
Asynchronous Background Processing for Accelerated Simulation of
Wireless Communication on Multi-Core Systems

Dominik S. Busea,b, Georg Echterlinga, Falko Dresslerb

aDepartment of Computer Science, Paderborn University, Germany
bSchool of Electrical Engineering and Computer Science, TU Berlin, Germany

Abstract

Discrete event simulation (DES) is an important tool for the development and analysis of wireless networks. However,
with increasing network size and complexity, the computational effort and simulation time increases significantly, often
exponentially. This increase in response time may be critical if DES is interfacing real-time systems like Hardware in the
Loop (HIL) or network emulation. It also slows down development cycles of users designing or debugging simulation models.
Most popular DES software packages run single-threaded. Thus, they achieve only limited performance improvements
from more modern multi-core CPUs. At the same time, existing approaches for parallel simulation of networks do not
perform well on wireless systems or require complex paradigm shifts in simulation models. In this paper, we propose
Asynchronous Background Processing (ABP) to accelerate the simulation of wireless communication on multi-core systems.
By moving expensive computation from the main thread into asynchronous tasks computed by background threads, it
accelerates the progression of events and thus reduces response time. Tasks are started as early as possible to exploit the
time the main thread spends processing other events, ideally providing results before they are needed in the simulation.
We showcase the application of ABP using Veins, a popular vehicular network simulator, demonstrating speedups of up
to 3.5 on typical desktop platforms. We further perform an in-depth analysis using advanced profiling techniques to
investigate the effectiveness of the parallelization and guide further optimizations.

Keywords: Parallel simulation, wireless network simulation, asynchronous parallelization, vehicular networking

1. Introduction

Wireless systems have become ubiquitous in today’s
world: Smartphones, Edge Clouds, Connected Cars, the
Internet of Things. The applications they run and the
protocols they rely on became ever more complex, leading
to ever more complex systems. Designing these systems
and investigating the various effects within them thus also
becomes ever more complicated [1]. To tame this complex-
ity, developers and researchers turn to simulation software.
It allows running experiments reliably and reproducibly for
setups that would cost fortunes to set up in real hardware,
while also allowing to inspect and record minute details
from any involved device. So, it is no wonder that net-
work simulators, typically using discrete event simulation
(DES), have become such a common tool [2]. However,
many common DES tools, like OMNeT++ or ns-3 have
a problem with the increasing scale of networks: Their
implementation is predominantly single-threaded [3]. Thus,
the major gains in processor performance of the last decade
that stem from increasing CPU core count, scarcely help
to speed up network simulation.

Email addresses: buse@ccs-labs.org (Dominik S. Buse),
georg@echterling.net (Georg Echterling), dressler@ccs-labs.org
(Falko Dressler)

This may not be a problem for large-scale parameter
studies of wireless simulations. Process-level parallelism is
easy to achieve if there is simply a large collection of inde-
pendent simulation configurations to run. However, relying
on this is not always possible—often it is response time (or
delay), rather than throughput, that needs to be optimized.
On the one hand, large-scale simulation studies typically
lie at the end of a development or research process. Before
that, the model must be carefully designed, implemented,
debugged, and adapted [2]. This loop typically only needs
one instance of a simulation and it needs it to reach a cer-
tain point at which a bug may occur, repeatedly. To make
matters worse, this often involves running non-optimized
debug builds of code. On the other hand, there are scenar-
ios in which even for finished simulation models, there is
only one instance of interest. This is often the case when
the simulation is coupled to some other system, especially
when real-time elements are involved (e.g., Hardware in
the Loop (HIL) setups, human-facing systems, on-policy
training of agents via reinforcement learning) [4, 5].

This is particularly relevant for the simulation of wire-
less communication [6]. Approaches known from other
domains of simulation—even wired networking simulation—
often do not work. On the shared medium of the wire-
less channel, lookahead times are low and may become
even lower with an increase in complexity, i.e., number of

Article published in Elsevier Computer Communications 193 (2022) 396-409. (10.1016/j.comcom.2022.07.032)



nodes, complicating the application of Logical Processes
(LPs) [7]. Optimistic synchronization, like the TimeWarp
algorithm [8], would see a large number of rollbacks due to
high interference in dense scenarios. Also, multi-threaded
tools that have been proposed so far lack widespread adop-
tion. They either require a re-design of the simulation
framework and simulation models alike [9]. Or they sacri-
fice reproducibility (i.e., determinism) or accuracy for the
sake of performance, often in the context of interference
modeling [10]. For all these reasons, popular simulation
frameworks like ns-3 or OMNeT++/INET have not yet
adopted a multi-threaded model for wireless simulations.
Overall, it is still hard to create general forms of parallelized
architectures for wireless system simulation.

In this paper, building on our previous work in [11], we
present the concept of Asynchronous Background Process-
ing (ABP) to achieve accessible multi-core performance
for the simulation of wireless communication. It relies on
isolating expensive computation out of the main thread to
achieve speedup without changing the core of the simula-
tion. By exploiting semantic relationships between events,
which are common in DES, background computation tasks
are started as early as possible, such that their results are
ideally already available before they are needed by the
main thread of the simulation. This way, the main thread
may advance simulation time faster, resulting in overall
simulation speedup. All while the processing of simulation
events is untouched, making ABP virtually transparent to
the user.

As an application of ABP, we present a comprehensive
case study on Veins [12], a widely adopted simulator for
vehicular networks based on OMNeT++. By parallelizing
the signal attenuation models in Veins, we showcase the
speedups achievable to a wide variety of simulations, as the
evaluation of these models dominate the performance of
many larger simulation scenarios. At the same time, this
acceleration will benefit many users with minimal impact
to their models, e.g., application layer protocols. Along
the case study, we guide through the entire process of
applying ABP and holistically examine the outcome of the
parallelization.

Our main contribution can be summarized as follows:

• We present Asynchronous Background Processing
(ABP), a concept to speed up wireless simulations
without deep changes to the simulation model;

• we perform a case study of ABP on Veins, a commonly
used vehicular network simulation software; and

• we study the process of ABP application, from ini-
tial potential estimation, to implementation, result
verification, and in-depth performance evaluations.

2. Related Work

The typical tools used for the simulation of wireless
mobile networks have some kind of parallel distributed sim-

ulation support. However, these are mostly traditional par-
allelization and distribution approaches focused on point-
to-point communication, using LPs and conservative syn-
chronization with lookahead times. E.g., OMNeT++ has
supported the null message algorithm for a long time [13].
Its implementation uses the Message Passing Interface
(MPI) and utilizes link delays as lookahead. Similar ap-
proaches have been implemented for ns-3 [14], also being
built on top of MPI. While scaling for wired networks has
shown impressive speedups, “a distributed simulation in
ns-3 requires at least one point-to point link within the
topology” [14].

Pioneering work for parallel simulation of wireless sys-
tems has been done in [15]. It also uses LPs with conserva-
tive synchronization via lookahead windows, combined with
a geographically partitioned simulation. The key advan-
tage proposed by the authors is to derive “large” lookahead
windows from the properties of the simulated protocol,
i.e., incorporating inter frame spaces, backoff intervals,
and more into the lookahead computation. However, this
binds the acceleration of the simulation model to a spe-
cific protocol and may lead to problems with heterogeneous
communication. Also, the speedup may decrease with more
dense and mobile networks, e.g., when simulating Vehicular
Ad-hoc Networks (VANETs) on a motorway.

A recent study [16] surveyed approaches for ns-3 for
the simulation of an LTE network for public safety appli-
cations. This means large-scale networks and the option
to emulate parts of the system in real time, similar to a
HIL system. The authors conclude that building an LTE
network simulation for public safety applications would
require significant extra work for the three most common
approaches in the literature: MPI based solutions depend
on point-to-point connections and lookahead values, while
multi-threading and graphics processing unit (GPU)-based
approaches require highly complex changes to the core of
simulation models. The same authors later implemented a
large-scale LTE simulator by coupling ns-3 and CORE [17].
Their simulator uses the MPI protocol and is able to emu-
late an LTE network in real-time to perform HIL studies.
Parallelization is done using LPs, each representing an
LTE eNB in the simulation and with point-to-point links
of known delay between them. A static lookahead value
given by the model designer is used, which must be shorter
than the time between two dependent events, with a value
of 1 ms in the paper. While this may suffice for eNBs with
point-to-point links between them, it is not a feasible order
of magnitude for VANET simulation.

The HORIZON [18, 7] extension to OMNeT++ acceler-
ates simulations by identifying events that are independent
of each other and running them in parallel. It does so by ex-
tending (at least a subset of) the events from instantaneous
points in time to intervals of time, by adding a duration.
Events may only change the simulation state after their
duration has passed. Thus, events with overlapping time in-
tervals cannot depend upon each other—they either would
not have been allowed to start or would not be able to

2



use each other’s results. Thus, overlapping events can be
scheduled to run in parallel. This even works for wireless
mobile simulation and the authors evaluate HORIZON for
an LTE network. However, it requires significant changes
to the simulation kernel and assignment of a duration to a
sizable portion of the events, which complicates simulation
model design. The evaluation also shows that the speedup
depends highly on the duration of events, with less speedup
for events of shorter simulation duration and more compu-
tational complexity. The lowest duration analyzed in the
original paper is 1 µs, roughly the propagation delay of a
signal across 300 m—much more than many messages in
VANETs travel.

A different approach is the parallelization of individual
component models in the simulation, e.g., building obstacle
shadowing [19]. This allows to speed up selected computa-
tionally expensive portions of the simulation while leaving
the rest of the model untouched, yielding some speedup
at low cost to the user. However, as the main simulation
thread still waits for the completion of the parallelized
computation, it leaves potential speedup on the table.

For VANET simulation with Veins specifically, a dis-
tributed simulation scheme based on the High Level Ar-
chitecture (HLA) has been proposed [10]. It showcases
the possibility of a distributed simulation of a Green Light
Optimal Speed Advisory (GLOSA) application. Coordi-
nated by HLA federates, multiple instances of Veins each
cover a portion of a Manhattan grid scenario. Vehicles
passing from one region into the next are transferred to
the control of the respective region. In contrast, there is no
notion of exchanging simulated wireless messages between
the instances of Veins, meaning the reception of vehicles
close to region borders may vary with the simulation lay-
out. So results of simulations with different numbers of
Veins instances will differ and may be inaccurate due to
the potential lack received messages or interference.

There is currently ongoing work to extend ns-3 into
the Spectrum Sharing Simulator (S3) [20]. The goal is to
be able to run large-scale, combined LTE, LTE-Advanced,
and 5G-New Radio networks to analyze effects of spectrum
sharing. A combination of optimistic synchronization using
a compiler-assisted rollback mechanism and conservative
synchronization using lookahead values provided by the
model designer shall be used for parallelization. Though
at the time of writing of this paper, said work has not yet
concluded.

COSIDIA [21] is another new parallel simulator for
wireless mobile systems, specifically VANETs, with a focus
on real-time capability for HIL testing. Similar to HORI-
ZON, events are extended into actions with a start and
end time and then distributed to light-weight fibers, which
implement LPs, for parallel execution. COSIDIA promises
“fully deterministic functional behavior when no external
hardware is attached” and aims to execute all events within
defined real-time boundaries. However, COSIDIA is still in
an early stage of development, so no conclusions of the per-
formance when simulating realistic scenarios and protocols

can be drawn yet.
Aside from parallel and distributed acceleration tech-

niques, there have been attempts to improve the (single-
core) performance of Veins. Since forking off from MiXiM,
Veins has used a maximum interference distance to limit
the number of nodes needing to be checked to be poten-
tial receivers of a packet. When a message is sent by
pushing copies of the message to potential receivers, only
nodes within that distance from the sender are considered.
This can significantly speed up the simulation by reduc-
ing the computational complexity by orders of magnitude.
However, it can potentially change the outcome of the
simulation in some cases. Even extremely low interference
levels of multiple messages may still add up and influence
the decision of whether some other message can be success-
fully received or not. Originally, the maximum interference
distance was computed from the signal characteristics in
Veins. But since the introduction of antenna models [22] in
Veins 4.5, the distance must be configured by the simula-
tion author. Tuning this parameter can have a significant
impact on the performance but also the result of the simu-
lation and provides a trade-off between accuracy and speed.
Choosing the right value may require extensive experience
and preliminary studies though, as it depends on many
factors such as channel models, transmission technology,
shadowing, and more.

More recently, a re-work of the signal implementation of
Veins in version 5.0 introduced improvements to the code
performance and the concept of thresholding [23]. With
thresholding, the computation of signal attenuation models
may be aborted early if the attenuated signal falls below a
given threshold before all models have been computed. This
can reduce the computational complexity and thus speed
up the simulation itself without changing the simulation
outcome. Thresholding requires that further models can
only decrease the received signal strength. Attenuation
models that may increase the received signal strength (e.g.,
two-ray interference) must be evaluated completely before
thresholding can be applied. It works best if more complex
models are computed later in the chain of attenuation
models, as skipping them provides the largest speedup.
However, this optimization provides vastly different speed-
ups depending on the channel models involved and only
speeds up this part of the simulation. But in practice it can
provide useful speedup and is compatible with approaches
to speed up simulation using parallel processing.

3. Asynchronous Background Processing (ABP)

Asynchronous Background Processing (ABP) is a con-
cept to speed up simulations of DES software. It proposes
moving computationally expensive tasks from the main
thread to background worker threads. These computation
tasks are started as early as possible in simulation time and
are concurrent to the main thread. Previously synchronous
(i.e., blocking) computations thus become asynchronous,
which introduces the potential for parallel execution. This

3



allows the main thread to advance simulation time faster,
resulting in a speedup of the overall simulation. In con-
trast to other parallelization techniques for DES, ABP
only moves computation tasks out of the main thread—not
events, entire simulation modules, or other entities of the
simulation itself. This makes ABP much easier and less
invasive to apply to existing simulation software. This
section explains the details of ABP, how it can be applied
to DES, and the conditions that have to be met for it to
work.

3.1. Time Progression in Sequential DES
Typical DES tools used for wireless systems, like OM-

NeT++ or ns-3, work by processing events in discrete
points in time. Scheduled events are stored in a future
event list (FEL) and ordered by their time stamp. Once
the simulator finishes processing an event, the next one is
fetched from the FEL. Time intervals between the finished
and next event are simply skipped. Events can schedule
new events themselves, which are sorted into the FEL at
the appropriate time. Once there are no more events left
or some other end condition is met, the simulation stops.

There are two important notions of time when dis-
cussing simulation: Simulation time, i.e., the time within
the simulation, and wallclock, i.e., time physically passing
while a computer is running the simulation software (cf.
[24]). Typically, there is no link between simulation time
and wallclock time (except that both never move back-
wards). The progression of simulation time may vary dras-
tically: Multiple close-by events with high computational
complexity may take a long wallclock time to compute
but only advance the simulation time a little. Meanwhile,
large gaps between events can lead to fast progression of
simulation time without much computation time spent.

As an example, consider the simulation of a wireless net-
work consisting of a few close-by nodes that each broadcast
messages every second or so (cf. Figure 1). Each broadcast
will lead to a burst of close-by events in all receiving nodes
with very little time in between them—in the order of
nanoseconds—due to propagation delay. However, the time
between two broadcasts may be orders of magnitude larger,
depending on the configuration and number of nodes, e.g.,
in the order of milliseconds.

How long it takes to compute an event depends on the
complexity of the code executed within that event. And
this computational complexity may vary greatly as well:
Some events only save some value or schedule another event
for later, while others execute complex computations of
models or system behavior. As a result, the code within
individual events may take much more time to compute
than the simulation kernel working through the FEL itself.

Individual events usually represent a discrete point in
time for isolated entities in the simulation. There is often a
semantic relationship between two events. E.g., the event
in which the broadcast is transmitted by the sender and the
reception event of another node (trigger and reaction). Or
the reception events of the same broadcast on two different

wall clock time

s1

s1

simulation time

rA,1

rA,1

rB,1

rB,1

rC,1

rC,1

RA

RB

RC

S

. . .

Figure 1: Example simulation of a broadcast in a wireless
network.

wall clock time

t1 t3

si
ng

le
-t

hr
ea

de
d

as
yn

c.
 p

ar
al

le
l

worker thread 1
worker thread 2

main thread

r1 r2 r3s1 u1 u2

r1 r2 r3s1 u1 u2

implicit dependencies

t2

Figure 2: Time progression in single-threaded (top) and
asynchronous parallel (bottom) simulations.

nodes (two reactions to the same trigger). However, these
semantic relationships are typically not encoded into the
simulation directly. Instead, they are part of the design
of the simulation model. Additionally, there is often some
degree of freedom in how what part of the model gets
implemented in which event.

3.2. Extracting Computation Tasks
The way DES work can be exploited to speed up the

simulation through ABP: By offloading expensive computa-
tions between two events from the simulation main thread
to some background (worker) thread. Assume again the
example from the previous section, with one node sending
a message to three receivers. This could result in a FEL
and computation as illustrated in Figure 2. It consist at
least of the sending event s1, and three receiving events r1,
r2, and r3 at receivers 1, 2, and 3, respectively. Naturally,
the sending event s1 takes place before the receiving events,
which in turn are sorted by distance (due to the propa-
gation delay). But there are also some unrelated events
u1 and u2 between sending and the first reception, e.g.,
modeling post-transmission code running on the sender. In
this example model, reception events are computationally
expensive, as they contain some channel or error models to
determine the success of the transmission. These computa-
tions could also be evaluated as part of the sending event s1,
as all information needed for them is known at that point.

4



Though that would not change the total computation time
significantly.

With ABP however, the computations can also be ex-
tracted into computation tasks and run in background
worker threads. The bottom half of Figure 2 illustrates
this for a scenario with two worker threads: During s1, the
computation tasks are created by collecting relevant infor-
mation and scheduling the tasks t1, t2, and t3, resulting in
a slightly more complex event s1. The worker threads then
start processing the tasks, while the main thread continues
with the unrelated events u1 and u2. By the time the main
thread starts processing r1, the tasks t1 is already done,
its result can be obtained, and r1 can be completed much
faster. And even if it was not ready at that time—resulting
in a stall of the main thread waiting for the result of t1—r1
would still have concluded earlier as part of its computa-
tion was started earlier as well. The same is true for r2
and t2, as the two worker threads processed t1 and t2 in
parallel. And even though t3 only gets processed once t1 is
done, its result is ready before the main tread arrives at r3.
This leads to a significant reduction of the wallclock time
needed to simulate the transmission through the utilization
of multiple cores.

Naturally, there can be more than one background task
active at the same time (both simulation and wallclock
time). Though the actual number of tasks being processed
in parallel depends on the simulation hardware. This pro-
cedure can speed up the overall simulation as the main
thread can go through the FEL faster while other threads
and cores take care of the expensive computation tasks.
Having many background tasks scheduled at the same time
makes the procedure even more efficient, as work can be
distributed to more cores. Tasks will only start queueing
up if all cores are utilized and the system runs at peak
efficiency.

While ABP has similarities to other offloading tech-
niques, e.g., to GPU offloading, it exploits the nature of
DES by advancing the simulation while the offloaded tasks
are being processed. This may yield greater speedups
than just using parallel algorithms for the computationally
expensive operations (see Section 7). Also, the implemen-
tation of the model and the simulation core itself did not
have to be modified or re-implemented, like it would be nec-
essary for a GPU. Only a little instrumentation is needed
to offload computation tasks to a background thread and
obtain their result later.

A typical way to implement background tasks and
their synchronization between threads is using Futures
and Promises [25]. When the task is offloaded, the main
thread receives a Future instead of the actual result. The
Future can be used to await the completion of the of-
floaded task and obtain the actual result once it is available,
with no further need for synchronization primitives. The
background thread receives the Promise, through which
it communicates the completion of the computation and
its result. Though this is typically abstracted away by the
asynchronous offloading library. Together, the Future and

the Promise form a channel between the main thread and
the offloaded task, which takes care of all further synchro-
nization. The main thread can attach the Future to the
event or simulation object that will eventually request the
result of the computation.

3.3. Challenges
However, there are limitations to this asynchronous

offloading approach. The offloading task may not interfere
with the simulation progression itself, e.g., by scheduling
events. Such actions may lead to unrepeatable and non-
deterministic behavior, as the point in simulation time at
which the background thread accesses the simulation core
is not defined. In addition, direct interaction with other ob-
jects in the simulation would require locking to avoid race
conditions. Thus, background tasks should ideally be pure
functions without any side effects and with a set of input
parameters fully determined at the point at which they get
offloaded. This includes less obvious inputs such as random
numbers drawn from a Pseudorandom Number Generator
(PRNG): There may be multiple background tasks being
processed at the same time in different threads, so the
order of the calls to a PRNG becomes non-deterministic.
This could lead to non-reproducible changes in the sim-
ulation outcome, which must be avoided. Even reading
non-constant data from other simulation objects, e.g., the
location of a mobile node, is prohibited as the node may
or may not have moved in the main thread at the time.

In practice, this often means moving the start of the
computation to the point in simulation time at which they
first become possible. It may even be useful to include
processing delays of the system represented by the model to
create more opportunities for the completion of background
tasks while the main thread processes other events. The
kind of computation that gets offloaded is flexible and
up to the implementer. This may be common simulation
elements like signal attenuation models, calls to external
tools, or even computation-intensive application layers in
the simulation, e.g., sorting or numerical optimization.

4. Application Case Study: Veins

We demonstrate our Asynchronous Background Pro-
cessing (ABP) concept by applying it to Veins [12], a
state-of-the-art VANET simulator. This section describes
the process we followed to serve as a case study for the
application of ABP. First, we examine the performance
profile of Veins 5.1 (the most recent release when we started
the application of ABP) to discover potentials for paral-
lelization. This includes an analysis of the computationally
expensive portion of the code we found for applicability of
our concept. Based on that, we implement ABP in Veins
and explain the details of the challenges encountered during
the implementation. Finally, we describe how we ensured
the equality of the results of the original sequential version
of Veins and our parallelized implementation.

5



5.824E+11 aggregated cycles:u cost in total

_start

__libc_start_main

evMain

omnetpp::envir::setupUserInterface

omnetpp::envir::EnvirBase::run

omnetpp::envir::EnvirBase::run

omnetpp::cmdenv::Cmdenv::doRun

omnetpp::cmdenv::Cmdenv::simulate

omnetpp::cSimulation::executeEvent

veins::BasePhyLayer::handleAirFrameStartReceive

veins::BasePhyLayer::handleAirFrameReceiving

veins::BaseDecider::processSignal

veins::Decider80211p::processNewSignal

veins::Signal::smallerAtCenterFrequency

veins::VehicleObstacleShadowing::filterSignal

veins::VehicleObstacleControl::getPotentialObstacles

veins::MobileHostObstacle::getIntersecti

veins::MobileHostObs

__cos

omn

operat

__GI__

veins::Mo

veins::BasePhyLayer::handleAirFrameReceiving

veins::BaseDecider::processSignal

veins::Decider80211p::processSignalEnd

veins::Decider80211p::checkIfSignalOk

veins::SignalUtils::getMinSINR

veins::Signal::applyAllAnalogueModels

veins::VehicleObstacleShadowing::filterSignal

veins::VehicleObstacleControl::getPotentialObstacles

veins::MobileHostObstacle::getIntersectionPoint

veins::MobileHostObstacle::getShape

__cos_fma

__c

__sin_fma

__sin_f

omnetpp::

(a) Motorway scenario.

1.624E+12 aggregated cycles:u cost in total

_start

__libc_start_main

evMain

omnetpp::envir::setupUserInterface

omnetpp::envir::EnvirBase::run

omnetpp::envir::EnvirBase::run

omnetpp::cmdenv::Cmdenv::doRun

omnetpp::cmdenv::Cmdenv::simulate

omnetpp::cSimulation::executeEvent

veins::BasePhyLayer::handleAirFrameStartReceive

veins::BasePhyLayer::handleAirFrameReceiving

veins::BaseDecider::processSignal

veins::Decider80211p::processNewSignal

veins::Signal::smallerAtCenterFrequency

veins::SimpleObstacleShadowing::filterSignal

veins::ObstacleControl::calculateAttenuation

veins::ObstacleControl::getIntersections

veins::Obstacle::getIntersectionsveins::BBoxLookup::findOverlapping

veins

veins::Base

veins::Chan

veins::BasePhyLayer::handleAirFr

veins::Bas

veins::Ch

veins::

veins::

veins::BaseDecide

veins::Decider80

veins

vein

omnetp

(b) Urban scenario.

Figure 3: Flame graphs of performance profiles of Veins 5.1 (recorded on the 8-core workstation platform.)

4.1. Finding Potentials
Finding portions of the code to be turned into back-

ground tasks is possibly the hardest part of applying ABP.
The same real-world process can be simulated with vastly
different implementations, with highly different potentials
for parallelization, yet still producing the same results.
By understanding what actual results and behavior the
simulation should produce, the implementation may be
changed to be more suited for ABP. The important part
to remember is that computations for background tasks
have to be isolatable from the simulation kernel. This may
not be immediately possible if the original implementation
was not designed with this principle in mind. A complete
re-modelling and re-implementation is often not possible
due to the required time and effort. But in many cases
re-thinking how a small portion or aspect of the simulation
is modelled and implemented may have great impact on the
parallelization potential. So, it makes sense to always keep
in mind what is the necessary behavior to be simulated
and what is just an implementation detail.

Performance analysis tools can be of great help to find
potentials in a concrete implementation. One of the most
common tools for this is perf, a sampling profiler for Linux.
While the simulation runs, perf records a performance
profile by sampling the currently active stack frame of a
program at regular intervals, e.g., 10 ms. In comparison to
many other profiling approaches, sampling is very efficient

and simple to apply. The program under test does not have
to be modified in any way, neither by the programmer nor
through another program or compiler. And the process of
sampling has a low overhead, typically only introducing
a few percent of increased program runtime. Thus, the
program executes very similar under profiling to how it
would without. As a downside, it can only indirectly tell
how much of an impact a certain function has on the
overall performance: It only statistically tells how many
of the samples of the performance profile were found to
involve a certain function, but not how long a single call
of said function took or how often it was called. However,
for finding computationally intensive parts of the program,
this is typically sufficient. Functions with a high proportion
may be candidates for background tasks.

To find potentials in Veins by identifying computa-
tionally complex code, we profiled two typical simulation
scenarios using perf. The scenarios are described in detail
in Section 5.1 and will later be used for the evaluation of
our parallelized version of Veins. We plotted the perfor-
mance profiles as flame graphs, which are shown in Figure 3.
Both have been filtered to include only samples from the
main thread on the OMNeT++ simulation, e.g., exclud-
ing samples of the Simulation of Urban Mobility (SUMO)
process. Flame graphs (see [26]) can visualize the stack
samples collected in the performance profile from bottom
(program entry point) to top (most deeply nested stack

6



frame). Each box represents a certain function, and other
functions called are stacked on top. The width of each box
is proportional to the relative number of samples of the
function at this level of the stack frame. This provides an
(estimated) overview of which functions of the code base
consume the most computation time.

In both flame graphs, on the very bottom, we see the
overall simulation process, managed by the OMNeT++
simulation kernel. The main loop of the simulation is
located in omnetpp::cmdenv::Cmdenv::simulate(), on
the eighth level from the bottom. Only a tiny fraction
of sample lies to the right, outside of its stack, which
are mostly about simulation startup and memory alloca-
tion, and can be neglected for our analysis. The layer
immediately above is dominated by two stacks: The stack
on the left (without a name in the figure) contains the
code to maintain the FEL, i.e., adding, sorting, and fetch-
ing events. As this is part of the simulation kernel itself
(and a very small portion of the samples, too), we do
not consider it for parallelization. On the right there is
omnetpp::cSimulation::executeEvent, which runs the
code within each event of the FEL, and makes up the vast
majority of samples. One level further above, we can see
the two types of events that make up the majority of the
computation time and thus give us the first important hint
on what to parallelize. handleAirFrameReceiving (47.3 %
and 12.3 % of the samples for motorway and urban sce-
nario, respectively) and handleAirFrameStartReceiving
(45.5 % and 73.3 %) of the veins::BasePhyLayer module.
This is where the code of the Veins simulation begins in the
call stack (compared to the OMNeT++ simulation kernel
below). It is also where this simulation spends most of
its wallclock time. Other modules like the Medium Access
Control (MAC) layer or interaction with SUMO via Traffic
Control Interface (TraCI) are negligible in caparison, so we
rule them out for now for parallelization efforts.

Moving up the stacks, we see what code in particu-
lar is responsible for the computation load. Both stacks
prominently contain the filterSignal, a method of a class
derived from AnalogueModel. For the motorway scenario
(see Figure 3a), it is the VehicleObstacleShadowing ana-
logue signal attenuation model. In the urban scenario
(see Figure 3b) it is the SimpleObstacleShadowing, with
the same structure, but a much stronger influence of the
method handleAirFrameStartReceive.

Our knowledge of the codebase also tells us that these
attenuation models are a somewhat encapsulated portion of
the code with a clear interface: Different subclasses of the
AnalogueModel class implement the virtual filterSignal
method, which takes a Signal object and attenuates it
according to the specific model. This is a good fit for what
we are looking for. These functions are relatively pure com-
putations of an isolated model within the simulation with
high computational complexity and a defined interface. So
we will try to draw the line there and use this interface to
separate the main simulation thread from tasks for parallel
processing. Furthermore, note that both stack frames are

concerned with the receiving side of a transmission, mean-
ing there must have been a transmission event before. This
might be exploited to schedule background computation in
advance, ideally producing computation results even before
the main thread reaches the reception events.

If the outcomes would not have been as favorable at
this point, we could have moved further up the call stacks
in search for parallelization potential. E.g., we can see that
most work within the VehicleObstacleShadowing module
is spent finding potential obstacles and computing intersec-
tion points and the SimpleObstacleShadowing module is
dominated by similar functions, but from different helper
classes. So, these could have been other options for par-
allelization, though tied to a single specific attenuation
model, a less general interface and semantic relation to
previous events.

4.2. Signal Processing in Veins
We previously (see Section 4.1) identified that the

biggest potential for parallelization for Veins lies in the
computation of wireless signal transmission and attenua-
tion. To understand how we modified Veins for ABP, we
first describe how it worked before we applied the new
concept.

In Veins 5.1, message sending and signal propagation
are modeled as follows: Each host in the simulation that
is capable of wireless communication contains at least one
Network Interface Card (NIC). The NIC contains the im-
plementations of the MAC and physical (PHY ) layers of
the respective stack. By default, this is the IEEE 802.11p
vehicular networking stack, but others are available through
extensions and the concept is the same for all of them. The
implementation of the MAC and PHY layer uses hierarchies
of modules from the OMNeT++ library.

The ChannelAccess module is the superclass of the
PHY layer hierarchy and takes care of disseminating mes-
sages on the wireless channel. Whenever such a wireless
message, named AirFrame in Veins, is sent, ChannelAccess
creates a copy of this AirFrame for each potential receiver
and sends that AirFrame copy to it. Potential receivers
are all other NICs within the maximum interference dis-
tance, which is specified by the simulation designer (see
Section 2 for details). Each AirFrame contains a Signal,
representing the PHY properties of the signal by which
the message is transmitted over the wireless channel, e.g.,
timing, frequencies, and power levels [23]. The Signal
also contains information about the sender and receiver
of the AirFrame as well as a list of attenuation models
that are used to compute the power levels at the receiving
NIC. Ultimately, each AirFrame copy is sent by scheduling
a reception start event at the receiver with a time offset
for the propagation delay between sender and receiver (cf.
Figure 4).

At a reception start event, the receiver examines the
received AirFrame: First, the receiver checks if the received
signal is strong enough to be detectable. This contains
the evaluation of the attenuation models of the Signal

7



simulation time

transmission
start

transmission
end Sender

Receiver #1
Receiver #2
Receiver #3

propagation
delays

. . .

reception
start

reception
end

Figure 4: Timeline of the transmission of an AirFrame in
Veins.

to compute the received power levels (including antenna
gains [22]). If thresholding [23] is enabled, the evaluation
of attenuation models may be aborted early if the resulting
power levels are below the detection threshold. Other-
wise, all attenuation models are evaluated. Afterwards,
the receiver decides whether it can tune in on the signal,
considering the power levels and its own current state (e.g.,
transmitting or receiving another message). In any case,
the received AirFrame is stored as a potential interferer to
other received signals and an event for the reception end is
scheduled based on the length of the message.

At the reception end event, the receiver checks if the
received AirFrame can be successfully decoded by comput-
ing its Signal-to-Interference-plus-Noise Ratio (SINR). To
do so, the receiver collects all other received signals over-
lapping with the current one in question. If thresholding
is enabled, this may trigger the evaluation of previously
skipped attenuation models of both interferers and the
current one, in order to determine their final power levels.
With the SINR, the receiver can apply the bit error model
and finally decide whether the message can be decoded—
also considering collisions and other errors. At success,
the AirFrame gets moved up the stack to the MAC layer.
Otherwise, it is deleted—though a reference may be kept
until it may no longer be an interferer for other frames.

4.3. Asynchronous Background Processing in Veins
To implement ABP for the acceleration of signal at-

tenuation models in Veins, we had to overcome a several
challenges, which are discussed in this section. First, we
had to isolate the code that runs the computation of at-
tenuation models from any interaction with the simulation
kernel. This required the code to collect and store all data
needed for said computation in advance, before background
tasks are spawned. Then, we needed to move the start of
the computation from the reception events to the sending
event. Only at this point, we were able to push the com-
putation into background tasks and set up asynchronous
result retrieval, which required the integration of an asyn-
chronous task library. As spawning too many tasks can lead
to significant overhead, we had to include task bundling
strategies for cross-platform efficiency. And to maintain

efficient execution when multi-threading is disabled, we
had to re-integrate Veins’ thresholding mechanism.

We started by gathering all received signal copies into
a SignalGroup object within the ChannelAccess module.
Whenever an AirFrame is sent, a SignalGroup is created.
The SignalGroup contains all copies of the signal that
are sent out to potential receivers within maximum inter-
ference distance, and manages the computation of their
attenuation models. It further takes care of storing the
parts of a Signal that are the same for each copy, e.g.,
sender information, transmission time or message dura-
tion. Finally, it also efficiently stores the individual data
per receiver, e.g., the receiver information, propagation
delays, attenuated power levels, and applied attenuation
models. All this storage is isolated from the rest of the
simulation model and kernel in order to avoid conflicting
access from the main thread and worker threads. After
construction, the SignalGroup is considered read-only to
the simulation kernel, while only the background computa-
tion tasks are allowed to modify it. Each AirFrame copy
contains a SignalInstance through which the receiving
NIC can access its signal without explicit knowledge of the
SignalGroup. This replaces the Signal class of previous
Veins versions.

Upon the construction of the SignalGroup, instances of
each relevant signal attenuation model class are instantiated
as well. Through polymorphism, each attenuation model
can implement data collection for all special information
needed for its computation. This way, for example, the
VehicleObstacleShadowing model can obtain a snapshot
of the positions of all vehicles at the time of signal sending.
More generally, models requiring random numbers can draw
them from PRNGs in advance and store them for later use
during computation. All these data collection steps are
performed in the main thread, making them deterministic
and avoiding data races. The code to compute the results
of the signal attenuation models (that will be run in the
background threads) also was adapted to only use the
safely stored values, isolating it from the running simulation
model of the main thread.

Once a SignalGroup of fully constructed, it is scheduled
for background computation. The main thread completes
the remainder of the sending event in the ChannelAccess
module, i.e., by distributing the AirFrame copies to the
potential receivers and informing upper layers. It then con-
tinues with the next event in the FEL, while background
threads perform the computationally expensive signal at-
tenuation. Once a background thread starts processing a
received signal, it first applies the antenna patterns to the
signal and then starts to evaluate the list of attenuation
models. If thresholding is enabled, this may still abort early
if the remaining signal power level is low enough. However,
this may make it necessary to run the skipped attenuation
models later when interferer power levels are computed.
This currently has to happen on the main thread, as it
is not predictable which received signals may be relevant
interferers to other signals. The resulting (partially) atten-

8



uated signal is then stored in SignalGroup and a Promise
object is fulfilled to indicate completion. A receiver can
then safely access it from the main thread through the con-
nected Future object attached to the SignalInstance. If
the computation is not yet complete by that point in time,
the access through the Future object will automatically
block until the background task is done.

To efficiently implement background tasks, we used
the TaskFlow library [27] in version 2.7 (to only require
a C++14 compliant compiler, like Veins 5.1 does). It
provides an efficient thread pool implementation with work
stealing and supports future objects compatible with the
C++ standard library. Thanks to its permissive MIT open-
source license and header-only implementation, TaskFlow
can easily be distributed with Veins. In preliminary tests,
we also tried out the std::async function of the C++
standard library to schedule background tasks. But we had
to discard it due to its low and unpredictable performance.

We further introduced the ParallelStrategy abstrac-
tion, which decides how received signal copies are bundled
and made it runtime configurable. Each SignalGroup con-
tains multiple (often tens or even hundreds) of received
signal copies, each with a set of attenuation models to eval-
uate. Scheduling the computation of each received signal
copy as a separate job wrapped in its own future provides
the highest potential to run in parallel, but also incurs
the highest overhead. This may work well on powerful
platforms with high core counts, but diminish speedup on
less powerful platforms. So, through a ParallelStrategy,
received signal copies can be grouped and scheduled as a
chunk. It schedules bundles of received signal copies to
be computed on the background threads and provides a
Future-like interface to await and retrieve the results for
each SignalInstance. This reduces overhead but could
in turn leave available background threads idle and thus
reduce throughput and distort real-time performance. The
most efficient solution to this problem depends on the
hardware platform running the simulation. Thus, the
ParallelStrategy can be selected at runtime, when start-
ing the simulation.

We evaluated four ParallelStrategy types:

• separate schedules each received signal copy as its
own background task, aiming for maximum paral-
lelization.

• chunked[N] bundles N received signal copies into one
chunk and schedules each chunk as a background task
with the goal to reduce overhead.

• hybrid[N] schedules the first N signal copies (whose
results will be needed earliest) as separate background
tasks. The rest are bundled into one future. This
aims to provide fast results for soon-needed results
but keep the overhead low.

• sync computes all models in the main thread syn-
chronously, as soon as the signal gets sent out. It is a

special case intended for debugging, single-core runs
within process-parallel studies, and for a more direct
comparison with Veins 5.1.

With these changes, we were able to solve all challenges
discussed above and implement ABP in Veins. While
they are specific to the signal attenuation in Veins, we
expect that applying ABP to other software will likely
turn up similar issues, e.g., when balancing the amount of
parallelism with the overhead incurred by it. So we hope
these deliberations may guide the reader when parallelizing
their own software.

Some further changes were made to Veins, which also
improved performance and reduced the overhead on the
main thread. The Coord class no longer inherits from the
cObject class hierarchy to make it a plain struct that can
be safely passed to background processes and is cheaper
to allocate and free. The implementation of the spectrum
has been changed from an array of frequencies per Signal
instance to a shared pointer to a pre-allocated spectrum
class. This significantly reduces the amount of data that
has to be copied for each signal instance. Instances of at-
tenuation models are now shared across the simulation and
not duplicated per NIC. Only a thin wrapper responsible
for data collection remains for each signal instance.

4.4. Result Verification
Extending a simulation implementation to utilize mul-

tiple cores should not change the results of the simulation.
Ideally, there should be no deviation in any observable
behavior and output of the simulation at all. Built-in mech-
anisms of simulation frameworks like result hashes (e.g.,
simulation fingerprints of OMNeT++) can often easily ver-
ify that two implementations yield identical results. This
could proactively avoid many counter-arguments to using
the parallel implementation and make the single-threaded
and parallel implementation interchangeable.

But not allowing any deviation may leave potential
speedup on the table. Because this often means staying true
not only to the model of the system to be simulated, but
also to the implementation details of this specific codebase.
In addition, virtually all network simulation models con-
tain stochastic elements, like numbers drawn from PRNGs.
Simulations are often run with different seeds for statistical
stability, resulting in distributions of results rather than
exact values. If a parallel implementation of the simulation
produces results that do not change the distribution of re-
sults, it can be considered equivalent in a statistical sense.
Or differently put: statistically indistinguishable from the
single-threaded implementation.

The optimization potentials opened up by this looser
definition of equivalence are manifold: The order in which
numbers are drawn from PRNGs may be varied, which is
essential to gathering them before scheduling background
computation tasks. Data from the running simulation, such
as positions of mobile hosts, could be collected at slightly
different points in simulation time. This allows moving

9



code to another event to schedule computation in advance,
while still producing results that are practically the same
yet numerically different than those of a single-threaded im-
plementation. And sometimes even the order of execution
of small portions of code could impact the numeric results,
e.g., rounding errors of floating point values, which are no
longer an issue with this verification approach. Note that
these examples only focus on computation and data collec-
tion, but do not introduce new events or messages from the
perspective of the simulation kernel. They thus only affect
the implementation of the simulation, not the model of the
system being simulated. While changing the model as well
is a possible way for even more aggressive parallelization
and optimization, it requires even more careful verification
of the resulting behavior of the simulation.

For practical purposes, we recommend a two-step pro-
cess: First, make all the changes that will require stochastic
equivalence checking. E.g., moving simulation data and
PRNG number collection to different events. This may
require careful planning, but once it is done, only one
thorough verification of stochastic equivalence needs to be
performed. Once the results are verified, generate a set of
result hashes for this new version of the implementation.
Then, as the second step, start implementing ABP. This
can now be done in an iterative process, as the verification
can easily be checked via the result hashes. If necessary,
one could still go back to step one and repeat the process.
But keeping the number of thorough verification passes low
should make the development process significantly faster
and more reliable.

Moving the point in simulation time at which data for
the evaluation of signal attenuation model are collected
introduced some small deviations in the results. For most
vehicles and transmissions, there was no change at all. But
in some cases, the point in time of the collection of vehicle
positions moves from after vehicle updates are received
from TraCI (in the old code, at signal reception time) to
slightly before said vehicle update (in the new parallel code,
at sending time). This in turn leads to different outcomes of
the signal attenuation in the VehicleObstacleShadowing
model. E.g., if a vehicle is now in the line of sight of a
transmission which reduces the received power levels of the
signal. And this in some cases leads to further propagation
of changes, as the different received power levels may lead to
more or less random numbers being drawn in the bit error
model. These effects and the resulting point of diversion in
the results could be found in the trace logs of the simulation
as expected.

To ensure these effects would not change the statistical
outcome of the simulation, we performed a large set of repli-
cations with different seeds for both the original Veins 5.1-
equivalent code and our parallelized implementation. We
recorded the attempted and successful transmissions for all
vehicles as well as the transmission start time. With that,
we produced the distribution of attempted and success-
ful transmission per vehicle per beacon interval (100 ms).
These distributions did not significantly differ for the two

different versions of the code. Note that the result devi-
ations only occurred when comparing Veins 5.1 with our
parallelized implementation. The modified code always be-
haves deterministically, regardless of the chosen hardware
platform, number of threads, or ParallelStrategy.

Most of the other changes to Veins described in the
previous sections, including the background processing, do
not alter the outcome of the simulation in any way. This
was extensively tested and verified using the fingerprint
mechanism of OMNeT++ as the second step of the two-
step process described above.

5. Experiment Setup

To showcase the speedup possible in Veins with ABP
of signal attenuation models, we compare it against Veins
5.1. As the impact of parallelization depends highly on
the scenario configuration and the simulation hardware, we
vary both of them.

For the simulation hardware, we consider four platforms,
as detailed in Table 1: a mobile laptop, a typical desktop
computer, a more powerful workstation, and a server with
two CPU sockets. The first three hardware platform allows
hyper-threading to virtually double the core count, while
it was disabled for the 16-core xeon server platform. We
picked these as representatives for what researchers will
typically have at their disposal when developing and re-
searching wireless protocols. All code and configuration for
the experiments is published as [28].

5.1. Simulation Scenarios
For the simulation scenarios, we picked two typical

cases in VANET research as traffic scenarios: A densely
populated motorway and an urban city. For both scenarios,
the communication follows a static beaconing protocol,
resembling an application like Cooperative Awareness (CA)
messaging. The beacons are sent with a frequency of
10 Hz and have a length of 350 B, as is typical for ITS G5
Cooperative Awareness Messages (CAMs) [29, 30]. The
simulated transceivers have a sensitivity (minPowerLevel)
and noise floor of −98 dBm [31]. The traffic simulated
in SUMO is synchronized every 1 s and interpolated in
between. All other settings follow the defaults of Veins 5.1.
These settings yield plausible scenarios with well-populated
wireless channels, showcasing the effects of interference on
the simulation performance.

platform CPU Cores / Threads

2-core laptop Intel i5-6200U 2 / 4
4-core desktop Intel i7-7700K 4 / 8
8-core workstation AMD r7-5800X 8 / 16
16-core xeon server 2xIntel E5-2670 16 / 16

Table 1: Hardware platforms for the evaluation.

10



We based the urban scenario on the Paderborn Sce-
nario (see [11]). In it, more than 2300 vehicles driving
through the city are simulated in the morning rush hour.
The scenario is an example for a CA application in an
urban area. Vehicles transmit with 200 mW or 23 dBm
as is typical in such situations [32]. The most important
factor in transmission success in urban environments is
shadowing by buildings. Thus, the urban scenario uses
Veins’ SimpleObstacleShadowing model [33] in addition
to the free space path loss model. With more than 50 000
buildings that have to be considered for each transmission,
the SimpleObstacleShadowing model was found to have
the biggest impact on the performance of this scenario.
The scenario is simulated for 2.0 s in the benchmarks.

For the motorway scenario, we created a straight mo-
torway with three lanes in both directions and a length of
5000 m. This scenario showcases applications with a densely
populated channel and at high speeds. The motorway is
filled to capacity with vehicles driving at a maximum speed
of 130 km/h. In total, around 300 vehicles are driving at
the same time. With this many other vehicles close by and
no shadowing by buildings, transmit power is reduced to
20 mW (roughly 13 dBm). The most computationally com-
plex model is the VehicleObstacleShadowing model [34]
which runs in addition to the simple path loss model. It
has an even higher impact than the building obstacle shad-
owing in the urban scenario and requires rolling updates of
vehicle positions, which is also showcased with this scenario.
The scenario is simulated for 10.0 s in the benchmarks.

5.2. Simulation Setup
The simulation runs in a steady state with a stable

number of vehicles and thus beacons over simulation time.
This makes measured speedups mostly independent of the
point in time within the simulation. To achieve this, the
traffic scenarios are warmed up in SUMO before Veins starts
simulating communication. For the urban scenario, the
simulation state is loaded from a pre-saved state snapshot
in SUMO. This reduces the time Veins needs to wait for
SUMO to warm up, which would otherwise skew timing
measurements. Preliminary measurement similar to those
for the real-time stability (see Section 6.3) proved that the
speedup is stable across the simulation time. Simulations
of shorter simulated durations yield similar speedup results
and can be used to shorten the benchmarks.

For statistically stable results, each scenario was run 9
times on each platform: With 3 different seed sets in OM-
NeT++ (to gain independence from the PRNG sequences)
and 3 times with exactly the same configuration (to gain
independence of effects of the simulating platform). Mea-
surements were taken on both scenarios and the 3 hardware
platforms, leading to 54 simulation runs in total.

The results in the following sections have been obtained
without runtime error or fingerprint checking and compiled
in release mode, unless stated otherwise. This is to exclude
further influence on the runtime performance. Verification
runs have been performed before and are not included in the

chunked[16] chunked[4] hybrid[16] separate sync upstream

0 200 400
wallclock duration in s

laptop

desktop

workstation

xeon

scenario = motorway

0 250 500 750
wallclock duration in s

scenario = urban

Figure 5: Simulation durations.
chunked[16] chunked[4] hybrid[16] separate sync

0 2 4 6
speedup

laptop

desktop

workstation

xeon

scenario = motorway

0 2 4 6
speedup

scenario = urban

Figure 6: Simulation speedups.

measurements. Each hardware platform used background
threads equal to the number of virtual (hyper-threaded)
cores available (cf. Table 1).

6. Performance Evaluation

The following sections show the results of the evaluation
for the most relevant parallel strategy configurations to
illustrate their performance. We present results for the
hybrid strategy with 16 individually scheduled signals, and
for the chunked strategy with a size of 4 and 16 signals
per chunk. Under the name upstream we include results
for the unmodified release of Veins 5.1 for comparison and
as reference for speedup factor computation. Error bars in
the plots indicate the 95 % confidence interval around the
mean.

6.1. Speedup
The benchmark runs have shown that all parallel strate-

gies can significantly shorten the simulation duration across
all hardware platforms and in both scenarios. Figure 5
shows the mean durations for each scenario, platform, and

11



parallel strategy, while Figure 6 shows the same data as
speedups relative to upstream. Compared to the upstream
version of Veins 5.1, all other strategies run faster, even the
single-threaded sync. Thus, our (semantically equivalent)
redesign of signal processing made the overall simulation
faster by a factor of 1.15–1.25 even without parallelization.
And aside all parallelization, the absolute numbers in Fig-
ure 5 also show the significant impact a more modern and
powerful CPU can have on the simulation durations.

The difference in speedup between the two scenarios
and the parallel strategies seem to increase with the com-
putation power of the hardware platform: On the 2-core
laptop platform, the speedup for parallelized simulation lies
at about 2, which matches its physical core count, with very
little difference between the parallel strategies and scenar-
ios. On the 4-core desktop platform, the parallel strategies
show roughly similar speedups. But the obtainable speedup
of the motorway scenario is much higher than the urban
scenario. On one hand, this stems from the more compu-
tationally complex VehicleObstacleShadowing model in
the motorway scenario. This also explains why the chun-
ked[16] strategy obtains the lowest speedup: The main
thread has to wait for the first large chunk to finish in the
background, while other strategies can provide the first
results earlier. On the other hand, the higher total number
of vehicles in the urban scenario increases the non-parallel
portion of the code, e.g., updating vehicle positions or main-
taining interferer frames, which reduces parallel speedup.
The less complex building obstacle shadowing in the urban
scenario also leads to the chunked[16] strategy obtaining
the largest speedup on the 4-core desktop platform. In this
case the lower overhead of the larger chunks make it more
efficient while even the large chunks are finished in time
for the main thread. On the 8-core workstation platform,
the effects described for the 4-core desktop platform are
present in a more extreme way. For the motorway scenario,
the chunked[16] strategy falls far behind while more fine-
grained strategies like chunked[4] and especially separate
yield the highest speedups by utilizing the powerful CPU
and its many cores. On the contrary, for the urban scenario,
the chunked strategy with its lower overhead again yields
the highest speedups. The hybrid strategy typically lies in
the middle ground, regardless of the platform or scenario,
and yields a speedup of up to 3.5. The 16-core xeon server
platform shows the strongest impact of parallelization, due
to its many, but individually less powerful cores (the CPU
was released in 2012). While the runtime of single-threaded
upstream and sync code is even longer than on the 2-core
laptop, all parallel strategies show speedups of 5–6 in the
motorway scenario. In the urban scenario, the effect is
less pronounced, and the chunked strategies perform better
than hybrid or separate, but still shows the larges speedup
across all platforms.

The amount of CPU seconds spent in user mode (brighter,
bottom bars) and kernel/system mode (darker, top bars)
shown in Figure 7 reinforce these findings. The separate
strategy is very efficient on powerful platforms and complex

chunked[16] chunked[4] hybrid[16] separate sync upstream

0 200 400
cpu time in s

laptop

desktop

workstation

xeon

scenario = motorway

0 500 1000 1500
cpu time in s

scenario = urban

Figure 7: Total CPU (user) time spent during simulation.
chunked[16] chunked[4] hybrid[16] separate sync

0 1 2 3
speedup

scenario = motorway

0 1 2 3
speedup

scenario = urban

Figure 8: Simulation speedups for debug-builds on the
4-core desktop platform.

models but incurs more computation and synchronization
overhead for less complex models. This ise especially pro-
nounced on the 16-core xeon server platform for the urban
scenario, where high CPU times in kernel mode are ob-
served. The hybrid strategy remains the most efficient one
in all cases but the motorway scenario on the 8-core work-
station platform. But Figure 7 also shows the cost trying
to exploit more parallelism on more powerful platforms:
The amount of CPU seconds spent on single-threaded runs
consistently gets smaller with more powerful platforms, in-
dicating higher per-core throughput. But the total amount
of CPU seconds spent on the 8-core workstation platform
is higher than on the 4-core desktop platform with only
half the core count. So, the higher speedup is bought by a
reduced efficiency. This probably results from the overhead
in management and contention among the higher number
of threads, which could be mitigated by manually reducing
the number of threads for background processing in Veins.
Though hardware techniques like frequency boosting may
also benefit single-threaded code especially. The 16-core
xeon server platform is especially interesting in that regard:
Total CPU time in single-threaded execution is roughly
on par with the parallel versions, despite very different
wall clock times (see Section 6.1), indicating very efficient
parallel processing.

6.2. Debug Build Speedup
In addition to the optimized builds shown above, we also

timed the debug builds of the two simulations. In contrast
to the optimized builds, the code was not compiled with
the -O3 flag and contains debug symbols.

12



separate hybrid[16] chunked[16] sync upstream

300 350 400 450 500 550 600
simulation second

0.5

1.0

1.5

re
al

-ti
m

e 
fa

ct
or

Figure 9: Real-time performance over simulation time on
the 4-core desktop platform for the real-time motorway
scenario.

For comparison, the mean simulation durations increase
from 195 s to 1015 s and 469 s to 2399 s, for the motorway
and urban scenario, respectively. The resulting speedups
on the 4-core desktop platform are shown in Figure 8. In
both scenarios, the parallelization can still improve the
simulation duration by a factor of roughly 2.5. This is
roughly similar to the speedup obtained with optimized
builds (cf. Figure 6). So, the parallelization may mitigate
the extra cost of running in debug mode and help developers
to get to erroneous sections of their simulations faster.

6.3. Real-Time Steadiness
For real-time applications, the simulation not only has

to be fast enough, but also consistently fast enough in every
step. Because even a single missed deadline can invalidate
the whole run. To assess the steadiness of the parallelized
code and the strategies in particular, we measured not
only the total runtime but the speed of the simulation
process over time. Specifically, this means the simulated
seconds per wall clock second, which is also referred to as
a real-time factor. OMNeT++ can output these values
periodically, and we recorded them for multiple strategies
in a modified version of the motorway scenario. We con-
figured it to produce values every 100 ms, a rate similar
to synchronization intervals with real-time systems, e.g.,
the ego vehicle interface (EVI) [6]. The simulation time is
increased to 600 s with a warm-up of 300 s. But only 45 %
of the vehicles will be equipped with a network device (via
Veins’ penetrationRate). This reduces the computational
complexity far enough that the 4-core desktop platform
can run the simulation in real-time.

Figure 9 shows the real-time factor for various parallel
strategies across the simulation time on the 4-core desktop
platform. Lines of the same color represent different runs
of the exact same configuration. Both the separate and
hybrid[16] strategies are able to run the simulation time in
less than that in wallclock time. But the separate strategy
has a much more volatile profile and fell below the real-
time factor of 1.0 multiple times. The chunked[16] strategy
is even more volatile with spikes way below the single-
threaded strategies, thus proving inadequate for this use

case. So, the hybrid[16] strategy appears to be more suited
for real-time applications.

6.4. Discussion
The best strategy depends on the scenario, hardware

platform, settings, and requirements—e.g., real-time stabil-
ity. The hybrid strategy is the most versatile: Reasonably
fast across all tested scenarios, efficient, and the most stable
for real-time applications. However, other strategies may
yield better performance in some regards and depending
on the platform. E.g., separate on powerful CPUs like
on 8-core workstation or many cores like on 16-core xeon
server. We thus recommend starting out with hybrid and
perform a few benchmarks for a given scenario to see if
there are further speedups to be gained. As a rule of thumb,
stronger platforms and more complex tasks (e.g., attenua-
tion models) benefit from more fine-grained strategies, such
as separate. This is especially the case for less powerful in-
dividual cores, as seen on the 16-core xeon server platform.
On the other end of the spectrum, weaker platforms and
less complex tasks benefit from strategies with less over-
head, such as chunked[16]. Other factors to consider are
the density of vehicles, transmit power, and maximum in-
terference distance, which influence the number of received
signal copies per sent message. The frequency of beacons
or other messages and their respective length will have an
impact not only on the number of events themselves, but
also on the amount of interference. Furthermore, the list
of strategy types and configurations shown in this paper is
not exhaustive. So custom strategies or parameters may
provide better performance for other scenarios.

When running a particular simulation study, there are
a few other things to consider that impact the performance:
Authors may want to consider reducing or disabling runtime
verification—e.g., fingerprint checking in OMNeT++—or
data output such as result collection or (event) logging.
They (currently) have to run on the main thread, thus their
impact on the performance of parallelized simulations can
be significant, especially if I/O-operations access slow mass
storage. Finally, when running parameter studies or other
inherently process-level parallel simulation suites, it is more
efficient to disable parallelism and run each simulation in
one thread (e.g., through the sync strategy).

7. Parallelization Evaluation

Now that we have seen the speedups of our implemen-
tation of ABP could achieve (see Section 6), one question
remains: How much of the potential speedup was actually
realized? To investigate this, we look at the improvements
that were achieved from three perspectives: First, we com-
pare them to the theoretical limits of an ideal implementa-
tion. Second, we profile the main thread of the parallelized
code to investigate which portions of the code achieved how
much speedup. Third, we perform and analyze advanced
measurements on where the potential speedups were lost

13



in practice due to parallelization overheads. Together, this
provides a way to judge the effectiveness of the parallelized
implementation and provides starting points for further
optimizations.

7.1. Theoretic Limits
To assess how much speedup of the overall simulation

can be gained through parallelization of the discovered
potentials (see. Section 4.1), theoretic models can give some
first insights. This yields upper bounds for the speedup,
which correspond to perfect parallelization under ideal
circumstances. Such bounds can be useful both before
applying parallelization (to gauge if the effort may be worth
the work) and afterwards (to gauge how much potential
was actually achieved).

The speedup through parallelization can be estimated
using Amdahl’s law [35], as shown in Equation (1). It gives
the theoretical speedup Slatency of a whole task consisting
of a sequential fraction 1− p and a parallel fraction p, with
a given speedup s for the parallel fraction.

Slatency(s) =
1

(1− p) + p
s

(1)

We can use this formula to gauge the effectiveness of
parallelization through ABP. However, there are a few
deviations to consider. First, all forms of overhead are
ignored for this ideal speedup (or need to be incorporated
into p). Second, Amdahl’s Law assumes that each portion
of the program is either sequential or parallel. But through
ABP, background tasks can run while the main thread—a
sequential portion of the program—continues to run.

We can find an upper limit of the speedup of this effect
by assuming infinite parallel resources, i.e., s = ∞. Thus,
in the ideal case for ABP, all background tasks are finished
before the main thread requires their results., i.e., p

s = 0.
By applying this to the portion of code to parallelize (see
Section 4.1 and Figure 10), we receive the ideal speedup
shown in the bottom row of Table 2. Note that these
numbers may vary for different platforms, but still give a
useful estimate.

Furthermore, we can still use Amdahl’s Law to com-
pare implementation to an ideal implementation of plain
parallelization of the attenuation models, but without back-
ground processing. I.e., by using approaches like OpenMP
parallel loops or thread pools to compute all attenuation
models in parallel on message transmission, but not have
the main thread continue at the same time. This would
fully match the assumptions of Amdahl’s Law. By using
the same values for p as above and setting s to the number
of threads available on our platforms, we get the values
shown in Table 2. Note that this assumes full-fledged hard-
ware threads, which requires more complex hardware than
is implemented on typical processors with simultaneous
multithreading (SMT).

Threads Motorway Urban
(= s) (p = 0.896) (p = 0.757)

2 1.812 1.610
4 3.050 2.316
8 4.633 2.966
16 6.256 3.450
∞ 9.631 4.124

Table 2: Theoretical ideal speedups for non-background
parallelization of the attenuation models of Veins. Values
of p collected on the 8-core workstation platform.

processNewSignal
processSignalEnd hybrid separate upstream

0.0 0.2 0.4 0.6 0.8 1.0
sample ratio

motorway

urban
sc

en
ar

io

0.08 0.18
0.11 0.16

0.43 0.46

0.12 0.17
0.12 0.16

0.690.07

Figure 10: Proportion of main-thread samples in paral-
lelized signal-processing functions (collected on the 8-core
workstation platform).

7.2. Remaining Sequential Code
Now that we know how much speedup would have been

possible under ideal conditions, we take a closer look at how
much of it we actually achieved. To do so, we apply the
profiling techniques from Section 4.1 again, but this time
on the parallelized implementation. More precisely, on the
main thread of the parallel code. This tells us how much of
the functions we selected for parallelization were actually
pushed the background threads and thus removed from the
main thread runtime. For simplicity, we will perform this
analysis on the 8-core workstation platform only, but the
procedure is the same on all platforms.

Looking at the performance from the outside, Table 2
shows what the ideal speedup for the 8-core workstation
platform would be. Depending on whether we consider only
full cores or hardware threads, the values range between
4.633–6.256 for the motorway scenario and 2.966–3.450 for
the urban scenario. But in the benchmarks (cf. Section 6.1),
we only saw 4.370 with the separate strategy on the motor-
way and 2.896 using the chunked[4] strategy on the urban
scenario. So, the practically achieved speedup at least gets
close to the ideal case for the full core count of the platform.
But it did not achieve anything near the potential of the
p
s = 0 case that might have been possible for ABP.

This is due to two portions of code that are still executed
sequentially. On one hand, there is the portion of code
that is within the call tree designated for optimization
during the potential search (cf. Section 4.1) but was not

14



suited for parallelization. E.g., for Veins, we picked the
processNewSignal and processSignalEnd functions as
starting points for the parallelization effort. But not all
code within those functions was parallelizable, e.g., due
to interactions with the simulation kernel. On the other
hand, there is new sequential code that was introduced as
part of the parallelization effort. E.g., for Veins, we needed
to collect all data needed for the background execution of
the attenuation models, e.g., vehicle positions. This data
collection needs to interact with the simulation kernel and
thus cannot be offloaded to the background itself.

By running the profiling from Section 4.1 again, we
obtain a breakdown of where the main thread still spends
its time in the parallelized implementation. Figure 10
shows the proportions of the samples within the functions
designated for parallelization. Around 26–28 % of the main
thread is still spent within these functions — with little
difference between the scenarios. While in the original
upstream veins code, it made up a much larger portion
of the runtime. And, of course, the total runtime was
much longer in the upstream code than in the parallelized
versions.

7.3. Parallel Code Efficiency
So in terms of Amdahl’s Law, a significant factor for

the sub-optimal speedup is due to a lower value of p, the
portion of code that was actually parallelized. However, in
practical applications, the value of s in Amdahl’s Law will
also not be equal to the number of threads or cores. Due
to various overheads and imperfect distribution of work,
this efficiency value will actually be lower. But the exact
reasons are hard to investigate with the profiling techniques
employed so far. So next we will turn to more advanced
profiling techniques to find out where the wall clock time
is spent in multi-threaded applications.

To investigate the multi-core behavior and overheads,
we are using the perf tool introduced in Section 4.1 in an
advanced technique: Off-CPU profiling [26]. In Off-CPU
profiling, the profiling program (i.e., perf ) instruments
the kernel to discover context switches of the program
under investigation. Whenever a context switch occurs,
the current call stack is collected (as in normal sampling
operation) and saved with the current time. And when the
context is restored, the time is saved again. This allows
three derivations:

1. deciding why a context switch happened by examining
the switch event itself.

2. locating where the context happened in the code by
following the call stack.

3. deriving how long the context switch took by compar-
ing the time of the switch-out event with the following
switch-in event of a particular thread.

Applying these three derivations on a certain thread pro-
vides information on how long (in wall-clock time) the
thread was not actively running on the CPU. Thus, the

name Off-CPU profiling. This circumvents the problem
that in normal sampling operation, perf cannot sample a
thread that is Off-CPU as it is not running.

By applying this to the main thread of the simulation,
we can investigate where the ABP implementation loses
efficiency. Because whenever the main thread spends time
Off-CPU the simulation progress halts and while program
duration increases. Ideally, the main thread should never
experience any Off-CPU time. However, there are a number
of reasons why this may be the case in practice. The most
important ones are:

• blocked time waiting for network and other I/O. This
may happen as the main thread waits for coupled
simulators (e.g., SUMO) or writes results to disk.
Such times cannot be optimized away for the main
thread through parallelism. But with ABP, they
can potentially be used by background threads to
compute offloaded tasks.

• blocked time waiting for locks. This happens as over-
head resulting from locking mechanisms to synchro-
nize with worker threads. If a result is not available
by the time it is required by the main thread, this
leads to a stall. But even if all results are available on
time, there is still the overhead of the synchronization
primitive itself. The difference can be made visible
by the duration of the context switch.

• waiting time while all CPUs are busy. This may
happen if all cores are busy, e.g., with worker threads
(or even other programs). In such cases the operating
system’s scheduler may suspend the main thread
for fair allocation of resources to all threads. This
typically indicates that the simulation runs as fast as
it can on the given platform but could benefit from
more CPU resources.

To perform Off-CPU profiling with perf, at least two spe-
cial settings have to be activated: the sched:sched_switch
events type has to be added and the --switch-events set-
ting turned on. Together, these collect the data needed to
reconstruct why, where, and for how long context switches
occurred. However, in the initial data file produced by perf
record the are still scattered and have to be combined by
a later run of perf inject --sched-stat. In addition,
we also enabled the cpu-clock event for profiling, which
gives us the time spent in each call stack (in contrast to
sample counts). This allows cross-checking if the On-CPU
time and Off-CPU time of the main thread add up to the
program runtime. Note that this Off-CPU profiling con-
figuration is more resource intensive. It may require long
post-processing and writes a lot of data (up to 50 GiB for
our scenarios). We thus performed it on the more powerful
8-core workstation platform.

The resulting distributions of On-CPU and Off-CPU
times of the main thread are shown in Figure 11. The sum
of On-CPU and Off-CPU time yields the total runtime,

15



On-CPU
Off-CPU hybrid separate upstream

0 50 100 150 200 250 300 350
time (s)

motorway

urban

sc
en

ar
io

Figure 11: On-CPU vs Off-CPU times.

Lock Wait Time
Sumo Overhead hybrid separate upstream

0 5 10 15 20 25
time (s)

motorway

urban

sc
en

ar
io

Figure 12: Details of Off-CPU times.

which matches with previous measurements without profil-
ing. For the unmodified upstream code, there is very little
Off-CPU time, as was expected. But for the parallelized
separate and hybrid strategy, a large portion of their differ-
ence in total runtime is due to the off-CPU portion. This
matches our previous observation (cf. Figure 10).

To gain a deeper insight on what lead to the Off-CPU
times, we break them further down, as shown in Figure 12.
As discussed above, we see overhead due to interaction
with SUMO (blocked time waiting for network and other
I/O), and locking (blocked time waiting for locks). Waiting
time while all CPUs were busy was negligible on the 8-core
workstation platform and is thus omitted in Figure 12.
We can now see that the Off-CPU time of the upstream
code is completely due to SUMO. In particular, there
is a precise 1 s sleep time when Veins waits for SUMO
to start up. It is present in both scenarios and makes
up most of the Off-CPU time for the upstream code in
the motorway scenario. The remaining 0.35 s of SUMO
overhead stable across all versions of the motorway scenario,
are due to the time when SUMO computes and sends the
mobility updates for the vehicles. These mobility updates
are much more pronounced in the urban scenario, where
9.68–10.18 s are needed to simulate the much larger number
of vehicles and more complex traffic scenario. The actual
runtime differences between the two parallel versions are
due to the time their main threads spend waiting on locks,
i.e., waiting for results from background worker threads.
With only 1.18 s vs. 16.744 s of Off-CPU waiting time

the separate strategy outperforms the hybrid strategy in
the urban scenario. In the motorway scenario, with 5.56 s
vs. 15.12 s respectively, the situation is similar, yet less
pronounced.

So, Off-CPU profiling has provided useful insights for
the understanding and further optimization of parallelized
implementations and the application of ABP. The Off-CPU
times show how the more aggressive separate strategy can
utilize the powerful CPU of the 8-core workstation platform
with a high number of individually strong cores. With this
knowledge, a more balanced strategy like hybrid could be
tuned for this platform, e.g., for real-time applications.
Because as shown in Section 6.3, hybrid has benefits in
terms of stable response times. Though these outcomes
may look very different for other platforms or scenarios.

We have also seen how non-parallelized portions of
the code dominate the remaining runtime. And external
factors, e.g., waiting for SUMO to simulate traffic, are
mostly unaffected by parallelization of computation tasks.
On one hand, this puts the achieved runtime speedups,
as seen in Section 6.1, into perspective. The possible
improvement of total runtime is naturally limited, and
the effectiveness of parallelization may seem smaller than
it actually is. On the other hand, this provides directions
for the next round of optimizations and parallelization.

8. Conclusion

We studied the importance of fast simulation tools
for wireless communication and how Asynchronous Back-
ground Processing (ABP) can help accelerate these in situa-
tions where traditional parallelization approaches struggle.
Without sacrificing accuracy and without changing the
simulation model itself, our new concept can be applied
to various simulation tools and target different portions of
the code, running more efficiently the more work can be
offloaded to background tasks. In an extensive case study,
we have shown the application of in a realistic simulation
example. We covered the complete process from paralleliza-
tion potential analysis to implementation challenges, result
verification, black-box performance evaluation, and detailed
performance analysis of the resulting multi-threaded adap-
tation. Across multiple hardware platforms and in two
different scenarios, ABP reliably achieved speedups of up
to 3.5 on a typical desktop platform. Particularly real-time
applications, which cannot utilize process level parallelism
and need stable speeds across longer simulations, benefit
greatly from the continuous speedup.

In future work, the concept could be applied to other
parts of the simulation or to different simulation cores
such as ns-3. We also aim to integrate our implementation
into the next release of Veins so that the whole research
community can benefit from faster simulations.

16



Acknowledgements

Research reported in this article was conducted in part
in the context of the Hy-Nets4all project, supported by the
European Regional Development Fund (ERDF).

References

[1] S. Joerer, C. Sommer, F. Dressler, Toward Repro-
ducibility and Comparability of IVC Simulation Studies:
A Literature Survey, COMMAG 50 (10) (2012) 82–88.
doi:10.1109/MCOM.2012.6316780.

[2] A. M. Law, Simulation, Modeling and Analysis, 4th Edition,
McGraw-Hill, 2007.

[3] C. Obermaier, R. Riebl, A. H. Al-Bayatti, S. Khan, C. Fac-
chi, Measuring the Realtime Capability of Parallel-Discrete-
Event-Simulations, Electronics, Communication Technologies for
VANETs 10 (6) (Mar. 2021). doi:10.3390/electronics10060636.

[4] J. Xiao, P. Andelfinger, D. Eckhoff, W. Cai, A. Knoll, A Survey
on Agent-based Simulation Using Hardware Accelerators, CSUR
51 (6) (2019) 131:1–131:35. doi:10.1145/3291048.

[5] R. M. Fujimoto, Research Challenges in Parallel and Distributed
Simulation, TOMACS 26 (4) (May 2016). doi:10.1145/2866577.

[6] D. S. Buse, F. Dressler, Towards Real-Time Interactive V2X
Simulation, in: IEEE VNC 2019, IEEE, Los Angeles, CA, 2019,
pp. 114–121. doi:10.1109/VNC48660.2019.9062812.

[7] G. Kunz, M. Stoffers, O. Landsiedel, K. Wehrle, J. Gross, Par-
allel Expanded Event Simulation of Tightly Coupled Systems,
TOMACS 26 (2) (Jan. 2016). doi:10.1145/2832909.

[8] D. R. Jefferson, Virtual time, TOPLAS 7 (3) (1985) 404–425.
doi:10.1145/3916.3988.

[9] X. Zeng, R. Bagrodia, M. Gerla, GloMoSim: a Library for
Parallel Simulation of Large-scale Wireless Networks, in: Work-
shop PADS 1998, IEEE, Banff, Canada, 1998, pp. 154–161.
doi:10.1109/PADS.1998.685281.

[10] M. Gütlein, R. German, A. Djanatliev, Performance Gains in
V2X Experiments Using Distributed Simulation in the Veins
Framework, in: IEEE/ACM DS-RT 2019, IEEE, Cosenza, Italy,
2019. doi:10.1109/DS-RT47707.2019.8958671.

[11] D. S. Buse, G. Echterling, F. Dressler, Accelerating the Simula-
tion of Wireless Communication Protocols using Asynchronous
Parallelism, in: ACM MSWiM 2021, ACM, Virtual Conference,
2021, pp. 57–66. doi:10.1145/3479239.3485683.

[12] C. Sommer, R. German, F. Dressler, Bidirectionally Coupled
Network and Road Traffic Simulation for Improved IVC Analysis,
TMC 10 (1) (2011) 3–15. doi:10.1109/TMC.2010.133.

[13] Y. A. Sekercioglu, A. Varga, G. K. Egan, Parallel simulation
made easy with OMNeT++, in: European ESS 2003, Delft,
Netherlands, 2003.

[14] J. Pelkey, G. F. Riley, Distributed simulation with MPI in ns-3,
in: ACM/ICST SIMUTools 2011, ACM, Barcelona, Spain, 2011,
pp. 410–414.

[15] P. Peschlow, A. Voss, P. Martini, Good News for Parallel Wireless
Network Simulations, in: ACM MSWiM 2009, ACM, Tenerife,
Spain, 2009, pp. 134–142. doi:10.1145/1641804.1641828.

[16] I. Al-Shiab, A. Sabbah, A. Jarwan, O. Issa, M. Ibnkahla, Sim-
ulating large-scale networks for public safety: Parallel and dis-
tributed solutions in NS-3, in: IEEE PIMRC 2017, IEEE, Mon-
treal, Canada, 2017. doi:10.1109/PIMRC.2017.8292761.

[17] A. Sabbah, A. Jarwan, I. Al-Shiab, M. Ibnkahla, M. Wang,
Emulation of Large-Scale LTE Networks in NS-3 and CORE: A
Distributed Approach, in: IEEE Milcom 2018, IEEE, Los Ange-
les, CA, 2018, pp. 493–498. doi:10.1109/MILCOM.2018.8599762.

[18] G. Kunz, O. Landsiedel, S. Götz, K. Wehrle, J. Gross, F. Naghibi,
Expanding the Event Horizon in Parallelized Network Simula-
tions, in: IEEE MASCOTS 2010, IEEE, Miami Beach, FL, 2010.
doi:10.1109/MASCOTS.2010.26.

[19] I. Mavromatis, A. Tassi, R. J. Piechocki, A. Nix, Poster: Parallel
Implementation of the OMNeT++ INET Framework for V2X

Communications, in: IEEE VNC 2018, Poster Session, IEEE,
Taipei, Taiwan, 2018. doi:10.1109/VNC.2018.8628429.

[20] P. D. Barnes, M. D. Bielejeski, D. R. Jefferson, S. G. Smith, D. G.
Wright, L. Giupponi, K. Koutlia, C. Harper, S3: the Spectrum
Sharing Simulator, in: 2019 WNGW 2019, ACM, Florence, Italy,
2019, pp. 34–37. doi:10.1145/3337941.3337945.

[21] C. Obermaier, R. Riebl, C. Facchi, A. H. Al-Bayatti, S. Khan,
COSIDIA: An Approach for Real-Time Parallel Discrete
Event Simulations Tailored for Wireless Networks, in: ACM
SIGSIM PADS 2021, ACM, Virtual, Online, 2021, pp. 165–171.
doi:10.1145/3437959.3459250.

[22] D. Eckhoff, A. Brummer, C. Sommer, On the Impact of Antenna
Patterns on VANET Simulation, in: IEEE VNC 2016, IEEE,
Columbus, OH, 2016, pp. 17–20. doi:10.1109/VNC.2016.7835925.

[23] F. Bronner, C. Sommer, Efficient Multi-Channel Simulation of
Wireless Communications, in: IEEE VNC 2018, IEEE, Taipei,
Taiwan, 2018. doi:10.1109/VNC.2018.8628350.

[24] R. M. Fujimoto, Time Management in The High Level Architec-
ture, SIMULATION: Transactions of The Society for Modeling
and Simulation International (SIMULATION) 71 (6) (1998)
388–400. doi:10.1177/003754979807100604.

[25] R. H. Halstead, MULTILISP: a language for concurrent
symbolic computation, TOPLAS 7 (4) (1985) 501–538.
doi:10.1145/4472.4478.

[26] B. Gregg, The Flame Graph, Communications of the ACM 59 (6)
(2016) 48–57. doi:10.1145/2942427.

[27] T.-W. Huang, C.-X. Lin, G. Guo, M. Wong, Cpp-Taskflow: Fast
Task-based Parallel Programming using Modern C++, in: IEEE
IPDPS 2019, IEEE, Rio de Janeiro, Brazil, 2019, pp. 974–983.
doi:10.1109/IPDPS.2019.00105.

[28] D. S. Buse, Experiment Setup for "Accelerating the Simulation
of Wireless Communication Protocols using Asynchronous Par-
allelism", Simulation Experiment Setup version 1.0, Zenodo (9
2021). doi:10.5281/zenodo.5503502.

[29] M. Vincent, F. Berens, Survey on ITS-G5 CAM statistics, TR
2052, V1.0.1, C2C-CC (Dec. 2018).
URL https://www.car-2-car.org/fileadmin/documents/
General_Documents/C2CCC_TR_2052_Survey_on_CAM_
statistics.pdf

[30] R. Molina-Masegosa, M. Sepulcre, J. Gozalvez, F. Berens,
M. Vincent, Empirical Models for the Realistic Generation of
Cooperative Awareness Messages in Vehicular Networks, TVT
69 (5) (2020) 5713–5717. doi:10.1109/TVT.2020.2979232.

[31] B. Bloessl, A. O’Driscoll, A Case for Good Defaults: Pit-
falls in VANET Physical Layer Simulations, in: IFIP
WD 2019, IEEE, Manchester, United Kingdom, 2019.
doi:10.1109/WD.2019.8734227.

[32] I. Khan, J. Härri, Can IEEE 802.11p and Wi-Fi coexist in the
5.9GHz ITS band ?, in: IEEE WoWMoM 2017, IEEE, Macau
SAR, China, 2017. doi:10.1109/WoWMoM.2017.7974358.

[33] C. Sommer, D. Eckhoff, R. German, F. Dressler, A Com-
putationally Inexpensive Empirical Model of IEEE 802.11p
Radio Shadowing in Urban Environments, in: IEEE/IFIP
WONS 2011, IEEE, Bardonecchia, Italy, 2011, pp. 84–90.
doi:10.1109/WONS.2011.5720204.

[34] C. Sommer, S. Joerer, M. Segata, O. K. Tonguz, R. Lo Cigno,
F. Dressler, How Shadowing Hurts Vehicular Communications
and How Dynamic Beaconing Can Help, TMC 14 (7) (2015)
1411–1421. doi:10.1109/TMC.2014.2362752.

[35] G. M. Amdahl, Validity of the single processor approach
to achieving large scale computing capabilities, in: AFIPS
1967 Spring Joint Computer Conference (AFIPS 1967),
Vol. 30, ACM, Atlantic City, NJ, 1969, pp. 483–485.
doi:10.1145/1465482.1465560.

17


