
Accelerating the Simulation of Wireless Communication
Protocols using Asynchronous Parallelism

Dominik S. Buse
Paderborn University and TU Berlin

Germany
buse@ccs-labs.org

Georg Echterling
Paderborn University

Germany
georg@echterling.net

Falko Dressler
TU Berlin
Germany

dressler@ccs-labs.org

ABSTRACT
Simulation is a key tool in the development of wireless systems,
protocols, and applications. This is especially true for large and
mobile networks such as Vehicular Ad-hoc Networks (VANETs), as
real-world experiments quickly become too expensive and complex
with increasing numbers of nodes. However, accurate simulation
of such wireless networks may take a long time to compute. This is
mainly due to the sequential processing in event-based simulation
cores like OMNeT++ or ns-3. This is especially troubling when de-
bugging new protocols or when interfacing with Hardware in the
Loop (HIL) or other real-time simulation. In this paper, we propose
a new approach to accelerate simulation of wireless communication
by utilizing asynchronous background computations. Expensive
computations that can be isolated from the simulation kernel are
started as early as possible and pushed to background threads. At
the point in time when the result is needed, the computation may
already be complete. This allows for parallelization without an ex-
plicit lookahead value. As a proof-of-concept, we implemented the
concept in Veins, a state-of-the-art VANET simulator. By offloading
wireless signal attenuation model computation to the background,
we achieve speedups of up to 3.5, depending on the scenario.

CCS CONCEPTS
• Networks → Network simulations; • Computing method-
ologies → Discrete-event simulation; • Theory of computation
→ Parallel computing models.

KEYWORDS
Parallel simulation, wireless network simulation, asynchronous
parallelism, vehicular networking
ACM Reference Format:
Dominik S. Buse, Georg Echterling, and Falko Dressler. 2021. Accelerating
the Simulation of Wireless Communication Protocols using Asynchronous
Parallelism. In Proceedings of the 24th ACM International Conference on Mod-
eling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM ’21),
November 22–26, 2021, Alicante, Spain. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3479239.3485683

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSWiM ’21, November 22–26, 2021, Alicante, Spain
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9077-4/21/11. . . $15.00
https://doi.org/10.1145/3479239.3485683

1 INTRODUCTION
Wireless mobile networks have become a ubiquitous pillar of our
modern society. Thus, significant effort is spent on the develop-
ment of wireless systems, protocols, and applications. Along these
lines, simulation is one of the most important tools supporting
the development and the evaluation of wireless communication
protocols [19]. Therefore, powerful and efficient simulation tools
are of great importance for the field. Without loss of generality,
we concentrate on one application field, which, from a simulation
perspective, is one of the most challenging, namely Vehicular Ad-
hoc Networks (VANETs). VANETs typically feature mobility of the
communicating nodes, large scale, and high complexity of the wire-
less communication environment. They thus require either very
abstract modeling or substantial compute power to simulate [15].

As most simulators for wireless communication are implemented
as single-threaded sequential programs, they take a long time to
compute. Of course there is a whole field of research on parallel and
distributed simulation [9]. While there are simulators implemented
in a parallel fashion [32], widespread network frameworks like OM-
NeT++/INET, ns-3, or the vehicular networking simulator Veins do
not provide parallel simulation for wireless networks. We see two
major reasons: First, having a shared wireless channel in the simu-
lation makes existing approaches to parallel simulation much less
effective. This is because the structure of wireless mobile networks
is more like a tight mesh with many local connections instead of the
scale free graph many wired networks form. Logical Processes (LPs)
synchronized via conservative protocols require some guaranteed
lookahead time, which is easy to determine in wired networks. But
it becomes much shorter for a network of wireless nodes that are
all potentially connected, close by (low propagation delay), and can
send at almost any time. And due to the mobility, partitioning the
network becomes much harder as well. Optimistic coordination,
e.g., the TimeWarp algorithm [14], would probably need to perform
a lot of rollbacks as many wireless nodes could influence each other.
Second, the simulations need to be deterministic to be reproducible
and to ease the debugging process. Randomness in the simulation
models is usually realized using Pseudorandom Number Generators
(PRNGs) and a stable seed value. Now, the interconnections may be
subtle; just drawing one fewer number from a PRNG can disturb
the whole rest of the simulation by causing a “butterfly effect”.

The problem described is not very severe when running parame-
ter studies. Here, all CPU cores can be fully utilized, each for a single
simulation run, i.e., exploiting process-level parallelism. But most
of the time, the simulation or protocol will be under development
or even debugging. And this means that the developer will have to
wait for the single-threaded simulation to run to completion or the
place where a bug happens, possibly many times over. The problem

https://doi.org/10.1145/3479239.3485683
https://doi.org/10.1145/3479239.3485683

gets even worse if debug builds have to be used, which run even
slower due to disabled compiler optimizations. So in these cases,
the developer is looking for low delay instead of high throughput.
A very similar issue arises if the simulation is coupled to a real-
time system. Setups like Hardware in the Loop (HIL) are becoming
widespread for component testing and the likes [7, 13]. Similar
environments include human in the loop approaches such as the
Virtual Cycling Environment (VCE) connecting human interaction
with discrete event simulators (DESs) [30]. Again, running multiple
separate simulation processes does not help. Only one result is
needed, but within tight timing boundaries, which limits the size
of the simulated system.

In order to speed up wireless simulations despite all these is-
sues, we propose a different way to parallelize the simulation to
multiple CPU cores. We side-step the synchronization problem
by decoupling computationally expensive parts of the simulation
and processing them asynchronously in background threads. This
is the basis for our concept, because it can exploit the resulting
parallelism without being constrained by (small) lookahead values.
It provides speedup without actually parallelizing the core of the
simulation, making it much easier to adopt for users. What we
need to find are isolated computations with a clear interface, like
hot loops or costly algorithms, which could be decoupled from the
simulation kernel or are already provided by separate library. They
should take some input, do costly computation, and return results
relevant to the later simulation. Ideally, the data needed to perform
the computation should be available in one event, while the result
they produce is only needed at a later event—even if only by a tiny
amount of simulation time. Because then, they could be moved out
of the main simulation thread, processed in the background, and
may finish while the main thread continues the simulation.

In this paper, we show how a simulation of mobile wireless
networks can be accelerated. We describe the concept of asynchro-
nous background computation in discrete event simulation and
the requirements for it to work. To complement the theoretical
concepts, we showcase each step using the vehicular networking
simulator Veins [28] as an example. We show how we identified the
computation of signal attenuation models as the largest consumer
of computation time; we describe how we adapted the models to
run isolated from the simulation kernel and the implementation
of the asynchronous background computation; and we verify the
correctness and evaluate the performance of the resulting parallel
simulation using two typical scenarios for VANET simulations.

Our extension requires no changes or even awareness by most
users, as they may not be experienced in parallel simulation. Also,
no change to the simulation kernel is needed, thus, the system
is easy to adapt to other simulators. We will of course make our
system available as open source to the research community.

Our main contribution can be summarized as follows:

• We developed a technique to accelerate the simulation of
wireless communication protocols through asynchronous
parallel processing,

• we present an implementation accelerating the signal atten-
uation models of Veins as a proof of concept,

• we evaluated the speedup of our implementation for speed,
debug builds, and real-time applications.

2 RELATEDWORK
The typical simulation tool sets used for the simulation of wireless
mobile networks have some kind of parallel distributed simulation
support. However, these are mostly traditional parallelization and
distribution approaches focused on point-to-point communication,
using Logical Processes (LPs) and conservative synchronization
with lookahead times. E.g., OMNeT++ has supported the null mes-
sage algorithm for a long time [26]. Its implementation uses the
Message Passing Interface (MPI) and utilizes link delays as looka-
head. Similar approaches have been implemented for ns-3 [23],
also being built on top of MPI. While scaling for wired networks
has shown impressive speedups, “a distributed simulation in ns-3
requires at least one point-to point link within the topology” [23].

Pioneering work for parallel simulation of wireless systems has
been done in in [24]. It also uses LPs with conservative synchro-
nization via lookahead windows, combined with a geographically
partitioned simulation. The key advantage proposed by the authors
is to derive “large” lookahead windows from the properties of the
simulated protocol. I.e., incorporating inter frame spaces, backoff
intervals, etc. into the lookahead computation. However, this binds
the acceleration of the simulation model to a specific protocol and
may lead to problems with heterogeneous communication. Also,
the speedup may decrease with more dense and mobile networks,
e.g., when simulating VANETs on a motorway.

A recent study [1] surveyed approaches for ns-3 in order to sim-
ulate an LTE network for public safety applications. This means
large-scale networks and the option to emulate parts of the sys-
tem in real time, similar to a HIL system. The authors conclude
that building an LTE network simulation for public safety appli-
cations would require significant extra work for the three most
common approaches in the literature: MPI based solutions depend
on point-to-point connections and lookahead values, while multi-
threading and graphics processing unit (GPU)-based approaches
require highly complex changes to the core of simulation models.

The same authors later implemented a large-scale LTE simulator
by coupling ns-3 and CORE [25]. Their simulator uses the MPI pro-
tocol and is able to emulate an LTE network in real-time to perform
HIL studies. Parallelization is done using LPs, each representing an
LTE eNB in the simulation and with point-to-point links of known
delay between them. A static lookahead value given by the model
designer is used, which has to be shorter than the time between
two dependent events, with a value of 1ms in the paper. While this
may suffice for eNBs with point-to-point links between them, it is
not a feasible order of magnitude for VANET simulation.

The HORIZON [17, 18] extension to OMNeT++ accelerates simu-
lations by identifying events that are independent of each other and
running them in parallel. It does so by extending (at least a subset
of) the events from instantaneous points in time to time intervals
by adding a duration. Events may only change the simulation state
after their duration has passed. Thus, events with overlapping time
intervals can not depend upon each other—they either would not
have been allowed to start or would not be able to use each other’s
results. So overlapping events can be scheduled to run in parallel.
However, it requires significant changes to the simulation kernel
and assignment of a duration to a significant portion of the events,
which complicates simulation model design. The evaluation also

shows that the speedup depends highly on the duration of events,
with less speedup for events of shorter simulation duration and
more computational complexity. The lowest duration analyzed in
the original paper is 1 µs, roughly the propagation delay of a signal
across 300m—much more than many messages in VANETs travel.

A different approach is the parallelization of individual com-
ponent models in the simulation, e.g., building obstacle shadow-
ing [20]. This allows to speed up selected computationally expensive
portions of the simulation while leaving the rest of the model un-
touched, yielding some speedup at low cost to the user. However,
as the main simulation thread still waits for the completion of the
parallelized computation, it leaves potential speedup on the table.

For VANET simulation with Veins specifically, a distributed simu-
lation scheme based on the High Level Architecture (HLA) has been
proposed [10]. Coordinated by HLA federates, multiple instances of
Veins each cover a portion of a Manhattan grid scenario. Vehicles
passing from one region into the next are transferred to the control
of the respective region. In contrast, there is no notion of exchang-
ing simulated wireless messages between the instances of Veins,
meaning the reception of vehicles close to region borders may vary
with the simulation layout. So results of simulations with different
numbers of Veins instances will differ and may be inaccurate due
to the potential lack received messages or interference.

There is currently ongoingwork to extend ns-3 into the Spectrum
Sharing Simulator (S3) [2]. The goal is to be able to run large-scale,
combined LTE, LTE-Advanced, and 5G-New Radio networks to
analyze effects of spectrum sharing. A combination of optimistic
synchronization using a compiler-assisted rollback mechanism and
conservative synchronization using lookahead values provided by
the model designer shall be used for parallelization. Though at the
time of writing of this paper, said work has not yet concluded.

COSIDIA [22] is another new parallel simulator for wireless
mobile systems, specifically VANETs, with a focus on real-time
capability for HIL testing. Similar to HORIZON, events are extended
into actions with a start and end time and then distributed to light-
weight fibers, which implement LPs, for parallel execution.COSIDIA
promises “fully deterministic functional behaviour when no exter-
nal hardware is attached” and aims to execute all events within
defined real-time boundaries. However, COSIDIA is still in an early
stage of development, so no conclusions of the performance when
simulating realistic scenarios and protocols can be drawn yet.

Aside from parallel and distributed acceleration techniques, there
have been attempts to improve the (single-core) performance of
Veins. Since forking off from MiXiM, Veins has used a maximum
interference distance to limit the amount of stations needing to be
checked to be potential receivers of a packet. When a message
is sent by pushing copies of the message to potential receivers,
only stations within that distance from the sender are considered.
This can significantly speed up the simulation by reducing the
computational complexity by orders of magnitude. However, it can
potentially change the outcome of the simulation in some cases.
Even very low interference levels of multiple messages may still add
up and influence the decision of whether some other message can be
successfully received or not. Originally, the maximum interference
distance was computed from the signal characteristics in Veins.
But with the introduction of antenna models [8] in Veins 4.5, the
distance has to be configured by the simulation author.

More recently, a re-work of the signal implementation of Veins in
version 5.0 introduced improvements to the code performance and
the concept of thresholding [4]. With thresholding, the computation
of signal attenuation models may be aborted early if the attenuated
signal falls below a given threshold before all models have been
computed. This can reduce the computational complexity and thus
speed up the simulation itself without changing the simulation
outcome. Attenuation models that may increase the received signal
strength (e.g., two-ray interference) have to be evaluated completely
before thresholding can be applied. It works best if more complex
models are computed later in the chain of attenuation models, as
skipping them provides the largest speedup. However, this optimiza-
tion provides very different speed-ups depending on the channel
models involved and only speeds up this part of the simulation.

3 ASYNCHRONOUS BACKGROUND
COMPUTATION

Typical DESs like OMNeT++ or ns-3 work by processing events
in discrete points in time. Scheduled events are stored in a future
event list (FEL) and ordered by their time stamp. Once the simulator
finishes processing an event, the next one is fetched from the FEL.
Time intervals between the finished and next event are simply
skipped. Events can schedule new events themselves, which are
sorted into the FEL at the appropriate time. Once there are no more
events left or some other end condition is met, the simulation stops.

While events usually represent a discrete point in time for iso-
lated entities in the simulation, there is often a semantic relationship
between them (c.f. Figure 1). E.g., the event of the physical layer
of a node starting to broadcast a wireless message and the result-
ing event at the point in time where of said beacon first reaches a
potential receiver. However, this semantic relationship is typically
not encoded into the simulation directly. Instead, it is part of the
design of the simulation model. Additionally, there is often some
degree of freedom in how what part of the model gets implemented
in which event. Following the previous example, the attenuation
of the signal of the broadcast could be computed in in the sending
event or at the receiving event.

Typically, there is no link between the simulation time, i.e., the
time in the simulation, and the wall clock time of the computer
running the simulation software. The progression of simulated time
may vary drastically: Multiple close-by events with high compu-
tational complexity may take a long wall clock time to compute
but only advance the simulation time a little (cf. Figure 1). E.g., the
computation of signal attenuation models for multiple copies of a
broadcast, with only the difference in propagation delay between
them. Meanwhile, large gaps between events can lead to fast pro-
gression of simulation time without much computation time spent.
E.g., the time between two broadcasts.

These two facts can be exploited to speed up the simulation
by offloading expensive computations between two events from
the simulation main thread to some background (worker) thread.
Assume the result of an expensive computation is needed in event
𝑒5, as shown in the bottom half of Figure 1. Normally, this result
would be computed in event 𝑒5, making it take a long time to
compute. But the computation could already be performed in event
𝑒2 which occurs at an earlier point in simulation time (𝑡 (𝑒2) ≤ 𝑡 (𝑒5)).

wall clock time

e1 e2 e3 e4 e5 e6

ta

tb

si
ng

le
-t

hr
ea

de
d

as
yn

c.
 p

ar
al

le
l

futures
worker threads

main thread

e4 e5 e6e1 e2 e3

implicit dependencies

tsim=0.0s tsim=2.0s tsim=2.1s tsim=2.2s

Figure 1: Time progression in single-threaded (top) and asyn-
chronous parallel (bottom) simulations

There may be an arbitrary amount of simulated time and other
events (even 0) between 𝑒2 and 𝑒5. The computation can already be
started in event 𝑒2, but performed asynchronously in a background
thread in parallel to the main thread. The main thread can continue
processing further events, as the result of the computation is not
yet needed. Once the main thread reaches 𝑒5, it fetches the result
of the computation from the background thread. This may involve
waiting if the computation is not yet fully finished, but it will
typically take less time than doing the whole computation in the
main thread. Then, the computation result can be used and the
simulation continues as usual. Naturally, there can be more than
one background computation active in parallel, though the actual
number of computations being processed in parallel depends on
the simulation hardware. This procedure can speed up the overall
simulation as the main thread can go through the FEL faster while
other threads and cores take care of the expensive computations.
Having many background tasks scheduled at the same time makes
the procedure even more efficent, as work can be distributed to
more cores. Tasks will only start queueing up if all cores are utilized
and the system runs at peak efficiency.

While this is similar to other offloading techniques, e.g., to a GPU,
it exploits the nature of the DES by advancing the simulation while
the offloaded tasks are being processed. Also, the implementation of
the model and the simulation core itself did not have to be modified
or re-implemented, like it would have been for a GPU. Only a
little instrumentation is needed to offload computation tasks to
a background thread and obtain their result later. A typical way
to implement this is using Futures and Promises [11]. When the
task is offloaded, the main thread receives a future instead of the
actual result (c.f. Figure 1). The future can be used to await the
completion of the offloaded task and obtain the actual result once
it is available, with no further need for synchronization primitives.
The background thread receives the promise, through which it
communicates the completion of the computation and its result.
The main thread can attach the future to the event or simulation
object that will eventually request the result of the computation.

However, there are limitations to this asynchronous offloading
approach. The offloading task may not interfere with the simulation
progression itself, e.g., by scheduling events. Such actions may
lead to unrepeatable and non-deterministic behavior, as the point
in simulation time at which the background thread accesses the

simulation core is not defined. In addition, direct interaction with
other objects in the simulation would require locking to avoid race
conditions. Thus, background tasks should ideally be pure functions
without any side effects and with a set of input parameters fully
determined at the point at which they get offloaded. This includes
less obvious inputs such as random numbers drawn from a PRNG.
As there may be multiple background tasks being processed at
the same time in different threads, the order of the calls to the
PRNG could become non-deterministic. This could lead to non-
reproducible changes in the simulation outcome, which have to
be avoided. Even reading non-constant data from other simulation
objects, e.g., the location of a mobile node, is prohibited as the node
may or may not have moved in the main thread at the time.

In practice, this often means moving the start of the computa-
tion to the point in simulation time at which they first become
possible. It may even be useful to include processing delays of the
system represented by the model to create more opportunities for
the completion of background tasks while the main thread pro-
cesses other events. The kind of computation that gets offloaded is
flexible and up to the implementer. This may be common simulation
elements like signal attenuation models, calls to external tools, or
even computation-intensive application layers in the simulation.

4 APPLICATION TO VEINS
To demonstrate our asynchronous background computing concept,
we implemented it in Veins [28], a state of the art VANET simulator.
We based our work on the most current release: version 5.1.

4.1 Profiling: What to Parallelize
With the concept of asynchronous background computation in
place, we now need to find portions of the Veins code to accelerate
with it. These portions need to have two qualities: easy to isolate
from the simulation kernel and computationally expensive enough
to provide a significant speedup.We profiled the code of Veins 5.1 on
the motorway scenario later used for the evaluation (see Section 5.1)
using the perf sampling profiler. As long as the simulation runs,
perf samples the currently active stack frame of the program at
regular intervals and saves these samples to a profile on the disk.

The profile shows that two call trees take up the largest share of
the computation (see Table 2 for more details): processNewSignal
with 43.1 % and processSignalEnd with 46.1 % of the samples.
Both are functions of the Decider80211p module and are respon-
sible for the decision of signal detectability on reception start and
decodability on reception end, respectively. While the functions
do work of their own and call several other functions, both spend
most of the time with the evaluation of signal attenuation models.

These signal attenuation models are a good fit for asynchronous
background computation. They can be implemented as side effect-
free functions that produce a single result, the attenuated signal. All
data they need for their computation is well specified and can be
collected ahead of time. So they do not need to query the simulation
for further information. Finally, they are plain computations and do
not schedule any events of their own. In addition, signal attenuation
is present in virtually all simulations using Veins. So speeding them
up may provide a great benefit for many users. We thus decided to
parallelize them using asynchronous background computation.

4.2 Wireless Message Sending in Veins 5.1
In Veins 5.1, message sending and signal propagation are modeled
as follows: Each host in the simulation that is capable of wireless
communication contains at least one Network Interface Card (NIC).
The NIC contains the implementations of the Medium Access Con-
trol (MAC) and physical (PHY) layers of the respective stack. By
default, this is the IEEE 802.11p vehicular networking stack, but
others are available through extensions and the concept is the same
for all of them. The implementation of the MAC and PHY layer
uses hierarchies of modules from the OMNeT++ library.

At the top of the PHY layer hierarchy lies the ChannelAccess
module, which takes care of disseminating messages on the wireless
channel. Whenever such a wireless message—named AirFrame in
Veins—is sent, the ChannelAccess creates a copy of the AirFrame
for each potential receiver and sends that AirFrame copy to it.
Potential receivers are all other NICs within amaximum interference
distance, which is specified by the simulation designer (see Section 2
for details). Each AirFrame contains a Signal, representing the
PHY properties of the signal bywhich themessage is transmitted via
the wireless channel, e.g., timing, frequencies, and power levels [4].
The Signal also contains information about the sender and receiver
of the AirFrame as well as a list of attenuation models that are used
to compute the power levels at the receiving NIC. Ultimately, each
AirFrame copy is sent by scheduling a reception start event at the
receiver with an offset in time that represents the propagation delay
between sender and receiver (c.f. Figure 2).

At a reception start event, the receiver examines the received
AirFrame. First, the receiver checks if the received signal is strong
enough to be detectable. This triggers the evaluation of the attenu-
ation models of the Signal to compute the received power levels
(including antenna gains [8]). If thresholding [4] is enabled, the
evaluation of attenuation models may be aborted early if the result-
ing power levels are below the detection threshold. Otherwise, all
attenuation models are evaluated. Afterwards, the receiver decides
whether it can tune in on the signal, considering the power levels
and its own current state (e.g., transmitting or receiving another
message). In any case, the received AirFrame is stored as a potential
interferer to other received signals and an event for the reception
end is scheduled based on the length of the message.

At the reception end event, the receiver checks if the received
AirFrame can be successfully decoded by computing its Signal-to-
Interference-plus-Noise Ratio (SINR). To do so, the receiver collects
all other received signals overlapping with the current one in ques-
tion. If thresholding is enabled, this may trigger the evaluation of
previously skipped attenuation models of both interferers and the
current one, in order to determine their final power levels. With the
SINR, the receiver can apply the bit error model and finally decide
whether the message can be decoded—also considering collisions
and other errors. At success, the AirFrame gets moved up the stack
to the MAC layer. Otherwise, it is deleted—though a reference may
be kept until it may no longer be an interferer for other frames.

4.3 Asynchronous Parallelism in Veins
With asynchronous background processing, the start of the eval-
uation of attenuation models is moved from the reception to the
sending event, as show in Figure 1. To enable offloading of the

simulation time

transmission
start

transmission
end Sender

Receiver #1
Receiver #2
Receiver #3

propagation
delays

. . .

. . .

reception
start

reception
end

worker threads
signal 1
signal 2

signal 3
signal 4

Figure 2: Timeline of an AirFrame with the start of the atten-
uation model evaluation

attenuation model evaluation, the implementation needed to be
partially restructured. As explained in Section 3, all data needed
for the evaluation needs to be available before the background task
is spawned. No further access to the running simulation may be
performed by background tasks. There also needs to be an interface
to schedule received signal copies for background computation
and await the completion of tasks. This interface should accept a
collection of received signal copies, as all of them are created at the
same time and each scheduled tasks incurs some overhead.

We solved these requirements by gathering all received signal
copies into a SignalGroup object within the ChannelAccess mod-
ule. The SignalGroup takes care of storing the parts of a Signal
that are the same for each copy, e.g., sender information, transmis-
sion time or message duration. It also efficiently stores the individ-
ual data per receiver, e.g., the receiver information, propagation de-
lays, attenuated power levels, and applied attenuationmodels. Upon
its construction, the (modified) instances of attenuation models are
created and collect all data needed for later evaluation, though
their evaluation is not yet performed. This allows each attenuation
model class to collect the necessary data through polymorphism.
It may require taking snapshots of the simulation state, e.g., of
positions of other vehicles for vehicle obstacle shadowing. If an
attenuation model requires random numbers, they also are drawn
at this point to guarantee reproducibility through deterministic
access to the PRNG. After construction, the SignalGroup is consid-
ered read-only to the simulation kernel, while only the background
computation tasks are allowed to modify it. Each AirFrame copy
contains a SignalInstance through which the receiving NIC can
access its signal without explicit knowledge of the SignalGroup.
This replaces the Signal class of previous Veins versions.

Each SignalGroup contains multiple (often tens or even hun-
dreds) of received signal copies, each with a set of attenuation
models to evaluatate. Scheduling the computation of each received
signal copy as a separate job wrapped in its own future provides
the highest potential to run in parallel, but also incurs the highest
overhead. Instead, received signal copies can be grouped and sched-
uled as a chunk, which reduces overhead but may leave available
background threads idle and thus reduce throughput and distort
real-time performance. The most efficient solution to this prob-
lem depends on the hardware platform running the simulation.

Thus, hard-coding may not fit all situations. So we introduced an
abstraction named a ParallelStrategy which decides how re-
ceived signal copies are bundled and made it runtime configurable.
Each SignalGroup sent to the wireless channel gets passed to the
configured ParallelStrategy. It then schedules bundles of re-
ceived signal copies to be computed on the background threads and
provides an interface to wait for and retrieve the results for each
SignalInstance.

We implemented and evaluated four ParallelStrategy types:
• separate schedules each received signal copy as its own back-
ground task, aiming for maximum parallelization.

• chunked[N] bundles N received signal copies into one chunk
and schedules each chunk as a background task with the
goal to reduce overhead.

• hybrid[N] schedules the first N signal copies (whose results
will be needed earliest) as separate background tasks. The
rest are bundled into one future. This aims to provide fast
results for soon-needed results but keep the overhead low.

• sync computes all models in the main thread synchronously,
as soon as the signal gets sent out. It is a special case intended
for debugging, single-core runs within process-parallel stud-
ies, and for a more direct comparison with Veins 5.1.

To actually schedule the background tasks, we used the Task-
Flow library [12] in version 2.7 (to only require a C++14 compliant
compiler, like Veins 5.1 does). It provides an efficient thread pool
implementation with work stealing and supports future objects
compatible with the C++ standard library. Thanks to its permissive
MIT open source license and header-only implementation, Task-
Flow can easily be distributed with Veins. In preliminary tests, we
also tried out the std::async function of the C++ standard library
to schedule background tasks. But we had to discarded it due to its
low and unpredictable performance.

Once a background thread starts processing a received signal, it
first applies the antenna patterns to the signal and then starts to
evaluate the list of attenuation models. After this task is finished, a
future object may be fulfilled by the TaskFlow library—depending
on the ParallelStrategy. If thresholding is enabled, this may still
abort early if the remaining signal power level is low enough. How-
ever, this may make it necessary to run the skipped attenuation
models later when interferer power levels are computed. This cur-
rently has to happen on the main thread, as it is not predictable
which received signals may be relevant interferers to other signals.

Some further changes were made to Veins in order to improve
the performance and reduce the overhead on the main thread.

• The Coord class no longer inherits from the cObject class
hierarchy to make it a plain struct that can be safely passed
to background processes and is cheaper to allocate and free.

• The implementation of the spectrum has been changed from
an array of frequencies per Signal instance to a shared
pointer to a pre-allocated spectrum class. This significantly
reduces the amount of data that has to be copied for each
signal instance.

• Instances of attenuation models are now shared across the
simulation and not duplicated per NIC. Only a thin wrap-
per responsible for data collection remains for each signal
instance.

4.4 Result verification
Most of the changes described above, including the background
processing, do not alter the outcome of the simulation in any way.
This was extensively tested and verified using the fingerprint mech-
anism of OMNeT++. However, as data needed for attenuation model
evaluation now needs to be collected at the time of sending the
signal instead of the time of reception, some small changes may
be introduced. This is the case for the vehicle obstacle shadowing
attenuation model. If the point in time of the collection of vehicle
positions moves from after vehicle updates are received from TraCI
(in the old code, at signal reception time) to slightly before said
vehicle update (in the new parallel code, at sending time), the col-
lected vehicle positions may differ. This in turn can lead to different
outcomes of the signal attenuation, e.g., if a vehicle is now in the
line of sight of a transmission which reduces the received power
level of the signal. And this may lead to further propagation of
changes, as the different received power level may lead to more or
less random numbers being drawn in the bit error model. Thus, the
whole outcome of the simulation from that point on may be slightly
different. We could however establish that this effect is acceptable:
First, the change is only observable when comparing Veins 5.1 with
our parallelized version—the modified code always behaves deter-
ministically, regardless of the chosen hardware platform, number
of threads, or ParallelStrategy. Second, using statistical evalua-
tions and analysis of the simulation event log (not shown in this
paper), we found that the resulting change is similar to choosing a
different random seed for Veins.

5 EVALUATION
To showcase the speedup possible in Veins with asynchronous
background processing of signal attenuation models, we compare
it against Veins 5.1. As the impact of parallelization depends highly
on the scenario configuration and the simulation hardware, we
vary both in the case study.

For the simulation hardware, we consider three platforms, as
detailed in Table 1: a mobile laptop, a typical desktop computer,
and a more powerful workstation. Each hardware platform allows
hyper-threading to virtually double the core count. We picked these
as representatives for what researchers will typically have at their
disposal when developing and researching wireless protocols. All
code and configuration for the experiments is published as [5].

5.1 Simulation Scenarios
For the simulation scenarios, we picked two typical cases in VANET
research as traffic scenarios: a densely populated motorway and an
urban city. For both scenarios, the communication follows a static
beaconing protocol, resembling an application like Cooperative
Awareness (CA) messaging. The beacons are sent with a frequency

Table 1: Hardware platforms for the evaluation

platform CPU Cores Threads

2-core i5 laptop Intel i5-6200U 2 4
4-core i7 desktop Intel i7-7700K 4 8
8-core R7 workstation AMD r7-5800X 8 16

of 10Hz and have a length of 350 B, as is typical for ITS G5 Co-
operative Awareness Messages (CAMs) [21, 31]. The simulated
transceivers have a sensitivity (minPowerLevel) and noise floor of
−98 dBm [3]. The traffic simulated in Simulation of Urban Mobility
(SUMO) is synchronized every 1 s and interpolated in between. All
other settings follow the defaults of Veins 5.1. These settings yield
plausible scenarios with well-populated wireless channels, show-
casing the effects of interference on the simulation performance.

For the urban scenario, we used the Paderborn Scenario [6]. In it,
more than 2300 vehicles driving through the city are simulated in
the morning rush hour. The scenario is an example for a CA applica-
tion in an urban area. Vehicles transmit with 200mW or 23 dBm as
is typical in such situations [16]. The most important factor in trans-
mission success in urban environments is shadowing by buildings.
Thus, the urban scenario uses Veins’ SimpleObstacleShadowing
model [27] in addition to the free space path loss model. With more
than 50 000 buildings that have to be considered for each transmis-
sion, the SimpleObstacleShadowingmodel was found to have the
biggest impact on the performance of this scenario. The scenario is
simulated for 2.0 s in the benchmarks.

For the motorway scenario, we created a straight motorway with
three lanes in both directions and a length of 5000m. This scenario
showcases applications with a densely populated channel and at
high speeds. Themotorway is filled to capacitywith vehicles driving
at a maximum speed of 130 km/h. In total, around 300 vehicles are
driving at the same time.With this many other vehicles close by and
no shadowing by buildings, transmit power is reduced to 20mW
(roughly 13 dBm). The most computationally complex model is the
VehicleObstacleShadowingmodel [29] which runs in addition to
the simple path loss model. It has an even higher impact than the
building obstacle shadowing in the urban scenario and requires
rolling updates of vehicle positions, which is also showcased with
this scenario. The scenario is simulated for 10.0 s in the benchmarks.

5.2 Simulation Setup
The simulations runs in a steady state with a stable amount of
vehicles and thus beacons over simulation time. To achieve this, the
traffic scenarios are warmed up in SUMO before Veins starts simu-
lating communication. For the urban scenario, the simulation state
is loaded from a pre-saved state snapshot in SUMO. This reduces
the time Veins has to wait for SUMO to warm up, which would
otherwise skew timing measurements. Preliminary measurement
similar to those for the real-time stability (see Section 6.3) proved
that the speedup is stable across the simulation time. Simulations
of shorter simulated durations yield similar speedup results and
can be used to shorten the benchmarks.

For statistically stable results, each scenario was run 9 times
on each platform: With 3 different seed sets in OMNeT++ (to gain
independence from the PRNG sequences) and 3 times with exactly
the same configuration (to gain independence of effects of the
simulating platform). Measurements were taken on both scenarios
and the 3 hardware platforms, leading to 54 simulation runs in total.

The results in the following sections have been obtained without
runtime error or fingerprint checking and compiled in release mode,
unless stated otherwise. This is to exclude further influence on the
runtime performance. Verification runs have been performed before

chunked[16] chunked[4] hybrid[16] separate sync upstream

laptop desktop workstation
0

200

400

600

w
al

lc
lo

ck
 d

ur
at

io
n

in
 s

scenario = motorway

laptop desktop workstation

scenario = urban

Figure 3: Simulation durations

chunked[16] chunked[4] hybrid[16] separate sync

laptop desktop workstation
0

1

2

3

4

sp
ee

du
p

scenario = motorway

laptop desktop workstation

scenario = urban

Figure 4: Simulation speedups

and not included in the measurements. Each hardware platform
used background threads equal to the number of virtual (hyper-
threaded) cores, i.e., twice the number of physical cores (c.f. Table 1).

6 RESULTS
The following sections show the results of the evaluation for the
most relevant parallel strategy configurations to illustrate their
performance. We present results for the hybrid strategy with 16
individually scheduled signals, and for the chunked strategy with a
size of 4 and 16 signals per chunk. Under the name upstream we
include results for the unmodified release of Veins 5.1 for compari-
son and as reference for speedup factor computation. Error bars in
the plots indicate the 95 % confidence interval around the mean.

6.1 Speedup
The benchmark runs have shown that all parallel strategies can
significantly shorten the simulation duration across all hardware
platforms and in both scenarios. Figure 3 shows the mean durations
for each scenario, platform, and parallel strategy, while Figure 4
shows the same data as speedups relative to upstream. Compared
to the upstream version of Veins 5.1, all other strategies run faster,
even the single-threaded sync. Thus, our (semantically equivalent)
redesign of signal processing made the overall simulation faster
by a factor of 1.15–1.25 even without parallelization. And aside
all parallelization, the absolute numbers in Figure 3 also show the

chunked[16] chunked[4] hybrid[16] separate sync upstream

laptop desktop workstation
0

200

400

600

800

cp
u

tim
e

in
 s

scenario = motorway

laptop desktop workstation

scenario = urban

Figure 5: Total CPU (user) time spent during simulation

significant impact a more modern and powerful CPU can have on
the simulation durations.

The difference in speedup between the two scenarios and the
parallel strategies seem to increase with the computation power
of the hardware platform: On the 2-core i5 laptop platform, the
speedup for parallelized simulation lies at about 2, which matches
it’s physical core count, with very little difference between the
parallel strategies and scenarios. On the 4-core i7 desktop plat-
form, the parallel strategies show roughly similar speedups. But
the obtainable speedup of the motorway scenario is much higher
than the urban scenario. On one hand, this stems from the more
computationally complex VehicleObstacleShadowing model in
the motorway scenario. This also explains why the chunked[16]
strategy obtains the lowest speedup: the main thread has to wait
for the first large chunk to finish in the background, while other
strategies can provide first results earlier. On the other hand, the
higher total number of vehicles in the urban scenario increases the
non-parallel portion of the code, e.g., updating vehicle positions
or maintaining interferer frames, which reduces parallel speedup.
The less complex building obstacle shadowing in the urban sce-
nario also leads to the chunked[16] strategy obtaining the largest
speedup on the 4-core i7 desktop platform. In this case the lower
overhead of the larger chunks make it more efficient while even
the large chunks are finished in time for the main thread. On the
8-core R7 workstation platform, the effects described for the 4-core
i7 desktop platform are present in a more extreme way. For the
motorway scenario, the chunked[16] strategy falls far behind while
more fine-grained strategies like chunked[4] and especially separate
yield the highest speedups by utilizing the powerful CPU and its
many cores. On the contrary, for the urban scenario, the chunked
strategy with its lower overhead again yields the highest speedups.
The hybrid strategy typically lies in the middle ground, regardless
of the platform or scenario, and yields a speedup of up to 3.5.

The amount of CPU seconds spent in user (brighter, bottom bars)
and kernel/system (darker, top bars) mode shown in Figure 5 rein-
force these findings. The separate strategy is very efficient on pow-
erful platforms and complex models, but incurs more computation
and synchronization overhead for less complex models. The hybrid
strategy remains the most efficient on in all cases but the motorway
scenario on the 8-core R7 workstation platform. But Figure 5 also
shows the cost trying to exploit more parallelism on more powerful

chunked[16] chunked[4] hybrid[16] separate sync

motorway urban
0.0

0.5

1.0

1.5

2.0

2.5

sp
ee
du

p

Figure 6: Simulation speedups for debug-builds on the 4-core
i7 desktop platform

platforms: The amount of CPU seconds spent on single-threaded
runs consistently gets smaller with more powerful platforms, indi-
cating higher per-core throughput. But the total amount of CPU
seconds spent on the 8-core R7 workstation platform is higher than
on the 4-core i7 desktop platform with only half the core count. So
the higher speedup is bought by a reduced efficiency. This probably
results from the overhead in management and contention among
the higher number of threads, which could be mitigated by manu-
ally reducing the number of threads for background processing in
Veins. Though hardware techniques like frequency boosting may
also benefit single-threaded code especially.

6.2 Debug Build Speedup
In addition to the optimized builds shown above, we also timed the
debug builds of the two simulations. In contrast to the optimized
builds, the code was not compiled with the -O3 flag and contains
debug symbols. For comparison, the mean simulation durations
increase from 195 s to 1015 s and 469 s to 2399 s, for the motorway
and urban scenario respectively. The resulting speedups on the
4-core i7 desktop platform are shown in Figure 6. In both scenar-
ios, the parallelization can still improve the simulation duration
by a factor of roughly 2.5. This is roughly similar to the speedup
obtained with optimized builds (cf. Figure 4). So the parallelization
may mitigate the extra cost of running in debug mode and help
developers to get to erroneous sections of their simulations faster.

6.3 Real-Time Steadiness
For real-time applications, the simulation not only has to be fast
enough, but also consistently fast enough in every step. Because
even a single missed deadline can invalidate the whole run. To
assess the steadiness of the parallelized code and the strategies in
particular, we measured not only the total runtime but the speed
of the simulation process over time. Specifically, this means the
simulated seconds per wall clock second, which is also referred to
as a real-time factor. OMNeT++ can output these values periodically,
and we recorded them for multiple strategies in a modified version
of the motorway scenario. The simulation time is increased to
600 s with a warm-up of 300 s. But only 45 % of the vehicles will
be equipped with a network device (via Veins’ penetrationRate).

separate hybrid[16] sync upstream

300 350 400 450 500 550 600
simulation second

0.50

0.75

1.00

1.25

1.50

re
al

-ti
m

e
fa

ct
or

Figure 7: Real-time performance over simulation time on the
4-core i7 desktop platform

This reduces the computational complexity far enough that the
4-core i7 desktop platform can run the simulation in real-time.

Figure 7 shows the real-time factor for various parallel strate-
gies across the simulation time on the 4-core i7 desktop platform.
Lines of the same color represent different runs of the exact same
configuration. The chunked strategies were omitted as they were
out-performed by the other strategies for this scenario. Both the
separate and hybrid[16] strategies are able to run the simulation
time in less than that in wall clock time. But the separate strategy
has a much more volatile profile and fell below the real-time factor
of 1.0 multiple times. So the hybrid[16] strategy appears to be more
suited for real-time applications.

6.4 Parallelization Effectiveness
To investigate the details of the performance of the simulation
with asynchronous background processing, we sampled a profile
for the hybrid strategy like we did for Veins in Section 4.1. The
results of the influence of signal processing on the 4-core i7 desktop
platform are shown in Table 2. For the motorway scenario, the
number of samples for both the start and end events of signal
processing have gone down by one to two orders of magnitude.
The relative proportion of the samples of the main thread has
gone down significantly, even though the wall clock time that
the main thread ran also went down by a factor of ca. 3.5. The
lower reduction at processSignalEnd is mostly due to the higher
amount of non-parallelized functions called by processSignalEnd
compared to processNewSignal. For the urban scenario, the same
effect is visible for the start event of signal processing, while the
reduction is much less pronounced for processSignalEnd. This is
due to a much lower original influence of the attenuation model
evaluation in the urban scenario, as interference and thus SINR-
related late evaluation of attenuation models is much lower than
on the motorway scenario.

6.5 Discussion
The best strategy depends on the scenario, hardware platform, set-
tings, and requirements—e.g., real-time stability. The hybrid strat-
egy is the versatile, being reasonably fast across all tested scenarios,
efficient, and the most stable for real-time applications. But: other

Table 2: Percentage of main thread CPU profiling samples

Function upstream hybrid[16]

motorway scenario

processNewSignal 3.0 × 1011 / 41.3 % 9.1 × 109 / 8.5 %
processSignalEnd 3.1 × 1011 / 46.1 % 1.8 × 1010 / 17.1 %

urban scenario

processNewSignal 1.3 × 1012 / 62.1 % 9.0 × 1010 / 14.2 %
processSignalEnd 1.7 × 1011 / 8.4 % 1.1 × 1011 / 17.4 %

strategies may yield better performance in some regard and depend-
ing on the platform. E.g., separate on powerful CPUs like on 8-core
R7 workstation. We thus recommend to start out with hybrid and
perform a few benchmarks for a given scenario to see if there are
further speedups to be gained. As a general rule of thumb, stronger
platforms and more complex tasks (e.g., attenuation models) benefit
from more fine grained strategies, such as separate. On the other
end of the spectrum, weaker platforms and less complex tasks ben-
efit from strategies with less overhead, such as chunked[16]. Other
factors to consider are the density of vehicles, transmit power, and
maximum interference distance, which influence the number of re-
ceived signal copies per sent message. The frequency of beacons or
other messages and their respective length will have an impact not
only on the amount of events themselves, but also on the amount
of interference. Furthermore, the list of strategy types and configu-
rations shown in this paper is not exhaustive. So custom strategies
or parameters may provide better performance for other scenarios.

The amount of speedup to be gained through parallelization
will always be limited by the portion of code that gets parallelized
(Amdahl’s law). For the scenarios shown in this paper, all signal at-
tenuation computation has been moved to the background threads.
The remaining runtime is mostly defined by the work that the
main thread has to perform. This is mainly the overhead of the
simulation kernel, e.g., maintaining and fetching from the FEL as
well as distributing messages. But also portions of Veins still incur
overhead, such as the data collection for attenuation models, stor-
age of interferer frames, or vehicle mobility updates through TraCI.
Finally, memory allocation and deallocation throughout these items
may have significant impact on the performance, especially when it
involves the managed object types of OMNeT++. This is already vis-
ible through the optimizations performed in the scope of this work:
By removing the ubiquitous Coord class from the class hierarchy
of OMNeT++ managed objects, significant overhead was removed
when creating and freeing such objects. And by using shared data
within of the Spectrum class, the amount of work needed when
copying signals was lowered substantially. Further optimizing such
portions of the code will thus not only reduce the overall computa-
tion time but also increase the effectiveness of parallelization, as
the non-parallelizable portion of the code gets smaller.

When running a particular simulation study, there are a few
other things to consider that impact the performance: Authors may
want to consider reducing or disabling runtime verification—e.g.,
fingerprint checking in OMNeT++—or data output such as result
collection or (event) logging. They (currently) have to run on the
main thread, thus their impact on the performance of parallelized

simulations can be significant, especially if I/O-operations access
slow mass storage. Finally, when running parameter studies or
other inherently process-level parallel simulation suites, it is more
efficient to disable parallelism and run each simulation in one thread
(e.g., through the sync strategy).

7 CONCLUSION
In this work, we have shown the importance of fast simulation
tools for wireless communication protocols and how asynchronous
background processing can accelerate them in situations where
traditional parallelization approaches struggle. Without changes to
the outcome or the simulation model itself, this new concept can be
applied to various simulation tools and target different portions of
the code, running more efficient the more work can be offloaded to
background tasks. We have shown this on the example of Veins and
the evaluation of signal attenuation models. Across multiple hard-
ware platforms and in two different scenarios, the implementation
of asynchronous background processing has demonstrated reliable
speedup of up to 3.5 (on a typical desktop platform). Speedup is
also achieved in debug builds, helping developers reach relevant
portions of their model faster by a factor of ca. 2.5. Furthermore,
real-time applications, which can not utilize process level paral-
lelism and need stable speeds across longer simulations, benefit
greatly from the more that twofold continuous speedup.

In future work, the concept could be applied to other parts of
the simulation or different simulation cores like ns-3. By combin-
ing the concept with other approaches of parallel and distributed
simulation, even greater speedups may be possible, and the current
bottleneck of the simulation kernel may be tackled. We aim to inte-
grate our implementation into the next release of Veins so that the
whole community can benefit from faster simulations.

ACKNOWLEDGMENTS
Research reported in this article was conducted in part in the context
of the Hy-Nets4all project, supported by the European Regional
Development Fund (ERDF).

REFERENCES
[1] Ismael Al-Shiab, Ayman Sabbah, Abdallah Jarwan, Omneya Issa, and Mohamed

Ibnkahla. 2017. Simulating large-scale networks for public safety: Parallel and
distributed solutions in NS-3. In IEEE PIMRC 2017. IEEE, Montreal, Canada. https:
//doi.org/10.1109/PIMRC.2017.8292761

[2] Peter D. Barnes, Matthew D. Bielejeski, David R. Jefferson, Steven G. Smith,
David G. Wright, Lorenza Giupponi, Katerina Koutlia, and Colby Harper. 2019.
S3: the Spectrum Sharing Simulator. In 2019 WNGW 2019. ACM, Florence, Italy,
34–37. https://doi.org/10.1145/3337941.3337945

[3] Bastian Bloessl and Aisling O’Driscoll. 2019. A Case for Good Defaults: Pitfalls in
VANET Physical Layer Simulations. In IFIP WD 2019. IEEE, Manchester, United
Kingdom. https://doi.org/10.1109/WD.2019.8734227

[4] Fabian Bronner and Christoph Sommer. 2018. Efficient Multi-Channel Simulation
of Wireless Communications. In IEEE VNC 2018. IEEE, Taipei, Taiwan. https:
//doi.org/10.1109/VNC.2018.8628350

[5] Dominik S. Buse. 2021. Experiment Setup for "Accelerating the Simulation of
Wireless Communication Protocols using Asynchronous Parallelism". Simulation
Experiment Setup version 1.0. Zenodo. https://doi.org/10.5281/zenodo.5503502

[6] Dominik S. Buse. 2021. Paderborn Traffic Scenario. Traffic Simulation Scenario
version 0.1. Zenodo. https://doi.org/10.5281/zenodo.4522058

[7] Dominik S. Buse and Falko Dressler. 2019. Towards Real-Time Interactive V2X
Simulation. In IEEE VNC 2019. IEEE, Los Angeles, CA, 114–121. https://doi.org/
10.1109/VNC48660.2019.9062812

[8] David Eckhoff, Alexander Brummer, and Christoph Sommer. 2016. On the Impact
of Antenna Patterns on VANET Simulation. In IEEE VNC 2016. IEEE, Columbus,
OH, 17–20. https://doi.org/10.1109/VNC.2016.7835925

[9] Richard M. Fujimoto. 2016. Research Challenges in Parallel and Distributed
Simulation. TOMACS 26, 4 (May 2016). https://doi.org/10.1145/2866577

[10] Moritz Gütlein, Reinhard German, and Anatoli Djanatliev. 2019. Performance
Gains in V2X Experiments Using Distributed Simulation in the Veins Framework.
In IEEE/ACM DS-RT 2019. IEEE, Cosenza, Italy. https://doi.org/10.1109/DS-
RT47707.2019.8958671

[11] Robert H. Halstead. 1985. MULTILISP: a language for concurrent symbolic
computation. TOPLAS 7, 4 (Oct. 1985), 501–538. https://doi.org/10.1145/4472.4478

[12] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin Wong. 2019. Cpp-
Taskflow: Fast Task-based Parallel Programming using Modern C++. In IEEE
IPDPS 2019. IEEE, Rio de Janeiro, Brazil, 974–983. https://doi.org/10.1109/IPDPS.
2019.00105

[13] R. Isermann, J. Schaffnit, and S. Sinsel. 1999. Hardware-in-the-loop simulation
for the design and testing of engine-control systems. Control Engineering Practice
7, 5 (May 1999), 643–653. https://doi.org/10.1016/S0967-0661(98)00205-6

[14] David R. Jefferson. 1985. Virtual time. TOPLAS 7, 3 (July 1985), 404–425. https:
//doi.org/10.1145/3916.3988

[15] Stefan Joerer, Christoph Sommer, and Falko Dressler. 2012. Toward Reproducibil-
ity and Comparability of IVC Simulation Studies: A Literature Survey. COMMAG
50, 10 (Oct. 2012), 82–88. https://doi.org/10.1109/MCOM.2012.6316780

[16] Irfan Khan and Jérôme Härri. 2017. Can IEEE 802.11p and Wi-Fi coexist in the
5.9GHz ITS band ?. In IEEE WoWMoM 2017. IEEE, Macau SAR, China. https:
//doi.org/10.1109/WoWMoM.2017.7974358

[17] Georg Kunz, Olaf Landsiedel, Stefan Götz, Klaus Wehrle, James Gross, and
Farshad Naghibi. 2010. Expanding the Event Horizon in Parallelized Net-
work Simulations. In IEEE MASCOTS 2010. IEEE, Miami Beach, FL. https:
//doi.org/10.1109/MASCOTS.2010.26

[18] Georg Kunz, Mirko Stoffers, Olaf Landsiedel, Klaus Wehrle, and James Gross.
2016. Parallel Expanded Event Simulation of Tightly Coupled Systems. TOMACS
26, 2 (Jan. 2016). https://doi.org/10.1145/2832909

[19] Averill M. Law. 2007. Simulation, Modeling and Analysis (4 ed.). McGraw-Hill.
[20] Ioannis Mavromatis, Andrea Tassi, Robert J. Piechocki, and Andrew Nix. 2018.

Poster: Parallel Implementation of the OMNeT++ INET Framework for V2X
Communications. In IEEE VNC 2018, Poster Session. IEEE, Taipei, Taiwan. https:
//doi.org/10.1109/VNC.2018.8628429

[21] Rafael Molina-Masegosa, Miguel Sepulcre, Javier Gozalvez, Friedbert Berens,
and Martinez Vincent. 2020. Empirical Models for the Realistic Generation of
Cooperative Awareness Messages in Vehicular Networks. TVT 69, 5 (May 2020),
5713–5717. https://doi.org/10.1109/TVT.2020.2979232

[22] Christina Obermaier, Raphael Riebl, Christian Facchi, Ali H. Al-Bayatti, and
Sarmadullah Khan. 2021. COSIDIA: An Approach for Real-Time Parallel Discrete
Event Simulations Tailored for Wireless Networks. In ACM SIGSIM PADS 2021.
ACM, Virtual, Online, 165–171. https://doi.org/10.1145/3437959.3459250

[23] Joshua Pelkey and George F. Riley. 2011. Distributed simulation with MPI in ns-3.
In ACM/ICST SIMUTools 2011. ACM, Barcelona, Spain, 410–414.

[24] Patrick Peschlow, Andreas Voss, and Peter Martini. 2009. Good News for Parallel
Wireless Network Simulations. In ACM MSWiM 2009. ACM, Tenerife, Spain,
134–142. https://doi.org/10.1145/1641804.1641828

[25] Ayman Sabbah, Abdallah Jarwan, Ismael Al-Shiab, Mohamed Ibnkahla, and
Maoyu Wang. 2018. Emulation of Large-Scale LTE Networks in NS-3 and CORE:
A Distributed Approach. In IEEE Milcom 2018. IEEE, Los Angeles, CA, 493–498.
https://doi.org/10.1109/MILCOM.2018.8599762

[26] Y. A. Sekercioglu, A. Varga, and G. K. Egan. 2003. Parallel simulation made easy
with OMNeT++. In European ESS 2003. Delft, Netherlands.

[27] Christoph Sommer, David Eckhoff, Reinhard German, and Falko Dressler. 2011. A
Computationally Inexpensive Empirical Model of IEEE 802.11p Radio Shadowing
in Urban Environments. In IEEE/IFIPWONS 2011. IEEE, Bardonecchia, Italy, 84–90.
https://doi.org/10.1109/WONS.2011.5720204

[28] Christoph Sommer, Reinhard German, and Falko Dressler. 2011. Bidirectionally
Coupled Network and Road Traffic Simulation for Improved IVC Analysis. TMC
10, 1 (Jan. 2011), 3–15. https://doi.org/10.1109/TMC.2010.133

[29] Christoph Sommer, Stefan Joerer, Michele Segata, Ozan K. Tonguz, Renato
Lo Cigno, and Falko Dressler. 2015. How Shadowing Hurts Vehicular Com-
munications and How Dynamic Beaconing Can Help. TMC 14, 7 (July 2015),
1411–1421. https://doi.org/10.1109/TMC.2014.2362752

[30] Lukas Stratmann, Dominik S. Buse, Julian Heinovski, Florian Klingler, Christoph
Sommer, Jan Tünnermann, Ingrid Scharlau, and Falko Dressler. 2019. Psycho-
logical Feasibility of a Virtual Cycling Environment for Human-in-the-Loop
Experiments. In Jahrestagung INFORMATIK 2019, ICT4VRU Workshop, Claude
Draude, Martin Lange, and Bernhard Sick (Eds.), Vol. LNI P-295. GI, Kassel,
Germany, 185–194. https://doi.org/10.18420/inf2019_ws21

[31] Martinez Vincent and Friedbert Berens. 2018. Survey on ITS-G5 CAM statistics. TR
2052, V1.0.1. C2C-CC. https://www.car-2-car.org/fileadmin/documents/General_
Documents/C2CCC_TR_2052_Survey_on_CAM_statistics.pdf

[32] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. 1998. GloMoSim: a Library for
Parallel Simulation of Large-scale Wireless Networks. InWorkshop PADS 1998.
IEEE, Banff, Canada, 154–161. https://doi.org/10.1109/PADS.1998.685281

https://doi.org/10.1109/PIMRC.2017.8292761
https://doi.org/10.1109/PIMRC.2017.8292761
https://doi.org/10.1145/3337941.3337945
https://doi.org/10.1109/WD.2019.8734227
https://doi.org/10.1109/VNC.2018.8628350
https://doi.org/10.1109/VNC.2018.8628350
https://doi.org/10.5281/zenodo.5503502
https://doi.org/10.5281/zenodo.4522058
https://doi.org/10.1109/VNC48660.2019.9062812
https://doi.org/10.1109/VNC48660.2019.9062812
https://doi.org/10.1109/VNC.2016.7835925
https://doi.org/10.1145/2866577
https://doi.org/10.1109/DS-RT47707.2019.8958671
https://doi.org/10.1109/DS-RT47707.2019.8958671
https://doi.org/10.1145/4472.4478
https://doi.org/10.1109/IPDPS.2019.00105
https://doi.org/10.1109/IPDPS.2019.00105
https://doi.org/10.1016/S0967-0661(98)00205-6
https://doi.org/10.1145/3916.3988
https://doi.org/10.1145/3916.3988
https://doi.org/10.1109/MCOM.2012.6316780
https://doi.org/10.1109/WoWMoM.2017.7974358
https://doi.org/10.1109/WoWMoM.2017.7974358
https://doi.org/10.1109/MASCOTS.2010.26
https://doi.org/10.1109/MASCOTS.2010.26
https://doi.org/10.1145/2832909
https://doi.org/10.1109/VNC.2018.8628429
https://doi.org/10.1109/VNC.2018.8628429
https://doi.org/10.1109/TVT.2020.2979232
https://doi.org/10.1145/3437959.3459250
https://doi.org/10.1145/1641804.1641828
https://doi.org/10.1109/MILCOM.2018.8599762
https://doi.org/10.1109/WONS.2011.5720204
https://doi.org/10.1109/TMC.2010.133
https://doi.org/10.1109/TMC.2014.2362752
https://doi.org/10.18420/inf2019_ws21
https://www.car-2-car.org/fileadmin/documents/General_Documents/C2CCC_TR_2052_Survey_on_CAM_statistics.pdf
https://www.car-2-car.org/fileadmin/documents/General_Documents/C2CCC_TR_2052_Survey_on_CAM_statistics.pdf
https://doi.org/10.1109/PADS.1998.685281

	Abstract
	1 Introduction
	2 Related Work
	3 Asynchronous Background Computation
	4 Application to Veins
	4.1 Profiling: What to Parallelize
	4.2 Wireless Message Sending in Veins 5.1
	4.3 Asynchronous Parallelism in Veins
	4.4 Result verification

	5 Evaluation
	5.1 Simulation Scenarios
	5.2 Simulation Setup

	6 Results
	6.1 Speedup
	6.2 Debug Build Speedup
	6.3 Real-Time Steadiness
	6.4 Parallelization Effectiveness
	6.5 Discussion

	7 Conclusion
	Acknowledgments
	References

