for Software-
Defined Radios (SDRs). If performing the protocol stack on a
host PC, due to their structure, SDRs have inherent latencies
built in. These latencies increase their reaction time, the so-called
turnaround time, significantly, compared to their conventional
radio counterparts. Unfortunately, this means that they can-
not comply with the LBT channel access procedures used in
modern protocols like IEEE 802.11 or LTE Licensed-Assisted
Access (LTE-LAA). Given the flexibility and rapid-prototyping
capabilities of SDRs, these protocols could clearly benefit from
such SDR-based implementations. In this paper, we fill this gap
and present a design approach for SDRs supporting LBT. We
particularly focus on the rather complicated timing issues. As a
proof-of-concept, we showcase our LBT-enabled implementation
of the srsLTE software stack for LTE.

Index Terms—Listen-Before-Talk, Software-Defined Radio,
GNU Radio, USRP

I. INTRODUCTION

Software-Defined Radios (SDRs) have proven to be a very
useful tool in the hands of researchers and engineers alike. In
such a radio system, significant parts of the transceiver, which
traditionally would be implemented as dedicated circuitry,
are instead handled digitally by a General Purpose Processor
(GPP) [1]. This concept has the clear advantage that such a
radio is much more flexible in its use. While a traditional radio
is tied to the physical characteristics of the radio protocol it
was built for, software radios can easily switch their protocol
(also referred to as waveform) during their runtime through a
simple software update. This makes them an ideal platform for
specialized radio purposes, where possibly multiple waveforms
are required in a single unit as well as for rapid prototyping
of (new) protocol stacks [2]–[5]. A popular programming
framework for such SDRs is GNU Radio [6].

Now, some protocols require action on the scale of mi-
croseconds for specific parts of the protocol stack. A typical
example is Listen-Before-Talk (LBT), which is an essential
function of many MAC protocols and a key mechanism of
sharing spectrum in an uncoordinated manner. Examples in-
clude modern protocols like IEEE 802.11 [7] or LTE Licensed-
Assisted Access (LTE-LAA) [8]. The LBT mechanism creates
a unique problem for software-defined radios. In order to
increase flexibility of the SDR, most (in the best case, all) of
the protocol stack is implemented in software in a GPP, which
typically runs on a host PC. This introduces additional latency

in the signal and protocol processing and particularly increases
the reaction time, the so-called turnaround time, significantly.

This additional latency has two main sources: First, process-
ing delay is introduced by the GPP. In a traditional radio all
signal processing task such as filtering, modulation, etc. are
handled in parallel by specialized circuits. In an SDR, these
computationally heavy tasks have to be handled by the GPP on
a limited number of processor cores with additional overhead
for parallelization. Second and most importantly, latency is
added due to the necessary transport of data between the
SDR components. Due to the fact that a powerful processor
is required for signal processing, the GPP often cannot be
co-located with the other radio components on the same
circuit board. Typically, the GPP is connected via some high-
bandwidth link such as Gigabit or 10-Gigabit Ethernet, PCIe,
or USB 3.0. This requires additional buffering, packetization,
and processing. The additional latency adds up to the order of
milliseconds, depending on the specific hardware used.

This creates a unique problem for software-defined radios:
How can we facilitate time-critical functions using software
radios with all their advantages? One answer is to be bring the
software processing closer to the radio hardware. The easier
approach is to just bring the GPP physically closer to the radio
hardware on the same SoC. An example would be the USRP
E300 device family by Ettus [9]. Unfortunately, this SoC is
usually limited in its processing power. The second, powerful
but substantially more complicated approach is to make use
of Field Programmable Gate Arrays (FPGAs). Such an FPGA
is programmed to handle most of the protocol stack, while
the GPP only interacts on a high-level packet interface. An
example is the Labview platform [10] by National Instruments.
While this approach works, it introduces additional complexity
and decreases flexibility.

In our opinion this is an unnecessary price to pay. In this
paper, we present a novel LBT controller concept to bridge this
gap. We follow the split-functionality approach by Nychis et al.
[11]. The goal is to reduce the complexity of the hardware
design and preserve the flexibility. Functions of the stack
with loose timing restrictions should remain in the software
domain, and only time-critical functions that need to be close
to the radio frontend should be implemented in hardware. We
particularly focus on one specific time-critical core function
which is common among many protocols: Listen-Before-Talk.
We present how LBT can be designed with a software-centric,
split-functionality approach, while reducing the latency. Our



hope is to provide a building block on which more software
stacks for more waveforms can then be built to widen the
range of applications for SDRs. To achieve this, we introduce
a new modular component on the FPGA, which only facilitates
LBT and is otherwise transparent and thus not specific for
a particular protocol. Furthermore, we propose a generalized
interface to control our component so that the component
parameters are adjustable to the protocol requirements. As a
proof-of-concept, we demonstrate a working prototype running
a modified LBT-enabled LTE stack on an USRP X310 SDR
using the RF-Network-on-a-Chip (RFNoC) [12] SDR hardware
development framework. Using the LTE-LAA protocol stack
as an example, we demonstrate the capabilities of our novel
LBT controller. Our system can be used by the research
community as a general toolchain for rapid prototyping of
(novel) protocol stacks using easy-to-use frameworks such as
GNU Radio – the implementation will be made available as
Open Source.

Our main contributions can be summarized as follows.
• We introduce a novel LBT controller to support the

development of random access protocols on SDRs,
• we implemented our LBT controller in the RFNoC frame-

work using Verilog and studied the resulting latencies for
acting upon protocol primitives, and

• we showcase the impact of this work using the LTE-LAA
protocol stack as an example.

II. RELATED WORK

Since the problem of time-critical MAC layer functions,
especially LBT, is very common in the SDR community, there
are already some ways to tackle this issue. In general, they can
be grouped into three categories based on where the MAC
layer functions are implemented and how they are distributed
within the SDR.

The first category are the SoC-based solutions. Here GPP,
FPGA, and radio frontend are directly interconnected on
the same board. The best known examples are the Nutaq
ZeptoSDR [13] and the USRP E3x0 Series [9]. These solutions
have the distinct advantage that the latency between the
components is minimal. This also enables the use of traditional
software development tools and testing methods. However, the
CPUs on these embedded devices are very limited due to their
embedded nature. That means that they quickly saturated with
their signal processing tasks, especially for high bandwidth
applications.

The second category are FPGA-based solutions. These
avoid the latency problem by handling all low-layer processing
close to the radio frontend on an FPGA. So instead of
having a streaming interface for received samples, the GPP
only interacts with the FPGA on a per-frame basis. Notable
examples of this approach are OpenWifi [14] and the Real-
time LTE/WiFi Coexistence Testbed [15] or the Wireless open-
Access Research Platform (WARP) [16] platform. Such FPGA-
based solutions are able to meet strict timing requirements.
However, their problem is that they are inherently inflexible:
Changing parts of their protocol stack requires remodelling

the FPGA image, which requires specialized knowledge in a
hardware description language like Verilog or VHDL.

The third category are so-called split-functionality solutions.
The idea is to combine the advantages of the other two
categories. Nychis et al. [11] identified a list of core functions,
which are common among many protocols and time-critical:
Precise scheduling, carrier sensing, backoff, fast packet recog-
nition, and handling of so-called dependent packets (e.g.,
ACKs). Only those time-critical functions are supposed to
be handled by an FPGA. All other functions with less strict
time restrictions are executed by the GPP. This requires an
extra control channel in the SDR interface to configure and
control the added components. Bloessl et al. [17] realized
such an approach to enable carrier sensing and backoff of
IEEE 802.11p in the GNU Radio framework. Even though
this approach is able to meet the deadlines for LBT, it is very
specific to both an SDR platform (USRP N210) and a protocol
stack (IEEE 802.11p). The same can be said for the CSMA
and TDMA proof-of-concept protocols in [11].

Support for re-usability of hardware components among
different SDRs is difficult due to ways of handling data
internally. This issue has been addressed by the RF-Network-
on-a-Chip (RFNoC) framework by Ettus [12]. RFNoC is a
uniform internal streaming interface for all the FPGAs of
the USRP SDR series that allows for easier development of
functional blocks, which they call Computation Engines. The
hope is that this encourages modularity and reuse of FPGA
hardware designs. We think this framework contributes to
more general split-functionality SDR platforms and use it for
implementing our novel LBT controller.

Finally, we want to mention one particular solution, which
does not fit into the listed categories: Microsoft’s SoRa plat-
form [18] is a specialized board connected via PCIe that allows
for software-only waveform implementations on a regular
multicore PC. Low latency and real-time accuracy are achieved
through a custom driver that dedicates CPU cores for handling
the radio board. However, the board depends on a custom
driver only working on Windows XP and the system is also
not easily extensible nor portable to other protocol stacks.

III. PROBLEM STATEMENT

The goal of this paper is to design a generalizable and mod-
ular Listen-Before-Talk function for Software-Defined Radios.
In order to understand why this is a challenging task, we first
have to re-consider the basic architecture of SDRs. We then
explain in detail where a naïve approach would fail and outline
the properties a solution to this problem should have.

A. SDR Architecture

Typically, an SDR is functionally split into three distinct
parts: First, there is the so-called radio frontend, which com-
prises all analog parts, such as the antennas, analog filters, as
well as the digital-to-analog/analog-to-digital converters. The
radio frontend is directly connected to the second part, the
digital frontend. It is responsible for rate conversion and digital
filtering, converting the received samples from the desired



DIFS 6 5 4 3 2 1
Competing Node

RxDelay = TxDelay = 0.2 · SlotTime

Collision

Channel

DIFS 4 3 2 1
SDR Host

RxDelay = TxDelay = 2 · SlotTime

RxDelay TxDelay

Figure 1. Exemplary timeline of naïve SDR implementation of IEEE 802.11 channel access colliding with a standard compliant competing node.

GPP
baseband

samples
FPGA

DAC

ADC

Host Digital Frontend Radio Frontend

Figure 2. Generalized architecture of a typical SDR.

band into the baseband and vice-versa. Additionally, the digital
frontend exerts control over parts of the radio frontend, e.g.,
to set oscillator frequencies. Usually, this function is co-
located with the radio frontend and implemented via a DSP
or an FPGA. The third major part is a processing unit that
handles the flow of samples. It is responsible for baseband
modulation/demodulation and most importantly all higher-
layer processing. Often, this processing is performed on a
GPP, which is physically separated from the frontend often
even running on a separated host PC. An overview of this
generalized architecture is shown in Figure 2.

The host interacts with the digital frontend via a streaming
interface to and from which baseband samples are transported.
This abstraction requires large buffers on both sides to account
for the jitter introduced by the non-deterministic scheduling
in the GPP and the network link. Additionally, processing
of the samples in the actual SDR application are delayed by
additional overhead from the operating system. This added
delay is significant for time-critical applications. Jiao et al.
[19] measured the round trip latency for the USRP X310
using a PCIe link to the host PC to be 79 µs. Not every SDR
follows exactly this structure, however, it is very common and
frequently used in our research community.

B. Naïve LBT Implementation

Let us now consider how one would implement LBT
conventionally on an SDR using the CSMA procedure of IEEE
802.11 as an example. If the host wants to transmit, it first
has to start the receiver sample stream. The radio frontend
would start sending samples to the GPP, based on which it
can compute the energy over a given time period to determine
the state of the channel. Because of the inherent delays in the

SDR architecture, these samples would always represent the
channel state several microseconds in the past.

Let us suppose the channel is busy at first but then the
ongoing transmission ends. The host will observe this later
than competing traditional nodes and, thus, start its backoff
with a significant offset. This leads to the effect that a
competing node with a higher slot number than the SDR host
might finish its backoff earlier and, thus, acquire the channel
before SDR can. Therefore, the SDR has a lower chance for
channel access than the other nodes.

Depending on the exact timing, also a more destructive
effect will take place. The delay between radio frontend and
host is also present in the transmission stream. Thus, when
the SDR decides to transmit there is a time window for a
competing node to finish its backoff before any samples can
hit the air. Hence, if a competing node chose a backoff slot that
is very close to the one of the SDR, a collision might occur
even though both stations chose different slots. This case is
illustrated in Figure 1. The probability of such a collision rises
with the length of the transmission delay and reduces spectrum
efficiency.

C. Requirements

On of the key features of software radios is their flexibility
in usage. Since they provide a programmable interface to the
physical layer, it is possible to add filters, change modulation
or even to switch or combine protocol stacks. Any LBT-
capable SDR design should not interfere with these capabili-
ties. Hence, any solution must be transparent to the host in the
data path and preserve the streaming interface. Furthermore,
the LBT function must be configurable in such a way that a
broad range of protocols can use it with different parameters.
It is also desirable that the configuration of the LBT function
can be controlled by the host in software, for two reasons:
First, it enables a reconfiguration of the device during the
runtime, otherwise any hardware modification on the FPGA
would commonly require power-cycling the device. Second,
it reduces the complexity level for faster prototyping and less
errors in the development.

IV. LBT CONTROLLER DESIGN

We propose a new design for Listen-Before-Talk on
Software-Defined Radio. For this design, we introduce a new



GPP samples

control

FPGA

LBT

DAC

ADC

Host Digital Frontend Radio Frontend

Figure 3. Proposed LBT controller design. Critical path for latency shown
by the red-dotted line.

component to the digital frontend, the LBT Controller. Its
purpose is to act as a baseband sample gate, which blocks the
transmission whenever a transmission is not permissible under
a given set of protocol parameters for the LBT procedure. As
soon as the channel is available, the LBT Controller allows the
samples to pass through to the radio frontend. Since the LBT
Controller must be able to observe the channel to determine
whether or not channel access can be acquired, it must be
connected to the receiving baseband sample stream. The gen-
eralized composition is outlined in Figure 3. Via a secondary
control channel the host can check after each transmission
if the channel could be acquired or if the transmission was
blocked. This design allows to shorten the critical path for the
radio turnaround time by excluding the host completely from
it while still preserving the baseband sample access.

A. Channel Access Modes

Depending on the protocol type, blocking the transmission
has to have different semantics. For random channel access,
the sample stream must be stopped and should continue
as soon as channel access is acquired. However, for time
scheduled channel access, this behaviour would result in a loss
in time synchronisation. Therefor, we propose two different
modes of operation for the LBT controller that can be switched
at runtime.

First, a Random Access Mode that behaves as described
above. The controller delays the samples until transmission
is permitted. Second, a Time-slotted Mode that replaces each
sample with zeros until the channel is available, also known
as nulling. This results in a non-decodable partial frame that
is still aligned to the time slots and thus serves as an arbitrary
reservation signal. During this reservation time, the host must
check a special purpose register to see whether the frame needs
to be repeated. This mode of operation implicitly requires
an arbitrary reservation signal to be allowed by the used
protocol. However, since a time-slotted protocol without any
channel reservation would always be pre-empted in an random
access environment such as communication in the popular ISM
band, we think this is a reasonable assumption. A prominent
example to support this claim is the LTE Licensed-Assisted
Access extension that operates in unlicensed spectrum with a
time-slotted channel and combines the LBT procedure with a
reservation signal [8].

B. CSMA Parametrization

We see different CSMA procedures in use by modern
protocols. Hence, a generalized implementation should be con-

figurable in order to express those differences. For this design,
we decided to restrict CSMA operation to p-persistent CSMA.
This still leaves several degrees of freedom but is suitable for
most major protocols using CSMA, most specifically for IEEE
802.11 [7], LTE-LAA [8], and IEEE 802.15.4 [20].

We assume the following basic procedure: First, a station
observes the channel for a deferment period Td. If the channel
is free, the station may proceed to send. If the channel is busy,
the station will wait until the channel is free for at least Td

and then enter the backoff phase. During the backoff phase,
the station observes the channel and decrements a backoff
counter N for each empty backoff slot Tslot. If during backoff
the channel is busy again, then the station will enter the
deferment period again but persist the backoff counter for
the next backoff. If the backoff counter is zero, the station
may transmit. The backoff slot N , the length of Td, and Tslot

as well as the energy detection threshold for determining the
channel state should be set via software during runtime.

V. PROTOTYPICAL IMPLEMENTATION AND VALIDATION

To demonstrate the feasibility of our LBT controller design,
we implemented a prototype based on the Ettus USRP X310
platform. We chose this platform specifically for its support
of the RFNoC framework [12].

A. RFNoC in a Nutshell

The objective of RFNoC is to hide device specific hardware
details behind a common structure, which then can be used to
provide hardware functions for all USRPs that support the
framework. The backbone of this common structure is the
so-called crossbar. This is essentially a switch that connects
different user-defined blocks, which are called Computation
Engines (CEs). These connections can be modified at runtime,
allowing for high flexibility in the processing, similar to a
flowgraph in, e.g., GNU Radio.

There are two special-purpose CEs that have external con-
nections beyond the crossbar. The first one is the Radio block,
which interfaces with the radio frontend and can either be a
sink or source in the flowgraph. The second one is the DMA
FIFO block. This is a large sample buffer to which the host can
send its samples. Its main purpose is to compensate the jitter
from the host side and to serve as steady source of samples.

RFNoC also provides a set of default blocks, that accom-
plish common tasks. The most important task necessary is
sample rate conversion, since the radio frontend only operates
at the device clock rate of 200 MHz. Therefore, RFNoC
provides the DDC and DUC blocks (Digital Down/Up Con-
version), which filter and decimate the signal and vice versa.

Internally, RFNoC blocks exchange packets of samples,
which carry meta-data such as End-Of-Burst tags or a times-
tamp. Additional tools allow to convert the packet interface
into an AXI4-Stream interface, which allows developers to
execute functions on a per-sample basis. Every CE is also
connected to a control channel from which block specific reg-
isters can be read or written. An application always interacts
with RFNoC blocks via the USRP Hardware Driver (UHD).



Radio RX Radio TX

DDC DUC

FIFO DMA FIFO

LBT

Host

Figure 4. RFNoC flowgraph configuration for the LBT prototype.

B. LBT Block Design

We designed the LBT CE as a two input-two output block
(cf. Figure 4).1 The first input-output pair transports the
downstream samples, while the second pair transports the
upstream samples to the host. Technically, the second output
is not strictly necessary, but having the same number of inputs
as outputs simplifies the design because we can reuse more of
the provided RFNoC tools.

The CSMA procedure is modelled as a finite state ma-
chine which is triggered by the first sample arriving at the
transmission input in its idle state. The block maintains time
synchronization by counting the number of samples since the
beginning of the burst. Until the backoff is finished, the block
will only output zero samples. The state machine is reset
whenever the sample data is tagged with an End-of-Burst tag
or the configurable maximum transmission time is exceeded.
Each sample that is nulled during a transmission attempt is
counted in a register, which can be polled by the host to
determine whether or not the data must be resend by the host.

The LBT block can be configured via registers to set all
necessary CSMA parameters such as the backoff slot, which
should be generated randomly by the application in advance
to every transmission. To use the block, we instantiate a
flowgraph on the FPGA as seen in Figure 4. The DDC
and DUC blocks are necessary since we can unfortunately
not operate at the full rate of the FPGA. Each block has
only two crossbar connections on which the inputs/outputs
are multiplexed. Since the crossbar operates at 200 MHz, we
cannot have a block with two 200 MHz connections directly
connected to the radio blocks. The FIFO block only serves the
purposes to circumvent a UHD bug that prevents two outputs
from being in a different domain of the flowgraph (i.e., host
domain vs. FPGA domain).

In order to demonstrate the advantages of our LBT Con-
troller design, we integrated it with the LTE-LAA protocol

1https://git.tu-berlin.de/tkn/rfnoc-lbt

Host FPGA

channel busy

reservation signal

schedule subframe #1

read blocked samples

repeat subframe #1

read blocked samples

subframe #2

subframe #3

subframe #4

Figure 5. Example procedure for LTE-LAA downlink transmission in time-
slotted mode.

stack for a set of initial experiments. In particular, we cus-
tomized the srsLTE [3] software LTE stack.2 We modified it
to use our custom flowgraph on the FPGA to incorporate LBT
by extending the driver-specific instructions for the interface
to the UHD driver. Furthermore, we extended its downlink
transmission sequence to enable retransmission of nulled LTE
subframes and fixed the backoff slot to zero for a deterministic
backoff. The transmission sequence from host to FPGA can be
seen in Figure 5. The modifications are mostly transparent to
the normal srsLTE functionality apart from checking whether
or not channel acquisition was successful.

VI. EXPERIMENTAL EVALUATION

We used our prototypical implementation of our LBT
controller concept for an initial performance evaluation. For
controlled interference, we used a signal generator loaded
with a pre-computed LTE waveform, which transmits on a
fixed duty-cycle to allow for gaps in the transmission. We
placed our prototype USRP and the signal generator at a 2 m
distance and placed a second USRP in the middle to observe
the spectrum for post-analysis. We set the signal generator
power level to 20 dBm to ensure that the energy detection
would be triggered. To distinguish both transmissions in the
post-analysis, we set the center frequencies slightly apart from
each other at 2400 MHz and 2402 MHz, respectively.

A. Initial Results

The described measurement setup allowed us to measure
the length of the transmission gaps in between the signal
generator and the prototype transmitter over multiple trans-
mission attempts and, thus, to infer the RxTx-turnaround time.
In our collected traces, we did not find any instance where
the prototype transmitted while a transmission from the signal

2https://git.tu-berlin.de/tkn/srslte-rfnoc



Table I
PACKETIZATION DELAY IN RFNOC FOR THE DEFAULT PACKET SIZE

Link Link Rate Delay

Rx Radio - DDC 200 MHz 5.10 µs
DDC - LBT 23.04 MHz 44.27 µs
LBT - DUC 23.04 MHz 44.27 µs
DUC - Tx Radio 200 MHz 5.10 µs

Total: 98.74 µs

generator was on-going. Therefore, we can conclude that our
prototype behaves correctly.

However, to our great surprise the observed gaps in the
traces were much longer than anticipated. The measured gaps
of 100 µs–145 µs seemingly contradict, for example, observa-
tions by Jiao et al. [19]. Furthermore, we observed that the
gaps for any particular measurement run were consistent, i.e.,
always the same length, but they varied between two different
runs of the experiment.

After some investigation, we were able to identify two main
reasons for this long delay: The first one lies in the architecture
of the RFNoC framework. Despite having a stream interface,
which operates on a per-sample basis, the blocks exchange
data via packets, i.e., sequences of samples. These data packets
are transmitted at the sampling rate of the sample-emitting
blocks, resulting in long packetization delays particularly at
baseband sampling rates. By default, the packet size is set to
1020 samples per packet. For the critical path from RX-Radio
to TX-Radio, this leads to a total delay of 98.74 µs as described
in Table I.

The second source of delay in our prototype is the synchro-
nization of the receiving and transmitting sample streams. Both
streams are started separately through software, which results
in a non-deterministic offset in the starting times. However, the
LBT block only emits output samples when it has two valid
samples at its inputs. This input synchronisation is necessary
to avoid timing issues in the FPGA build. Thus, the block waits
for the second input to receive a packet, causing a delay that is
in between zero and the inter-packet arrival time. This depends
again on the rate of the block input links. In our case that adds
up to 0 µs–44.27 µs to the turnaround time. This delay changes
every time the prototype is started but then stays consistent,
once the streams run, which is consistent with the observed
behavior.

Fortunately, both sources of delay can be addressed through
software changes. First, we synchronized both sample streams,
which can be achieved in UHD via so-called timed-commands,
which will be executed at a specific clock time of the FPGA.
This eliminates the synchronization delay. Second, we ad-
dressed the packetization delay by drastically reducing the
packet sizes of the streams. We found that the minimal packet
size is 90 samples per packet for the receive stream and 180
samples per packet for the transmitting stream. Any smaller
packet sizes would lead to an unstable streams and packet
underruns due to increased overhead. We also observed, that
both packet sizes must be whole multiples of each other,
otherwise new synchronization delay is introduced.

eNodeB Monitor AP STA

Figure 6. AP-eNodeB coexistence experiment setup.

With these optimizations, we repeated our initial experi-
ment. This lead to an improved RxTx turnaround time of
19.2 µs. We can attributed 13.6 µs to packetization. The re-
maining 5.6 µs are unspecific. It is possible that this delay
originates from the packet-to-stream conversion within the
RFNoC blocks as described in [19].

B. Practical Lab Experiments

As a practical showcase, we evaluated a co-existence setup
between our SDR-based LTE-LAA eNodeB prototype and a
regular IEEE 802.11 Access Point (AP). A crucial point in
such a scenario is the adaption of the contention window.
Normally, the contention window of the eNodeB should be
increased based on the number of UEs that acknowledge
the transmission. However, we currently have no LTE-LAA
capable UE at our disposal and are therefore missing a proper
receiver. As a replacement, we set up a secondary USRP as
a collision monitoring device. Using an RF power splitter
with sufficient isolation across its outputs (20 dB), we connect
each antenna port (AP and eNodeB) to separate inputs on the
collision monitor. The setup is shown in Figure 6.

On the monitor device, we can capture the transmissions of
both eNodeB and AP independently. An observed overlap in
the transmission on the cable signals a collision on the air.
The monitor is implemented using GNU Radio with a custom
block that sends a UDP packet to the eNodeB upon a collision.
For the AP and STA we used two Linksys WRT3200ACM set
up for IEEE 802.11n with 20 MHz channel bandwidth. We
use the 2.4 GHz ISM band, which is unused in our building
for experimentation purposes. To generate Wi-Fi traffic, we
use iperf2 to saturate the channel with UDP traffic. For
the eNodeB, we can estimate the achieved throughput by
accumulating the non-nulled subframes and substracting the
number of observed collisions.

The results are shown in Figure 7. The AP achieved an
average throughput of around 42.6 Mbit/s, while the eNodeB
only managed to send 19.4 Mbit/s, which is approximately a
third of the maximum throughput for LTE-LAA in this single-
antenna configuration. We also conducted a control experiment
with a second AP replacing the eNodeB; here we observed an
average throughput of 41.2 Mbit/s. Therefore, on average the
impact of the LBT controller on a nearby AP is comparable to
the impact of a regular, standard-compliant AP. As expected,
we observed a relatively high collision rate of 0.146 collisions
per LTE frame. This can be attributed to the non-compliant
turnaround time of the LBT controller as shown earlier in
Figure 1.



AP eNodeB AP-Control
0

20

40

60

80

T
h

ro
u

gh
p

u
t

[M
b

p
s]

Figure 7. Box plot of the AP-eNodeB coexistence throughput measurement.
Whiskers do not extend beyond 1.5 IQR.

C. Discussion
We need to stress that the throughput results from Sec-

tion VI-B should not be considered for their absolute value.
They serve only as a demonstration that our split-functionality
approach is feasible and has the potential to match the
performance of dedicated radio hardware. We also have to
acknowledge that the achieved turnaround time needs further
improvements for specific applications. To be within specifi-
cation range of protocols like IEEE 802.11 or LTE-LAA, we
would need a value less than 9 µs (the CSMA slot time). We
see possible ways to improve the LBT Controller even further.
Given that the packetization delay is the biggest contributor of
delay, the key would be to reduce the critical path length even
more. This could be achieved by removing the DDC and DUC
blocks and integrating decimation, filtering, and upconversion
into the LBT block itself, thereby removing to links in the
RFNoC flowgraph. An increase in the FPGA clock rate could
also lower overall delay. Thus, a further decrease in turnaround
time of 10 µs–15 µs is within the range of possibilities. We
therefore see our contributions as a starting point to enable
future developments for SDR platforms in the unlicensed band.

VII. CONCLUSION

We presented a new approach for Listen-Before-Talk (LBT)
on Software-Defined Radios (SDRs) that allows for rapid
prototyping in software for protocol stacks which require some
form of CSMA/CA. As proof-of-concept we present an LBT-
enabled eNodeB prototype using srsLTE and X310 USRP.
Compared to a software-only way implementation of LBT, we
were able to reduce the critical turnaround time by a factor
of four, down to 19.2 µs, by following the split-functionality
concept proposed in [11]. To the best of our knowledge, this is
the only LBT implementation capable of achieving such low
turnaround times, while preserving a software-centric interface
with direct access to the baseband samples. Furthermore, we
laid out how this turnaround time can be improved even

further, which would enable SDR software stacks for protocols
like IEEE 802.11 or LTE-LAA.

REFERENCES

[1] M. Dardaillon, K. Marquet, T. Risset, and A. Scherrer, “Software defined
radio architecture survey for cognitive testbeds,” in 8th International
Wireless Communications and Mobile Computing Conference (IWCMC
2012), Limassol, Cyprus: IEEE, Aug. 2012, pp. 189–194.

[2] Great Scott Gadgets. (2016). “Ubertooth One,” [Online]. Available:
https://greatscottgadgets.com/ubertoothone/ (visited on 10/30/2020).

[3] Software Radio Systems. (Oct. 2020). “srsLTE - Your own mobile
network,” [Online]. Available: https : / / www. srslte . com/ (visited on
10/30/2020).

[4] The Osmocom Project. (Sep. 2020). “rtl-sdr,” [Online]. Available: https:
//osmocom.org/projects/rtl-sdr/wiki/Rtl-sdr (visited on 10/30/2020).

[5] Carles Fernández-Prades. (2020). “GNSS-SDR - An open source Global
Navigation Satellite Systems software-defined receiver,” [Online]. Avail-
able: https://gnss-sdr.org/ (visited on 10/30/2020).

[6] GNU Radio project. (2020). “GNU Radio - The Free and Open Source
Radio Ecosystem,” [Online]. Available: https : / / www. gnuradio . org/
(visited on 10/30/2020).

[7] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications,” IEEE, Std 802.11-2016, Dec. 2016.

[8] “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical
layer procedures,” ETSI, Sophia Antipolis, France, Technical Specifica-
tion ETSI TS 136 213, May 2019. [Online]. Available: https://www.
etsi . org / deliver / etsi _ ts / 136200 _ 136299 / 136213 / 13 . 12 . 00 _ 60 / ts _
136213v131200p.pdf.

[9] Ettus Research. (Oct. 2020). “Ettus USRP E300 Embedded Family
Hardware Resources,” [Online]. Available: https://kb.ettus.com/Ettus_
USRP _ E300 _ Embedded _ Family _ Hardware _ Resources (visited on
10/30/2020).

[10] National Instruments Corporation. (2020). “What is LabVIEW?” [On-
line]. Available: https://www.ni.com/en-us/shop/labview.html (visited
on 10/30/2020).

[11] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, and P. Steenkiste, “Enabling
MAC Protocol Implementations on Software-Defined Radios,” in 6th
USENIX/ACM Symposium on Networked Systems Design and Imple-
mentation (NSDI 2009), Boston, MA: USENIX, Apr. 2009, pp. 91–105.

[12] Ettus Research. (Jul. 2019). “RFNoC,” [Online]. Available: https://kb.
ettus.com/RFNoC (visited on 10/30/2020).

[13] Avada. (2013). “Nutaq ZeptoSDR Datasheet,” [Online]. Available: https:
/ /www.nutaq.com/sites/default /files/zeptoSDR- datasheet- lowres.pdf
(visited on 10/30/2020).

[14] X. Jiao, W. Liu, M. Aslam, and I. Moerman, “openwifi: a free and
open-source IEEE802.11 SDR implementation on SoC,” in 91st IEEE
Vehicular Technology Conference (VTC 2020-Spring), Virtual Confer-
ence: IEEE, May 2020, pp. 1–2.

[15] “Real-time LTE/Wi-Fi Coexistence Testbed,” National Instruments,
Whitepaper, Mar. 2020. [Online]. Available: https://www.ni.com/de-
de / innovations / white - papers / 16 / real - time - lte - wi - fi - coexistence -
testbed.html.

[16] A. Khattab, J. Camp, C. Hunter, P. Murphy, A. Sabharwal, and
E. W. Knightly, “WARP: A Flexible Platform for Clean-Slate Wireless
Medium Access Protocol Design,” ACM SIGMOBILE Mobile Comput-
ing and Communications Review, vol. 12, no. 1, pp. 56–58, Jan. 2008.

[17] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “Performance
Assessment of IEEE 802.11p with an Open Source SDR-based Proto-
type,” IEEE Transactions on Mobile Computing (TMC), vol. 17, no. 5,
pp. 1162–1175, May 2018.

[18] K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, and G. M. Voelker, “Sora:
High Performance Software Radio Using General Purpose Multi-core
Processors,” Communications of the ACM, vol. 54, no. 1, pp. 99–107,
Jan. 2011.

[19] X. Jiao, I. Moerman, W. Liu, and F. A. P. de Figueiredo, “Radio Hard-
ware Virtualization for Coping with Dynamic Heterogeneous Wireless
Environments,” in International Conference on Cognitive Radio Ori-
ented Wireless Networks (CrownCom 2018), Gent, Belgium: Springer,
Sep. 2018, pp. 287–289.

[20] “Low-Rate Wireless Personal Area Networks (LR-WPANs),” IEEE, Std
802.15.4-2011, Jun. 2011.


