
SYNTONY: Network Protocol Simulation based on
Standard-conform UML 2 Models

Isabel Dietrich Volker Schmitt
Falko Dressler Reinhard German

Computer Networks and Communication Systems
University of Erlangen-Nürnberg, Germany

{isabel.dietrich,dressler,german}@informatik.uni-erlangen.de

ABSTRACT
In this paper, we discuss the need for using standardized
graphical modeling languages for developing and evaluat-
ing simulation models. In particular, we use UML 2 di-
agrams to construct simulation models to be executed in
an event-driven simulation framework (currently, we are us-
ing OMNeT++). The translation of the UML 2 models is
provided by Syntony, an Eclipse-based framework that we
developed for automated and tool assisted development and
analysis of network protocols. With the help of Syntony
we are able to use a simple graphical modeling language to
describe complex protocols. Additionally, the complete pro-
cess of debugging and analyzing the protocol is tool-assisted.
For verification purposes, we developed an UML 2 model of
the Ad hoc On-Demand Distance Vector (AODV) protocol.
In comparison with a native OMNeT++ model, we were
able to show, first, that the developed model works suitably
and the achieved performance measures of the routing pro-
tocol are comparable, and second, that the overhead of the
translation process does not lead to an essential performance
degradation of the simulation process.

1. INTRODUCTION
Due to the complexity of today’s networks, simulation is a

widely used mechanism to evaluate the performance of new
protocols or network configurations. However, the result-
ing simulation models are also very complex, often unclear
or lacking documentation, and in most cases too compli-
cated to be understandable at a glance. This leads not only
to difficulties while debugging and maintaining the devel-
oped simulation models, but it also hinders the exchange
of simulation models between research groups, and possibly
between different simulators.

Fortunately, improved modeling techniques have been avail-
able since several years. These techniques often include
graphical mechanisms that enable humans to quickly un-
derstand the structure and behavior of the modeled system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NSTools ’07, October 22, 2007, Nantes, France
Copyright 2007 ICST 978-963-9799-00-4.

The Unified Modeling Language (UML) is such a graphi-
cal modeling language standardized by the Object Manage-
ment Group (OMG). The current version of the standard
is 2.1.1 [21]. A variety of academic and commercial tools
exist that support model development with UML diagrams.
To support the exchange and automated processing of UML
diagrams, an alternate textual format called XML Metadata
Interchange (XMI) has also been defined by the OMG.

Using the UML as a modeling language in the context
of network simulation has several advantages compared to
other available languages. The graphical representation of
the main model elements and the enforcement of a modern,
object-oriented approach to model systems make complex
models far easier to comprehend. This leads to the ear-
lier discovery of conceptual errors in the model, accelerates
model debugging, and helps to find error locations sooner.

In general, using the UML allows to model network proto-
cols very similarly as with the Specification and Description
Language (SDL), which is based on communicating automa-
tons. However, in contrast to SDL, UML is widely accepted
within the industry as well as in the academic society. Due to
the available variety of diagram types and the profile mech-
anism, UML is also a lot more flexible and easier to extend
than SDL. In addition, the UML is very easy to learn, and
knowledge about it is already widely spread.

The main advantage of using a modeling language such
as UML for developing simulation models is that there is no
need for another new programming language – and, in our
case, there is no need to learn the internals of another new
network simulator. And, of course, graphical programming
is ”en vogue” right now (and has been for the last years),
which might increase the acceptance level among model de-
velopers.

For these reasons, we believe that the automated simula-
tion of UML models is a very promising approach especially
in the field of network simulation. This also takes UML one
step further from a purely graphical formalism. The fact
that the models remain machine-readable by means of the
exchange format XMI leads to the applicability of UML for
all kinds of model transformations. We expect that the de-
velopment of new network protocols and the evaluation of
their performance can be accelerated significantly with the
adoption of the UML as the basis for network simulations.
Therefore, we are developing an Eclipse-based tool that we
named Syntony, which is capable of transforming UML mod-
els into executable simulation code, to run the simulation,
and to analyze the simulation results.

Syntony is currently able to process standard-compliant
UML models consisting of composite structure, state ma-
chine and activity diagrams. Performance annotations using
the UML profile for QoS and Fault Tolerance Characteris-
tics and Mechanisms and some custom stereotypes are also
possible.

To show the applicability and usage of Syntony, we devel-
oped a UML model of the routing protocol AODV and used
Syntony to automatically generate an executable simulation
model from it.

We then evaluated Syntony based on a comparison be-
tween the generated model of AODV and a native OM-
NeT++ implementation of it. The results show that both
the protocol performance and the run-time performance of
our model are comparable to the native implementation.

In short, the contributions we present in this paper are:

• a method for the modeling of network protocols using
UML 2, with the following properties:

– fully conform to existing standards and common
formats

– based on composite structure, state machine, and
activity diagrams

– allows to integrate code annotations based on OAL
and C++

– allows to integrate existing native simulation mod-
ules

• the automated translation of UML 2 models into sim-
ulation code

• the evaluation of our approach based on the analysis
of a typical network protocol, AODV, using a compar-
ison of a developed AODV UML model and a native
implementation for OMNeT++

The remainder of this paper is organized as follows. After
a brief overview over related work in section 2, we show how
computer networks can be modeled with UML in section
3. Section 4 discusses the inner workings of Syntony and
details the transformation process from UML to simulation
code. In section 5, we present a case study using the routing
protocol AODV including a detailed performance evaluation
of Syntony. Finally, section 6 concludes the paper and gives
some directions for future research.

2. RELATED WORK
Recently, a number of approaches have been published

that use UML models to analyze the performance of software
architectures. In most cases, UML models are not trans-
formed into simulation, but into other mechanisms suitable
for performance analysis, for example Petri nets, queuing
networks, process algebras, or stochastic processes. Balsamo
et al. [3] give a broad overview of some of the existing ap-
proaches. In their work, they mention two simulation-based
approaches, namely the work by Arief and Speirs [2] and
the one by De Miguel et al. [10]. Both of them are discussed
below.

Of course, UML models have also been used as the ba-
sis for simulation studies. One of the earliest works in this
area was done by Pooley et al. [15, 24]. They use early ver-
sions of the UML 1 to generate discrete-event simulations
from sequence diagrams. However, they state that state

and activity diagrams are more suitable for system specifi-
cation because sequence diagrams only capture specific mes-
sage flows, but not all possible and legal message exchanges.
They conclude that sequence diagrams are better suited for
the animation of a simulation behavior than its specification.

Arief and Speirs [2] transform systems specified with class
and sequence diagrams into C++ or Java simulation code
using a framework called SimML.

Borshchev et al. [6] describe an approach that uses UML 1
state machines and composite structure diagrams, and anno-
tations taken from the unofficial profile UML for Real-Time.
From these models, they generate simulation programs in
Java. They implemented their approach in the commercial
tool AnyLogic.

De Miguel et al. [10] define a set of custom stereotypes
and tagged values to support modeling of performance pa-
rameters. They specify systems using class, deployment and
activity diagrams and annotate them with their custom pro-
file. Their Simulation Model Generator (SMG) is able to
transform these UML models into simulation models for the
commercial simulator OPNET.

Marzolla and Balsamo [4, 16, 17] use activity, use case,
and deployment diagrams to specify systems and annotate
performance aspects with the UML profile for schedulabil-
ity, performance, and time (SPT). These models are trans-
formed into code for a custom, process-oriented C++ simu-
lator.

Barth [5] uses activity and class diagrams to describe a
system. Performance aspects are included from an external
library and thus not modeled in UML. The system can be
analyzed with a Java simulator.

Michael et al. [18] developed a mapping of UML-RT mod-
els to the simulator OMNeT++. They specify the system
using composite structure and state machine diagrams. Ap-
plication requirements are specified with sequence diagrams
which are generated from use cases.

De Wet and Kritzinger [11] transform UML 2.0 models to
SDL using the ITU Z.109 [14] profile. The ITU Z.109 profile
defines a subset of the UML 2.0 and how the elements are
mapped to SDL specifications. Existing methods for the
incorporation of temporal aspects into SDL specifications
are then used to analyze the model with process-oriented
simulation.

Choi et al. [8] use class and sequence diagrams to model
systems. The sequence diagrams are then transformed into
state machines. A discrete-event simulation model is gener-
ated from the classes and generated state machines. How-
ever, it is unclear how performance elements are integrated
into this approach.

In table 1, we give a brief summary of the approaches
described so far.

From this overview, it seems like there exists a lot of re-
lated work which we could just have adapted instead of de-
veloping yet another tool. However, we found that all of the
approaches have more or less serious drawbacks so that we
decided to learn from their work instead of adapting it.

One big disadvantage of the discussed approaches is that
most of them use custom simulation cores. We aim to sup-
port widespread standard simulation tools. This is benefi-
cial for two main reasons. First, the newly developed UML-
based models can be easily compared with already existing
models, and second, existing models can be integrated into
UML-based models, thus reducing the development effort.

Reference UML
version

Diagram types used Profiles
used

[2] 1 class, sequence -
[10] 1 class, deployment,

activity
custom

[6] 1 state, composite
structure

UML-RT

[15,24] 1 sequence, state, ar-
chitecture

-

[4, 16,17] 1.4 activity, use case, de-
ployment

SPT

[5] 1.4 activity, class -
[18] 1.5 composite structure,

state, sequence
UML-RT

[8] 2.0 use case, class, se-
quence

[11] 2.0 class, architecture,
state, collaboration

ITU Z.109

Syntony 2.0 state, composite
structure, activity

MARTE,
QoS,
custom

Table 1: Approaches for UML-based simulation

Another important issue is the annotation of performance
aspects. About half of the tools we evaluated do not sup-
port clean and standard compliant annotations using UML
profiles. However, we believe that a tool looses much of its
utility by only partially complying to the standard.

We also consider some of the diagram types used in the
related work unsuitable for system specification. These are
especially sequence diagrams, following Pooley’s argument
already cited above. Also, most of the tools are based on
UML 1 which lacks a lot of features concerning the modeling
of actions and internal structures of classes.

Finally, the input format used by the discussed tools is of-
ten proprietary and can not be easily exchanged with other
UML modeling tools. This is a serious disadvantage be-
cause the model designer is forced to use one specific tool
for modeling. In contrast, we chose to build upon the popu-
lar Eclipse UML 2 plug-in. The exchange format defined by
this plug-in is natively supported by a few modeling tools,
and several more provide importers and exporters for it.

In summary, the main difference between Syntony and the
related work discussed above is that our approach provides
an integrated process for the modeling and simulation of sys-
tems that is fully compliant to the UML 2 standard. Our
approach also builds upon widely known simulation tools,
allows to embed functionality described with symbolic lan-
guages and enforces the use of UML profiles to annotate
performance parameters.

3. MODELING SYSTEMS AND NETWORKS
WITH UML 2

3.1 System structure and behavior
The UML offers a multitude of modeling elements and

diagram types which can be used to model the structure
and behavior of systems. As the diagram types are partly
redundant, a subset of the diagram types should be sufficient
to model all relevant aspects of a system.

The description of the system structure basically com-

prises the problem of which system elements there are, and
how these elements are connected with each other. The pos-
sibilities to model system structure include a combination of
component and deployment diagrams as in [12], or compos-
ite structure diagrams as in [6].

We decided to describe the system structure with com-
posite structure diagrams. These diagrams can be used to
display the internal structure of classes. This includes how
other classes are nested inside a class, and how the nested
classes can communicate via connectors attached to their
ports.

The behavior of the entire system is composed of the func-
tional operation of each system element, and the communi-
cation between the elements. There are three main options
to model system behavior with UML 2 which have already
been used in the literature. Activity diagrams are employed
for example in [16] and [10], sequence diagrams in [2] and [8],
and state machine diagrams in [6].

We chose to model the system behavior with state machine
diagrams. UML state machines are very rich in features
which enables the modeler to produce very clearly struc-
tured, uncluttered models. At this point, there are two lev-
els of detail to choose from. The less detailed variant is to
annotate all transitions with transition probabilities. These
probabilities can either come from measurements of an ex-
isting system, or from estimations. The detailed variant
requires a complete specification of all transition effects and
state actions (entry, do, exit). We use activity diagrams to
describe these details. In this paper, we will only describe
the second approach in detail.

3.2 Non-functional properties
So far, only the functional properties of a system have

been modeled. However, the non-functional properties of a
system are equally important for the analysis of its perfor-
mance. The non-functional properties include for example
the consumption of various resources such as time, CPU, or
energy at various points in the system.

The UML standard does not describe methods to model
performance aspects of systems. However, UML profiles
are defined as a flexible extension mechanism that can be
used for this purpose. The OMG is currently in the process
of standardizing a profile called Modeling and Analysis of
Real-Time and Embedded Systems (MARTE) that will be
suitable for the modeling of performance aspects. As the
standardization is not yet finished, we had to rely on a com-
bination of preliminary versions and own profile elements in
this paper.

We defined a custom profile with three stereotypes. The
stereotype <<simulationModule>> can be used to embed ex-
isting simulation models in the UML model. Elements that
are stereotyped as <<simulationParameter>> can be varied
without recompiling the simulation, and can also be subject
to systematical variation within given bounds. The stereo-
type <<incrementStatistic>> realizes a simple statistical
counter.

3.3 Integration of code
The elements described above are sufficiently suitable to

model arbitrary systems and networks. With the multitude
of UML 2 actions available for use in activity diagrams, it
is assured that any behavior can be modeled using UML
alone. However, this would become quite cumbersome as

soon as the modeled algorithms reach a certain complex-
ity. It is therefore desirable to allow the usage of code in a
textual programming language at least at certain places in a
model. Appropriate UML elements for this are easily identi-
fied: OpaqueActions and OpaqueBehaviors allow the spec-
ification of a textual body and a corresponding language.
We decided to support two different languages: the native
language of the underlying simulation core (we are currently
using C++), and the Object Action Language (OAL) [1] as a
convenience language building on the UML action semantics
standard [20]. OAL facilitates for example the specification
of message sending and timer generation.

4. SYNTONY
We are developing the tool Syntony to enable simplified,

flexible, and statistically sound simulation of models spec-
ified in the UML modeling language. Syntony uses UML
models as described in the previous section as input. The
tool then analyzes the model, does some transformations,
and outputs a simulation model specified in C++ as re-
quired by the used simulation core OMNeT++ [25]. The
details of this process will be described in this section. Fur-
ther information and developments regarding Syntony will
be published on the project website1.

4.1 Basic Concepts
Syntony is a software tool written in Java as a plug-in for

the popular open source development environment Eclipse2.
As such, its graphical user interface is realized as a set of
Eclipse views.

The input models have to be available in the XMI for-
mat as supported by the Eclipse UML 2 plug-in. CASE
tools able to export UML models into this format include
for example the IBM Rational Software Modeler3, Papyrus4,
Sparx Systems Enterprise Architect5, and Omondo6.

After the import of a particular UML model, Syntony
transforms the model into C++ code. This transformation
is described in detail below. The code is then compiled into
a simulation program and executed. Apart from the initial
import, these steps may be executed automatically. The ex-
ecution of these steps is controlled from an element of the
graphical user interface (see figure 1).

Figure 1: Tool control view

1http://www7.informatik.uni-erlangen.de/syntony/
2http://www.eclipse.org/
3http://www.ibm.com/software/awdtools/modeler/
swmodeler
4http://www.papyrusuml.org
5http://www.sparxsystems.com.au/
6http://www.omondo.com/

Another element of the user interface is the Translation
View as depicted in figure 2, which illustrates the structure
of the input model and annotates error and warning mes-
sages generated during the transformation process.

Figure 2: Translation results view

4.2 OMNeT++
We currently rely on OMNeT++ [25] as the underlying

simulation core. OMNeT++ is based on C++ and was de-
signed to support efficient network simulation. OMNeT++
distinguishes two kinds of classes, complex and simple mod-
ules. Classes that are composed of other classes and con-
nections between them are called complex modules. They
are specified in the network description language (NED).
Atomic classes with an associated behavior are called simple
modules. They are written in C++, and are accompanied
by a short NED description of the parameters and gates
available for this class.

4.3 Transformation of UML model elements
Based on the above description of the OMNeT++ way

of building simulations, it is quite clear how the main UML
model elements correspond to OMNeT++ concepts. Classes
with state machine diagrams will become simple modules.
Classes with composite structure diagrams are transformed
into complex modules. UML ports are represented as OM-
NeT++ gates.

State machine diagrams are embedded in OMNeT++ sim-
ple modules. We do not use the FSM mechanism built into
OMNeT++ because UML features such as history states or
orthogonal states would have been difficult to integrate with
that mechanism. Instead, we base our translation of UML
state machines on the state design pattern. A translation of
some features of UML state machines into Java code using
the state pattern has already been described in [19]. We
loosely lean on that approach, with a few differences.

The main difference is that in the state pattern, the firing
of transitions is delegated to the state objects. That is not
the case in our implementation. Instead, we define a method
for each state class that returns the currently enabled tran-
sitions depending on the current state, trigger and guards.
The collection of enabled transitions is then evaluated at a
central place, and the chosen transition is fired from there.
The main advantage of this method is that the different fir-
ing priorities as defined in the UML standard, as well as
extra tie-breaking rules, can be included a lot easier.

Figure 3 illustrates some of the features of UML state ma-
chines. Next to regular, initial, and final states, our imple-
mentation includes shallow and deep history states, nested
states, orthogonal regions, joins and forks, junctions, and

choice vertices. The figure also shows some pitfalls that can
be met when modeling state machines. Most of these pit-
falls are mentioned as semantic variation points in the UML
standard. The first issue is the question of what happens
if an enclosing state does not have an initial state. This is
the case with both regions contained in State1 in the fig-
ure. Another question is what happens if several transitions
are enabled at the same time. The standard defines that
those transitions that leave the state with the deepest nest-
ing level have the highest firing priority. In the figure, the
transitions leaving State11 and State13 all have the same
priority. If their triggers match and all guards evaluate to
true, the standard does not define which one will be taken.
Syntony currently chooses a random transition in this case,
while a more sophisticated tie-breaking algorithm (or even
a choice from several algorithms) would be desirable. Warn-
ings or errors are created and shown in the Translation View
if such a pitfall is recognized during the transformation.

Example StateMachine

sleep

awake

State1

State11 State12

State13

State2 State3

H H*

some condition
else

Figure 3: Example of a state machine diagram

The effects of transitions and the entry, do, and exit ac-
tions of states may be specified in detail with activity di-
agrams. Figure 4 shows an example how this might look
like. To illustrate the usage of OAL statements, the note in
the lower right corner of the diagram displays the OAL code
contained in the corresponding action.

All classes containing a composite structure diagram are
translated to OMNeT++ complex modules. The parts con-
tained in such a diagram are listed in the submodules section
of the resulting NED file. The ports of the class are listed in
the gates section, and the connections between class ports
and ports on contained parts are detailed in the connections
section. Figure 5 shows a composite structure diagrams
which represents the internal structure of a wireless node
containing various communication layers. Finally, figure 6
shows how this diagram is transformed into a NED descrip-
tion of the node (for the sake of readability, the description
has been shortened).

Unfortunately, a few semantic issues concerning compos-
ite structure diagrams are left open in the UML standard.
One such issue is the question of the exact connection topol-
ogy for many-to-many connections. Possibilities to resolve
this issue include the star pattern (connecting each element
with all elements on the other side), and the array pattern
(connecting the i-th element only with the i-th element on
the other side). Syntony currently uses the star pattern, but
outputs a warning message if this situation is encountered.

Another problem refers to the semantics of signal forward-

Process application message from lower layer

Is Destination_IP == Own_IP?

Update route for previous hop

start processing MSG_APP_L2H

Is previous hop already in our RT?

Create new RTE for previous hop
with flag_valid_seq_nr=false

«incrementStatistic»
Forward AppPacket

Drop Packet

Do we have a route to destination? «incrementStatistic»
Send to HL

retrieve RTEntries

generate MSG_App_L2H
(Destination:rcvd_evt.Destination,
Payload:rcvd_evt.Payload,
Prev_hop:rcvd_evt.Prev_hop,
Source:rcvd_evt.Source) to
upperlayer;

yes[Own_ip_addr == rcvd_evt.Destination]
no[else]

no[tempPrevRTEntry.Dest_Ip_addr == -1]
yes[else]

no[tempDestRTEntry.Dest_Ip_addr == -1]

yes[else]

Figure 4: Example of an activity diagram

ing. Imagine a signal arrives via some connection at one side
of a port, and should be forwarded at the other side of the
port. What should happen if there are multiple connectors
attached to that side of the port? The signal could be for-
warded on all connections, just one connection, or a subset
of the available connections. Syntony currently forwards the
signal on all connections, and also outputs a warning mes-
sage.

Syntony includes a compiler for OAL statements. This
compiler has been written based on the EBNF production
rules for OAL contained in [1] and the SableCC parser gen-
erator [13]. The compiler translates the statements from
OAL to C++ and inserts them at the appropriate places in
the C++ code generated by Syntony. Error messages are
attached to the Translation View if a statement can not be
translated.

4.4 Integrating existing simulation modules
The integration into an existing simulation framework in-

evitably raises the question if models that are already exist-
ing in the simulator can somehow be re-used in the context
of our UML-driven simulations. The benefits of such a reuse
are basically the same as for the reuse of other software com-
ponents. Models that are already developed and tested do
not need to be developed again. Models created by other
people can be integrated. Performance comparisons are fa-
cilitated.

For the integration of existing OMNeT++ modules into
UML models, we chose an approach that combines custom
stereotypes with a model library representing the existing
modules. In the model library, all reusable modules are rep-
resented by classes. The module parameters are attributes
of these classes. All attributes are given appropriate default
values. Elements from the model library can then be used
in the context of a UML model by using them as parts in
composite structure diagrams.

For the transformation into simulation code, two stereo-
types have to be applied to the classes and their attributes.
The classes are stereotyped as <<simulationModule>>. The

WirelessNode

aodvLayer : AodvEventManager

applicationlayer : ApplicationLayer

ieee 802.11 radio : Ieee 802.11 Radio

upperLayer

ieee 802.11 mac : Ieee 802.11 Mac

upperlayer

lowerlayer

internalcommunication

wirelessRxTx

uppergate

lowergate

wirelessrxtx : wirelessRxTx

Figure 5: Internal structure of a wireless node

stereotype has one tag value which contains the OMNeT++
name of the module. During the transformation, parts that
are stereotyped in this way are replaced by the correspond-
ing OMNeT++ modules.

Additionally, the module parameters have to be stereo-
typed as <<simulationParameter>>. This stereotype has
several effects. For one, the corresponding attributes are
placed in the OMNeT++ initialization file and can then
be varied without recompiling the simulation. Second, the
stereotype has tags that indicate how the stereotyped pa-
rameter should be varied systematically during the simula-
tion runs.

5. CASE STUDY: AD HOC ROUTING WITH
AODV

In order to further outline the capabilities of Syntony and
to demonstrate the general feasibility of our approach, we
created a detailed model of the AODV routing protocol in
UML. Based on this model, selected details of the UML mod-
eling process are outlined. Finally, we compare the Syntony
simulation model to an existing implementation of AODV,
i.e. AODV-UU7, which is natively available for the INET
framework extension of OMNeT++.

Next to the availability of a hand-coded model which can
be used for comparative evaluations, the second reason why
we chose AODV for the case study is the protocol’s complex-
ity. Although it is certainly not as complex as for instance
TCP (about 60 printed pages for the original TCP RFC 793
versus about 25 printed pages for AODV RFC 3561), it is
still complex enough to demonstrate that it can be effec-
tively modeled using a graphical description.

5.1 Ad hoc On-Demand Distance Vector
The AODV routing protocol [22, 23] is tailored to fit the

needs of mobile ad-hoc networks. Most importantly, this
means that the protocol tries to minimize the number of

7http://core.it.uu.se/core/index.php/AODV-UU

module SYNTONY_WirelessNode
parameters:
gates:
out: Fromwirelessrxtx;
in: radioIn;
submodules:
aodvLayer: SYNTONY_AodvEventManager;
applicationlayer: SYNTONY_ApplicationLayer;
mobility: NullMobility;
display: "p=20,160;i=block/cogwheel";
ieee80211radio: Ieee80211Radio;
display: "i=block/wrxtx;";
mgmt: Ieee80211MgmtAdhoc;
display: "i=block/cogwheel;";
mac: Ieee80211Mac;
display: "i=block/layer;";
[...]
connections nocheck:
aodvLayer.FromUpper --> applicationlayer.ToLower;
aodvLayer.ToUpper <-- applicationlayer.FromLower;
ieee80211radio.radioIn <-- radioIn;
ieee80211radio.uppergateOut --> mac.lowergateIn;
ieee80211radio.uppergateIn <-- mac.lowergateOut;
[...]
endmodule

Figure 6: NED description of a wireless node

control messages needed to achieve the successful transmis-
sion of data messages. For that reason AODV is designed as
a reactive routing protocol, which means that route discov-
eries are done only on the initiative of a node which actually
needs to send a data packet to a specific destination.

In that situation, the originating node broadcasts a route
request message and waits for a corresponding route reply.
Only then can it start to send data messages to the destina-
tion node. Several mechanisms have been built into AODV
to make this flooding of route request messages as efficient
as possible.

Destination sequence numbers are used to prevent multi-
ple broadcasts of the same route request message received
from several neighboring nodes. They are also used to en-
sure loop-free routes. The time-to-live header field is used
to limit the route request flood to a certain number of hops.
To reduce congestion in the network, a binary exponential
backoff is used while reattempting to send route requests.

Once a route is established, no further control messages
are needed. As long as a route is frequently used, every in-
volved node knows how to forward packages. Stale routes
will be removed from routing tables after a certain timeout
in order to save system resources. In the case that a node
notices a link break to one of its neighbors, it is possible to
inform the potential interested neighbors by sending route
error messages. For this purpose each nodes keeps a list of
nodes which already have used this node to reach a destina-
tion, the so-called precursor-list, for each single destination.

The advantages of AODV are the low resource require-
ments in terms of memory usage and computational com-
plexity, and the low communication overhead in most sce-
narios for ad hoc networks. Drawbacks are the quite high
latency while establishing a new connection and the involved
(partial) flooding of the network, which heavily decreases
the throughput during the initialization. A number of pa-
pers have been published that analyze the performance of
AODV [7,9], which we used as drafts for our comparison.

5.2 Our UML model of AODV
The main part of our AODV model is a class with one

behavioral state machine diagram which handles all signals
incoming from the upper and lower layers. The class has
two ports which can be used to connect upper and lower
layers. This is illustrated in the class AodvEventManager in
figure 5. The state machine has only two states, startup and
normal operation as can be seen in figure 7. During normal
operation, there is one transition for each possible incom-
ing signal. The actions taken in each transition are detailed
with activity diagrams. Figure 4 shows the activity diagram
that describes the necessary actions if an application mes-
sage arrives from the lower layer.

This model represents one possible approach to model the
AODV protocol. An alternative approach would have been
to identify more states from the specification and use several
orthogonal regions for the treatment of different message
types.

Due to lack of time, we restricted our UML-based AODV
implementation to include only required functionality as de-
scribed in the IETF standard [22]. In general, this means
that we left out almost all features that are not required by
the RFC - in other words: we modeled all the MUST fea-
tures, and skipped SHOULD and below. However, we be-
lieve that modeling the missing features would not be harder
in terms of modeling techniques than modeling the features
we have included.

One important feature we left out is the buffering of ap-
plication messages in case a route to the destination is not
known. This results in a high percentage of application mes-
sage loss if application packets are sent at intervals that are
larger than the active route timeout. Basically, this means a
shift of responsibility toward the application layer which has
to take care of re-sending its messages itself. It is important
to note that this is allowed by the AODV specification.

Both hello messages and link layer notifications as a means
to keep track of a node’s local connectivity are not included
in our UML model, as well as the possibility to send route
error messages when the breakage of a link is detected.

Route reply acknowledgments are a mechanism that is
mainly useful if there is a chance of unidirectional connec-
tions along the route. In that case, it is a SHOULD require-
ment of the standard and has therefore been left out.

The mechanisms described so far are all included in the
AODV-UU implementation for OMNeT++, without an easy
way to switch them off.

According to the standard, local repairs MAY be used.
We did not model this feature, but also switched it off in
the OMNeT++ implementation.

From this UML model, Syntony generates about 5000
lines of C++ code, including many debug statements (auto-
matically generated from the names of states and actions)
and statistical counters. The corresponding parts of the
OMNeT++ implementation contain approx. 3000-4000 lines
of code. While this shows that there are still some redun-
dancies in the code generated by Syntony, it is probably
safe to say that a UML model (even a complex one) is easier
to maintain and understand than several thousand lines of
arbitrary code.

Due to the fact that Syntony generates regular OMNeT++
modules, it is in principle possible to include UML-based
models into OMNeT++, or even to replace existing mod-
ules with ones that were modeled graphically.

5.3 Performance evaluation setup
We combined the UML modeled AODV layer with a few

existing modules from OMNeT++ (802.11 MAC and phys-
ical layers) in a composite structure diagram to form the
wireless node shown in figure 5. Several of these nodes and
the OMNeT++ wireless transmission were then put together
to form a complete network. This is illustrated in figure 8.
Network traffic is generated by a simple application layer
modeled in UML that can send data messages at randomly
distributed points in time.

The OMNeT++ model is built correspondingly, with the
difference that it employed the UDP and IP layers available
in the INET framework, and a UDP application as the traffic
source and sink.

Network

wirelessnode : WirelessNode [2]

wirelessrxtx : wirelessRxTx

wireless channel : Wireless Channel

wirelessRxTx

Figure 8: The sample network

Scenario # nodes placement sources destination
1 2 line all node 0
2 10 line all node 0
3 10 line node 9 node 0
4 15 random all node 0

Traffic pattern interarrival time simulation time
1 uniform(1,2) 2 hours
2 uniform(2,4) 5 hours
3 uniform (8,10) 15 hours

Table 2: Simulation setup

In order to evaluate the performance of our model, we
compared the protocol performance and the run-time per-
formance of both models on the basis of a number of simula-
tion scenarios. In all simulations, the nodes remained fixed
on their positions.

The first scenario consisted of two wireless nodes placed
within each other’s reach. In the second and third scenarios,
ten nodes were placed in a straight line, and each node was in
the transmission range of only its immediate neighbors. In
the second scenario, each node sends application messages,
while in scenario 3 all nodes except the last node in the
line are silent. The fourth scenario consists of fifteen nodes
randomly placed on a simulation area of 200x200 meters.
The nodes’ communication radius is fixed at 62 meters.

The traffic generators were set to generate a new appli-
cation message after a uniformly distributed period of time
between 1 and 2 seconds, 2 and 4 seconds or 8 and 10 sec-
onds. Correspondingly, the simulated time for the three
traffic patterns was fixed at 2 hours, 5 hours and 15 hours,
respectively. This is summarized in table 2. Each simulation
setup was simulated in five independent replications.

AODV StateMachine

Node startup

DO activity

Normal operati...

Startup completed

after "l.DELETE_PERIOD"

AppData received
MSG_App_L2H()
Proc_AppDataforOtherDest

RREQ_fromLL_startup
MSG_RREQ_in()
Proc_RREQfromLL_startup

SendAppPacket_H2L
MSG_App_H2L()
Proc_AppPacket_HL2LL

«incrementStatistic»
RREPfromLL[rcvd_evt.Originator_ip_addr == Own_ip_addr or rcvd_evt.Next_hop == Own_ip_addr]

MSG_RREP_in()
Proc_RREP

RREP-ACKfromLL

MSG_RREP_ACK_in()
Proc_RREP_ACK

«incrementStatistic»
RREQfromLL

MSG_RREQ_in()
Proc_RREQ

ReceiveAppPacketFromLL[rcvd_evt.Next_hop == Own_ip_addr]
MSG_App_L2H()
Proc_AppPacket_LL2HL_or_Forward

TimeoutRREQ
TO_RREQ()
Proc_TO_RREQ

SendRREQ
MSG_RREQ_out()
Proc_SendRREQ

Timeout_ActiveRouteLifetime
TO_ActRouteLifetime()
Proc_TO_ActRLt

SendRREP
MSG_RREP_out()
Proc_SendRREP

Figure 7: AODV state machine diagram

All other model parameters for AODV, and the mac and
physical layers were chosen identical in all simulations. A
summary of the most important values is given in table 3.

delete timeout 15 seconds
active route timeout 3 seconds
local repair false
gratuitous rrep false
expanding ring search false
carrier frequency 2.4e+9
signal attenuation threshold -85 db
alpha 2.5
frame capacity 5
mac.maxQueueSize 5
mac.rtsThresholdBytes 2346
bitrate 2e6
transmitter power 1.0
thermal noise -100
snir threshold 4

Table 3: Simulation parameters

5.4 Comparison of protocol performance
Both models record a number of statistical counters, in-

cluding the number of application traffic sent and received,
as well as the numbers and kinds of all types of AODV
messages. These numbers were then used to compare the
models. The intent of this comparison is to gain an under-
standing if the simulation generated by Syntony functions
correctly. This encompasses both the basic functionality to
discover routes and forward data messages, as well as the
question how efficient, i.e. with how many control messages,
the basic functionality can be achieved.

The results are shown as boxplots. For each data set, a

Scenario App sent App rcvd ratio
Syntony 1 48006 47902 0.997
OMNeT++ 1 48038 47998 0.999
Syntony 3 24004 23953 0.997
OMNeT++ 3 23986 23527 0.981

Table 4: Application message delivery rates (in
numbers of packets received/sent)

box is drawn from the first quartile to the third quartile, and
the median is marked with a thick line. Additional whiskers
extend from the edges of the box towards the minimum and
maximum of the data set, but no further than 1.5 times the
interquartile range. Data points outside the range of box
and whiskers are considered outliers and drawn separately.
Although we have recorded simulation results using all three
traffic variants, we use only the first variant in comparisons.
The reason for this is that our model does not buffer appli-
cation messages. It therefore suffers from a comparably low
application delivery ratio in all scenarios where the interar-
rival time of application messages is at least partly larger
than the active route timeout.

The correctness of the functional behavior is best illus-
trated using the first and third scenarios described above.
The first scenario validates whether messages that a node
sends to itself arrive correctly, while the third scenario val-
idates the ability to setup and use longer routes. Table 4
shows the message delivery rates for both scenarios and both
models. It is evident that the simulation generated from
Syntony performs both tasks as well as the hand-coded sim-
ulation.

Figure 9 serves to further analyze the functional behavior.
The first four columns of each sub-figure display the total

scenario 1 traffic 1

of
 m

es
sa

ge
s

app sent app rcvd rreq sent rreq rcvd rrep sent rrep rcvd

0
20

00
40

00
60

00
80

00
10

00
0

SYNTONY
AODV−UU

●

●● ●●

scenario 2 traffic 1

of

 m
es

sa
ge

s

app sent app rcvd rreq sent rreq rcvd rrep sent rrep rcvd

0
10

00
0

30
00

0
50

00
0

SYNTONY
AODV−UU

●●●●●

●

●

●

●●●

●

●

●

● ●

●

●

●

●●●

●

●

●

scenario 3 traffic 1

of

 m
es

sa
ge

s

app sent app rcvd rreq sent rreq rcvd rrep sent rrep rcvd

0
10

00
30

00
50

00

SYNTONY
AODV−UU

●●●●● ●●●●● ●●●●● ●●●●●●●●●● ●●●●● ●

●

●

●

●

●

●

●

●

●

scenario 4 traffic 1

of

 m
es

sa
ge

s

app sent app rcvd rreq sent rreq rcvd rrep sent rrep rcvd

0e
+

00
4e

+
04

8e
+

04

SYNTONY
AODV−UU

● ●

●

●

●

●
●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●●●
●●●

●

●

●

●
●●
●●●●

Figure 9: Quantity of the different message types

numbers of application messages sent by each node, and re-
ceived correctly by the sink for both simulations. In the first
and third scenarios, both models deliver nearly all applica-
tion messages correctly. In the second and fourth scenarios,
the Syntony model delivers significantly less messages than
the OMNeT++ model. In these scenarios, there are a lot
more traffic sources (10 and 15) than in the other scenarios
(1 and 2). Through the higher number of wireless transmis-
sions, there is also a higher number of messages getting lost
due to mac layer collisions. In the AODV-UU model, these
collisions are minimized by an artificial jitter introduced be-
fore message transmissions. Therefore, the seemingly better
performance in the OMNeT++ model stems from an artifi-
cial effect that is not present in the Syntony model.

To analyze how efficient both models perform their rout-
ing tasks, we compare the quantities of the different mes-
sages types. In that way, we can gain an understanding
how many control messages were needed to transmit a data
message. Figure 9 shows this comparison for the four scenar-
ios. It can be seen that in the second and fourth scenarios,
the Syntony model needs relatively many control messages,
which is due to the mac layer collisions explained above.
However, in the first and third scenarios, the AODV pro-
tocol in Syntony performs even better than the hand-coded
AODV-UU model.

5.5 Comparison of run-time performance
To compare the run-time performance of the two AODV

models, we recorded the CPU usage for one simulation run
of each scenario and traffic variant for both models. We

also recorded some event statistics, like the total number of
events generated during the simulation, and the number of
events per simulated second. Figure 10 shows a comparison
of these measures for the first traffic variant of each scenario.
It can be seen that the simulation generated by Syntony per-
forms better than the native implementation: the simulation
run-times are shorter, and less events are generated.

However, it is likely that at least a part of this is due to
the additional features implemented in the AODV-UU simu-
lation. The two main features we left out in our UML model
are hello messages and route error messages. Therefore, it is
important to analyze how these features affect the run-time
performance.

Acting on the assumption that the most time-consuming
aspect in a simulation is the generation and handling of mes-
sages, we first measured how many of the generated AODV
control messages are hello messages or route errors. It turns
out that the amount of route error messages is quite small,
in most cases less than 1% of the total number of control
messages. In contrast, the fraction of hello messages ranges
well above 20%, reaching up to 75% of all control messages
depending on the scenario and traffic variant.

We therefore continued to examine the impact of the hello
messages by increasing the interval for the hello messages
from one second to 100 seconds. This effectively reduces
the amount of hello messages by 99%. However, the reduc-
tion only led to an improvement of about 15% of the three
run-time statistics. Also, the run-time performance of the
Syntony simulation was still better. Corresponding to the
relatively small amount of route error messages, their im-

Run−time in seconds

scenario

se
co

nd
s

0
50

0
10

00
15

00
20

00
SYNTONY
AODV−UU

1 2 3 4

0
50

0
10

00
15

00
20

00

Events generated per second

scenario

ev

en
ts

0
50

0
10

00
15

00
20

00

SYNTONY
AODV−UU

1 2 3 4

0
50

0
10

00
15

00
20

00

Total messages generated

scenario

m

es
sa

ge
s

0.
0e

+
00

4.
0e

+
06

8.
0e

+
06

1.
2e

+
07

SYNTONY
AODV−UU

1 2 3 4

0.
0e

+
00

4.
0e

+
06

8.
0e

+
06

1.
2e

+
07

Figure 10: Run-time comparison

pact on the run-time performance should be even smaller,
so we did not analyze it further.

This analysis shows that the run-time performance of a
UML-driven simulation with Syntony is at least comparable
to that of a hand-coded model. However, it is important to
note that the run-time performance greatly depends on the
simulated model. The transformation from UML to simu-
lation could be very efficient, not generating any additional
events and handling everything optimally. However, this can
be easily negated if the modeler does not take great care
how the system is modeled. If several internal events are
generated for one incoming message, efficiency goes down
the drain.

6. CONCLUSION AND FUTURE WORK
We demonstrated Syntony, an Eclipse-based tool for the

automated translation of UML 2 models into executable sim-
ulation code. We also motivated the need for standardized
modeling languages and the final choice of UML 2 diagrams
that fulfill our requirements to a certain extent. Additional
features can be modeled (and executed by Syntony) using
profiles that allow to incorporate non-functional properties
of the system, and by annotating OAL or C++ code to mod-
eled actions. The usability of the tool chain has been verified
by a comparison of a self-developed UML 2 model of AODV
and a native OMNeT++ implementation.

This demonstrates that the UML 2-based modeling ap-
proach based on Syntony is well suited for large applications:
it is flexible, easy to use, and can handle complex modeling
situations. As a consequence, existing UML tools can be
used for the description of a complex simulation model. It
is therefore possible to integrate simulation seamlessly in the
system design process.

In conclusion, it can be said that Syntony supports more
convenient graphical modeling and programming paradigms
while achieving a similar accuracy and simulation perfor-
mance compared to native models.

In our future work, we plan to integrate the modeling fa-
cilities provided by the MARTE profile as soon as its stan-
dardization is finished. In particular, this will include the
modeling of stochastic timing and probabilistic choices. Re-
solving the open semantic issues in this context will also be
a part of our work.

We are also working on a standard-compliant action lan-
guage as a replacement for the combination of OAL and
C++ to increase the flexibility of the developed models. The

integration of other simulation cores is planned as well.
In addition, we plan to extend the functional range of

Syntony by adding facilities for the animation of the simu-
lation execution, as well as a component for the integrated
evaluation and presentation of simulation results. The inclu-
sion of a component for statistical testing is also intended.

7. ACKNOWLEDGMENTS
This work was partially funded by the Fraunhofer Insti-

tute for Integrated Circuits IIS, department for Communica-
tion Networks. We would also like to thank the anonymous
reviewers for their valuable comments.

8. REFERENCES
[1] Accelerated Technology. Object Action Language

Manual. Technical report, Embedded Systems
Division of Mentor Graphics Corporation, 2004.

[2] L. B. Arief and N. A. Speirs. A UML Tool for an
Automatic Generation of Simulation Programs. In
Workshop on Software and Performance (WOSP),
pages 71–76, Ottawa, Ontario, Canada, 2000.

[3] S. Balsamo, A. Di Marco, P. Inverardi, and
M. Simeoni. Model-based performance prediction in
software development: a survey. IEEE Transactions
on Software Engineering, 30(5):295–310, May 2004.

[4] S. Balsamo and M. Marzolla. Simulation Modeling of
UML Software Architectures. In European Simulation
Multiconference, Nottingham, UK, 2003.

[5] M. Barth. Performance Assessment of Software
Models In a Configurable Environment Simulator. In
International Conference on Software Engineering
Research and Practice, Las Vegas, Nevada, USA, 2003.

[6] A. V. Borshchev, Y. B. Kolesov, and Y. B.
Senichenkov. Java engine for UML based hybrid state
machines. In Winter Simulation Conference, pages
1888–1894, Orlando, Florida, USA, 2000. Society for
Computer Simulation International.

[7] I. Chakeres and E. Royer. AODV Routing Protocol
Implementation Design. In International Workshop on
Wireless Ad Hoc Networking (WWAN), Tokyo, Japan,
March 2004.

[8] K. Choi, S. Jung, H. Kim, D.-H. Bae, and D. Lee.
UML-based Modeling and Simulation Method for
Mission-Critical Real-Time Embedded System

Development. In The IASTED Conference on Software
Engineering, Innsbruck, Austria, February 2006.

[9] S. Das, C. Perkins, and E. Royer. Performance
Comparison of Two On-demand Routing Protocols for
Ad Hoc Networks. In 19th IEEE Conference on
Computer Communications (IEEE INFOCOM 2000),
pages 3–12, Tel Aviv, Israel, March 2000.

[10] M. de Miguel, T. Lambolais, M. Hannouz,
S. Betgé-Brezetz, and S. Piekarec. UML extensions for
the specification and evaluation of latency constraints
in architectural models. In Workshop on Software and
Performance (WOSP), pages 83–88, Ottawa, Ontario,
Canada, 2000. ACM Press.

[11] N. de Wet and P. Kritzinger. Using UML Models for
the Performance Analysis of Network Systems.
Elsevier Computer Networks, 49(5):627–642, 2005.

[12] A. Di Marco and C. Mascolo. Performance analysis
and prediction of physically mobile systems. In 6th
international workshop on Software and performance,
pages 129–132, Buenes Aires, Argentina, 2007.

[13] E. M. Gagnon and L. J. Hendren. SableCC, an
Object-Oriented Compiler Framework. In Technology
of Object-Oriented Languages and Systems (TOOLS),
page 140, 1998.

[14] ITU-T. ITU Recommendation Z.109: âĂIJSDL

Combined with UMLâĂİ. Technical report,
International Telecommunication Union, 2000.

[15] C. Kabajunga and R. Pooley. Simulating UML
Sequence Diagrams. In R. Pooley and N. Thomas,
editors, UK Performance Engineering Workshop,
pages 198–207, July 1998.

[16] M. Marzolla. Simulation-Based Performance Modeling
of UML Software Architectures. PhD thesis,
Universit‘a CaâĂŹ Foscari di Venezia, 2004 2004.

[17] M. Marzolla and S. Balsamo. UML-PSI: the UML
Performance SImulator. In 1st International
Conference on the Quantitative Evaluation of Systems
(QEST), 2004.

[18] J. B. Michael, M.-T. Shing, M. H. Miklaski, and J. D.
Babbitt. Modeling and Simulation of
System-of-Systems Timing Constraints with UML-RT
and OMNeT++. In IEEE International Workshop on
Rapid System Prototyping (RSP’04), pages 202–209,
Geneva, Switzerland, 2004. IEEE Computer Society.

[19] I. A. Niaz and J. Tanaka. An Object-Oriented
Approach To Generate Java Code From UML
Statecharts. International Journal of Computer and
Information Science (IJCIS), 6(2):83–98, June 2005.

[20] Object Management Group (OMG). Unified Modeling
Language Specification (Action Semantics). Technical
report, OMG, 2001.

[21] Object Management Group (OMG). UML 2.1.1
Superstructure Specification. Technical report, OMG,
2007.

[22] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc
On-Demand Distance Vector (AODV) Routing. RFC
3561, July 2003.

[23] C. Perkins and E. Royer. Ad hoc On-Demand
Distance Vector Routing. In 2nd IEEE Workshop on
Mobile Computing Systems and Applications, pages
90–100, New Orleans, LA, February 1999.

[24] R. Pooley and P. King. The Unified Modelling
Language and performance engineering. IEE
Proceedings Software, 146(1):2–10, February 1999.

[25] A. Varga. The OMNeT++ Discrete Event Simulation
System. In European Simulation Multiconference
(ESM’2001), Prague, Czech Republic, 2001.

