
Validating UML Simulation Models with
Model-Level Unit Tests

Isabel Dietrich, Falko Dressler, Winfried Dulz, Reinhard German
Computer Networks and Communication Systems

Department of Computer Science, University of Erlangen, Germany
{isabel.dietrich,dressler,dulz,german}@informatik.uni-erlangen.de

ABSTRACT
We describe model-level unit tests for model-driven simula-
tion based on UML models. We refer to the well-known unit
testing method and apply this concept on a higher abstrac-
tion level, that is on UML simulation models. The concept of
model-based simulation has become more and more popular
throughout the last years. This trend is fostered by the avail-
ability of tools that automatically transform UML models
into executable simulation code. Typically, both functional-
ity and behavior are modeled in UML, whereas debugging
and validation are mainly an issue of investigating the ex-
ecutable code. We contribute to the field of model-driven
simulation by defining a novel testing method. Our method
allows to use UML to specify model-level unit tests in order
to validate simulation models defined with UML. In addi-
tion, we describe the translation, execution and evaluation
of these tests within the framework Syntony. In this paper,
we show the principles of this method and discuss its use
in the scope of our simulation framework Syntony as well as
its general applicability. Our implementation allows to com-
pile and to execute the test code in combination with the
simulation code. In spite of the high abstraction level, the
full functionality of unit testing is provided and the modeler
can rely on automated test case generation and execution.
After execution of the tests, the achieved test coverage is
computed as a measure for the test quality.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis; D.2.5 [Software Engineering]: Testing and De-
bugging

General Terms
Algorithms, Performance

Keywords
Unit test, simulation, UML, validation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2010 March 15–19, Torremolinos, Malaga, Spain.
Copyright 2010 ICST, ISBN 78-963-9799-87-5.

1. INTRODUCTION
Simulation projects, like most other software projects, face

the problem of validating that the implemented simulation
model behaves as intended. In the domain of software engi-
neering, many methods have been developed to help devel-
opers to deal with this problem. A well-known approach for
assuring the quality of a software system at different levels of
detail is testing. There are numerous different methods for
testing, focusing on different aspects of the software project.

At the lowest level, unit testing focuses on validating that
the smallest possible software components, which are called
units, are implemented correctly. Unit tests are typically
written by the developer of a unit, often in parallel, or even
in advance, to the development of the unit itself. In writing
a unit test, the developer defines the expected behavior of a
unit by specifying a set of input values and the expected out-
puts. In many cases, input values represent border cases, for
example the lower and upper bounds of a parameter’s valid
range. If a unit test fails, the test infrastructure provides the
developer with detailed feedback where, and under which
conditions, the test failed. Unit tests that are executed fre-
quently, and in the best case automatically, can therefore
provide early information about any problems concerning
the tested unit. In addition, unit tests simplify refactoring
because they provide a method to validate that a module
still works even after refactoring. Unit tests also simplify
the integration of multiple modules, because they provide a
certain level of confidence that the individual modules per-
form correctly.

It is possible and sensible to apply unit testing to simula-
tion projects. As most simulation models consist of software
modules, it might be possible to apply existing unit testing
frameworks without modification.

In model-driven simulation, however, the situation is dif-
ferent. In an UML-based simulation model, for example,
the modeler describes functionality and behavior in form of
UML diagrams. The models are translated to programming
language code by the simulation framework, but the modeler
should not need to know details about the generated code
or the generated interfaces. Therefore, the modeler is not
able to write test cases in the target simulator’s language.

The main contribution of our paper is to describe a novel
model-level unit testing technique. This technique allows to
use UML to specify unit tests in order to validate simula-
tion models defined with UML. In addition, we describe the
translation, execution and evaluation of these tests within
the framework Syntony. Our implementation also provides
the comforts available in existing unit test frameworks, like

Discrete-Event
Simulation

Multigrid
Algorithms

System Model

Test Cases

Test Model

Casual
Operation(param=trigger());
fork();
 {Class2.create().sendTo(self().Port1);}
 {"opaque";}
join();

Testing Pro�le MARTE Pro�le

execute

generate

generategenerategenerate

OMNeT++
Experiment

Design

Simulation
Control

Simulation Model / CodeParameters

Statistical Results

verdict

execute with

import

Image Processing
Framework

execute with

Result Images

import

setup

setup

Figure 1: Diagram types and model transformations
in Syntony

automated test execution and detailed failure reports.
In this paper, we present our methodology and the inte-

gration into our simulation framework Syntony [2]. Figure 1
shows the capabilities of Syntony. On the right-hand side,
you can see that Syntony currently supports code generation
based on standard-compliant UML models for two systems:
discrete-event simulation and multigrid algorithms. Input
models may consist of state machines, activities and com-
posite structures, following the paradigm of communicat-
ing automata. The MARTE profile can be used to specify
performance attributes and measures. Syntony fully auto-
matically translates UML models to executable code for the
simulation engine OMNeT++, and to code for a numerical
image processing framework. Various techniques for simula-
tion control, design of experiments, and result analysis are
available from the graphical user interface which is based on
Eclipse.

The test-related extensions are shown on the left-hand
side (highlighted in the red box). We create test models con-
sisting of sequence diagrams and composite structure dia-
grams. We use the UML testing profile [6] to annotate which
elements perform which function in the test. We present the
details in Sections 3.1 to 3.3. In Section 3.4, we present our
transformation algorithms that automatically generate test
code for the simulation engine OMNeT++. This test code
may be compiled and executed in combination with the sim-
ulation code that was generated for the system model. After
the tests have been executed, the achieved test coverage is

computed and presented to the user together with the re-
sulting test verdict. Section 3.5 contains more information
about the integration into Syntony. With a few modifica-
tions, our method is also applicable to other simulation tools.
This is described in Section 3.6. We further present a case
study in Section 4 and give some concluding remarks in Sec-
tion 5.

2. RELATED WORK
Our method shares common aspects with mainly the two

fields: unit testing and simulation validation.
Unit testing refers to the lowest level of abstraction that

is tested – namely the smallest testable units. In object-
oriented programming, these units are usually classes. In
most cases, unit testing involves writing test code to test
the system code. As we build UML system models, we are
concerned with creating UML test models. There exists a
vast body of literature about unit testing in general, and
about the various unit test frameworks in particular. One
of the earliest papers was published by Hamlet [4] in 1977.
The practical benefits of unit testing are discussed for ex-
ample by Ellims et al. [3]. An important addition to unit
testing are test adequacy criteria, i.e. criteria that allow to
estimate the goodness of a set of test cases. An extensive
survey about test adequacy criteria has been published by
Zhu et al. [12]. The UML testing profile [6] shows how unit
tests may be created with UML. In this paper, we move
the idea of unit testing to a higher abstraction layer, that is
simulation models described in UML.

In the area of simulation validation, testing is done dur-
ing the implementation verification phase. According to
Sargent [9], methods from software engineering should be
applied during this phase to ensure the correctness of the
implemented simulation. Our method is an attempt to ap-
ply a technique from software engineering, unit testing, in
an effort to support implementation verification for model-
driven simulation. As a side remark, Sargent [8] already
pointed out in 1986 that graphical models may be a useful
tool in model validation.

We adapt the concept of unit testing to provide a valida-
tion mechanism for model-driven simulation. As we specify
the test cases in UML, a possible extension of our method
is to apply techniques known from the field of model-based
testing to derive the test cases. The term model-based test-
ing is commonly used for approaches that derive the test
cases from an abstract behavioral model of the system un-
der test. A good survey of model-based testing methods has
been presented by Dias Neto et al. [1]. They analyze more
then 70 approaches and compare them with regard to test-
ing level, level of automation, type of behavior models used
for the system model, available tool support, and complex-
ity of the approach. A good example is the work by Pickin
et al. [7] who present an approach for deriving UML test
cases based on UML system models. The cited papers in the
field of model-based testing focus on transforming abstract
UML descriptions to test cases. In contrast, we specify the
test cases themselves in UML. Therefore, we transform test
cases defined with UML to an executable simulation pro-
gram. We certainly envision that model-based testing ap-
proaches will be used in addition to our method. In that
case, the target language for the test case generation from
the model-based testing methods would be UML instead of
a regular programming or test language. Our method would

Network

sender : Sender receiver : Receiver

rdtSender : RdtSender rdtReceiver : RdtReceiver

channel : Channel

Figure 2: Structure of the stop-and-wait model

then transform and execute the UML test cases.
When compared to industry tools like Rational Rhapsody

model-driven testing1, our approach stands out in that stan-
dard tools are not able to generate discrete-event simula-
tions, and therefore the testing approaches cannot be ap-
plied directly to model-driven simulation. In addition, our
method is fully compliant to both UML and the UML test-
ing profile.

3. MODEL-LEVEL UNIT TESTS
In this section, we describe our method for automated

component testing of UML simulation models. We provide
basics about unit testing and UML sequence diagrams in
Sections 3.1 and 3.2, respectively. We then introduce the
general ideas of our methodology in Section 3.3 and the
concrete transformation algorithms in Section 3.4. We show
how we integrated our method into the Syntony framework
in Section 3.5. Finally, we explain how our method can be
applied to other simulation tools in Section 3.6.

Throughout this section, we use a model of the stop-and-
wait protocol [5] as an example to illustrate the various con-
cepts. The name stop-and-wait refers to a family of proto-
cols where the sender stops transmission and waits for an
acknowledgment after every transmitted data frame. Typi-
cally located on the data link layer, stop-and-wait protocols
are responsible for providing reliable data transfer (RDT) by
handling error detection, receiver feedback and retransmis-
sions. As shown in the UML composite structure diagram of
Figure 2, our model consists of a sender and receiver acting
as a simple data source and sink. They are connected via
ports to the protocol units RdtSender and RdtReceiver that
realize the protocol behavior on the sending and receiving
side. The protocol units are connected to a simple channel
model that allows to delay, alter or drop frames. The Rdt-
Sender’s behavior is shown in a UML state machine diagram
in Figure 3. Upon reception of data from the sender – indi-
cated by transition t2 – the RdtSender sends a single data
frame and then remains in the state wait for ack to wait for
an acknowledgment frame (ACK) before sending the next
frame. It retransmits the original frame if an ACK does not
arrive within a specified timeout (transition t3), or if the
ACK indicates that the frame was damaged (transition t6).
Transition t5 indicates that a correct ACK has arrived, and

1http://www.ibm.com/software/awdtools/rhapsody/

RdtSender_StateMachine

wait for data wait for ack

t1/sqn = 0;
t2/data = trigger();
Dataframe.sendTo(lowSap,
sqn=sqn, status=OK, data=data)

Data(i)

t4/ack = trigger();
Ackframe(type, sqn, status)

t3/Dataframe.sendTo(lowSap,
sqn=sqn, status=OK, data=data)

timer()

t6[else]t5[Guard: ack.type == ACK &&
ack.sqn == sqn && ack.status == OK]/
sqn = sqn + 1;

t6[else]

t4/ack = trigger();
Ackframe(type, sqn, status)

t1/sqn = 0;

t3/Dataframe.sendTo(lowSap,
sqn=sqn, status=OK, data=data)

timer()
t2/data = trigger();
Dataframe.sendTo(lowSap,
sqn=sqn, status=OK, data=data)

Data(i)

t5[Guard: ack.type == ACK &&
ack.sqn == sqn && ack.status == OK]/
sqn = sqn + 1;

Figure 3: Statemachine for the RdtSender in the
stop-and-wait model

that transmission of the next data frame may start. The
model uses sequence numbers to enable checking for dupli-
cate data or ACK frames. In the following, we will show
how test cases modeled in UML can be used to gain some
confidence that the system model does indeed behave as it
should.

3.1 Unit Testing
In the following, we introduce the testing concepts and

terminology relevant for our method. As we use the UML
testing profile [6] to annotate our models with information
for testing, we restrict our introduction to the terminology
used there.

The UML testing profile was created to address black-box
conformance testing. This means that the goal is to verify
that the system under test conforms to a given specification,
while the internals of the system under test are not known
during the test. The profile provides mappings to two of the
major test infrastructures: TTCN-3 and JUnit.

The System Under Test (SUT) is the entity to be tested.
It is treated as a black box and can only be exercised via its
interface operations and signals. In our example, the SUT
is the RdtSender module. Its behavior (shown in Figure 3)
is therefore not known to the test infrastructure.

The concrete test objective, i.e. the manner in which the
SUT is exercised, is specified by the test components. Test
components are connected to the SUT’s interfaces and thus
replace some part of the system model during the test. In
this way, the test system gains control in triggering specific
inputs to the SUT, and analyzing the output of the SUT.
If the output conforms to the expected result, the verdict
PASS is given, otherwise the verdict FAIL indicates a fail-
ure situation. Figure 4(b) shows how two test components,
senderEmu and networkEmu, are connected to the two in-
terfaces of the SUT. The senderEmu is used to emulate the
behavior of the sender, and the networkEmu emulates the
behavior of the channel and the entire receiving side of the
model.

A test case is an operation that specifies how a set of test
components interact with a SUT. A test case therefore con-

«TestContext»
TestSuiteRdtSender

verdict : Verdict
senderEmu : SenderEmulator
«SUT» rdtSender : RdtSender
networkEmu : NetworkEmulator
«TestCase» Testcase_0 ()
«TestCase» Testcase_1 ()
«TestCase» Testcase_2 ()
«TestCase» Testcase_3 ()
«TestCase» Testcase_4 ()

«TestComponent»
NetworkEmulator

Port_0

«TestComponent»
SenderEmulator

out

(a) Class Diagram

TestSuiteRdtSender

senderEmu : SenderEmulator

«SUT»
rdtSender : RdtSender

networkEmu : NetworkEmulator

(b) Composite Structure Di-
agram

Figure 4: Test context for the RdtSender mod-
ule. SenderEmulator and NetworkEmulator are test
components interacting with the system under test,
i.e. the RdtSender.

tains a specification of the inputs given to the SUT by the
test components, and the expected outputs. The specifica-
tion may include additional constraints, such as timing in-
formation. It may also indicate valid behavior alternatives,
or point out invalid outputs. Typically, a test case is given
as a valid sequence of interactions between the SUT and the
test components. A test case results in a verdict. PASS and
FAIL indicate that a test case passed or failed. INCON-
CLUSIVE indicates that no conclusion can be drawn about
the test outcome, and ERROR indicates that an error oc-
curred that does not lead to test failure, but inhibits further
execution (like an unhandled exception or a segmentation
fault).

SUT, test cases, and test components are gathered in the
test context. The test context describes how the test com-
ponents interface with the SUT, and which test cases have
to be executed. Figures 4(a) and 4(b) both contain a rep-
resentation of the test context in our example. Figure 4(a)
shows the SUT and the test components as well as a list of
available test cases in a class diagram. Figure 4(b) shows the
connections between test components and SUT, i.e. the in-
ternal structure of the test context, in a composite structure
diagram.

Figure 5 shows how these concepts are represented as
stereotypes in the UML testing profile. A test case can
be modeled by any UML behavior or operation. Both test
components and test contexts are modeled with structured
classifiers (a class is one kind of structured classifier). The
system under test is represented as a UML property. Fi-
nally, the verdict is a simple enumeration of the possible
test verdicts.

Unit tests themselves offer no possibility to judge how
thoroughly a unit is exercised by the test cases. This does
not matter much as long as there are failing test cases be-
cause a test failure always reveals new knowledge about the
system, i.e. that there is an error in the unit. However,
as soon as all test cases pass, it is unclear why: either be-
cause the unit does not contain any more errors, or because

«enumeration»
Verdict

pass
fail
inconclusive
error

«stereotype»
SUT

«stereotype»
TestCase

«stereotype»
TestComponent

«stereotype»
TestContext

«metaclass»
Behavior

«metaclass» «metaclass»
Operation

«metaclass» «metaclass»
StructuredClassi�er

«metaclass»
Property

«metaclass»

Figure 5: The UML Testing Profile (showing the
portion currently supported by our method)

the unit is not tested thoroughly enough. Test adequacy
criteria [12] are one method to close this gap. The most
commonly known test adequacy criteria are statement cov-
erage, branch coverage and path coverage. The coverage
of a test can be computed by looking inside the unit dur-
ing test execution and recording which parts of the unit are
executed. Statement coverage checks if all statements in a
unit are executed at least once. Branch coverage checks the
same for all execution branches. Path coverage checks if all
possible execution paths are executed at least once. Of the
three, path coverage is the strongest criterion, followed by
branch coverage. Statement coverage is the weakest. In this
paper, we use branch coverage based on transitions in state
machines.

3.2 UML Sequence Diagrams
A UML interaction describes the interactions occurring

between parts in a system, for example message exchanges
or operation calls. It does so by specifying one possible
sequence of event occurrences. For a typical system, many
interactions would be necessary to capture all alternatives
of the entire behavior. There are several diagram types that
can be used to visualize interactions. The most common
type are sequence diagrams.

Figure 6 shows a sample sequence diagram realizing one
test case for the RdtSender module. It consists of three life-
lines, senderEmu, rdtSender, and networkEmu. Each lifeline
represents one participant in the test case. The events oc-
curring in the interaction are ordered from top to bottom
on the participating lifelines. In UML terminology, events
on a lifeline are called interaction fragments.

Message 1: Data indicates that the senderEmu starts by
sending a Data signal to the rdtSender. This message con-
nects two interaction fragments: one for the sending and one
for the reception of the signal. The rdtSender is expected to
react to a Data signal by sending a specific Dataframe to the
networkEmu (message 2). The parameter values for the sig-
nals are not shown in the figure, but are accessible through
the properties view in the UML editor. The networkEmu
responds (message 3) with an erroneous Ackframe. As indi-
cated by the loop fragment containing both messages 2 and
3, this is repeated for three times. Fragments containing
other fragments (like the loop fragment in the figure) are
called combined fragments. There are several types of com-
bined fragments, depending on the fragment’s operator, for
example alternative, parallel, and negative fragments. Af-
ter execution of the loop fragment, rdtSender sends another

Interaction of Testcase_4

senderEmu:SenderEmulator rdtSender:RdtSender networkEmu:NetworkEmulator

loop

[3,3]

1: Data

4: Dataframe

2: Dataframe

3: Ackframe

5: Ackframe

Figure 6: Sample test case for the RdtSender: an er-
roneous Ackframe is sent back to the RdtSender in-
side the loop. The reaction expected from the Rdt-
Sender is that it retransmits the original Dataframe
for an unlimited number of times.

correct Dataframe (message 4). The networkEmu finally re-
sponds with a correct Ackframe (message 5). This concludes
the test case.

3.3 Methodology
We assume that our system model consists of composite

structure, state machine, and activity diagrams. To this sys-
tem model, we add a test model consisting of UML sequence
and composite structure diagrams.

In the next step, both the system model and the test
model are transformed to executable code for the target
simulation engine. We use OMNeT++ for this, but since
the generated code does not rely on specific features of the
OMNeT++ simulator, any simulation engine would work.
Finally, the test cases are executed in the simulation envi-
ronment, and the test verdict is recorded and presented to
the user.

Along with the test verdict, we record the test coverage.
If the system under test contains a state machine, we com-
pute the branch coverage based on the transitions in the
state machine. We then compute the test coverage as the
number of executed transitions divided by the total number
of transitions in the state machine. We compute this num-
ber for each test case separately, and also for the entire test
context representing the total test coverage for the system
under test.

There are several advantages of using the simulation en-
gine as platform for unit testing. First, we do not have to
invent a new concept of simulation time for the test environ-
ment, because the simulation engine already knows about
simulation time. Second, the mechanisms to send and re-
ceive messages are already present in the simulation engine;
therefore, we do not need to map them to a new mechanism
in the test enviroment. Third, we need to transform the sys-
tem model only to a single target system – the simulation
engine – instead of two. Finally, this is what the existing
unit testing infrastructures do: they use the system’s target
platform also as test platform.

3.4 Transformation Algorithms
We now present the transformation algorithms we have

developed to transform the test models described above into
executable code for the simulation engine OMNeT++ [11],
which is based on C++ and was designed to support ef-

ficient network simulation. OMNeT++ distinguishes two
kinds of classes, compound and simple modules. Classes
that are composed of other classes and the connections be-
tween them, are called compound modules. They are spec-
ified in the network description language (NED). Atomic
classes with an associated behavior are called simple mod-
ules. They are written in C++, and are accompanied by a
short NED description of their configuration parameters and
interfaces. We refer to [2] for details on the transformation
of the system model. The transformation runs fully auto-
matically, and Syntony generates compiled code that can be
executed immediately without manual intervention.

3.4.1 Test Control
We implement test control mechanisms on two levels. The

first level is placed inside the generated simulation; it gov-
erns recording of test verdicts from single test cases. The
second level controls which test cases are executed and takes
care of presenting the verdicts from all executed test cases to
the user. We place the second level in Syntony ’s graphical
user interface and discuss it in Section 3.5.

For the first level, we create a generic test control module
in OMNeT++. Each test component registers itself with the
test control just before the test case execution is started. As
soon as a test component knows its verdict, it records it with
the test control. If the verdict is any other than PASS, the
test is terminated immediately. Otherwise, the test control
terminates execution only if all known test components have
submitted their verdicts. Before termination, test control
records the test verdict and, if available, detailed informa-
tion about the verdict’s cause, in an OMNeT++ scalar file
that is available for analysis later on.

3.4.2 Test Component
A test component’s behavior is specified only through the

lifelines in which it participates. We do not attempt to unify
these behaviors in a single OMNeT++ class; instead we cre-
ate a separate simple module in OMNeT++ for every life-
line representing a test component. For example, in the test
case shown in Figure 6, there are two lifelines correspond-
ing to two test components (senderEmu and networkEmu),
and one lifeline corresponding to the system under test (rdt-
Sender). Therefore, we create two simple modules, one for
each of the two test component lifelines. If a test component
is used in more than one test case, a new simple module is
created for each test case a test component is used in.

Basically, the behavior we create walks along its lifeline
from top to bottom. The behavior for the networkEmu from
Figure 6 therefore starts by waiting for the reception of a
Dataframe. It then responds with a specific Ackframe, then
waiting again for the next Dataframe, and so on. At any
point, the next event on a lifeline is processed immediately
if possible. If the next event has to be waited for, like a re-
ceive signal event or a timeout, execution is interrupted and
resumed only when a new event is received. In these cases,
the current position on the lifeline has to be recorded. We
generate an enumeration listing all fragments on the lifeline
for every lifeline representing a test component. A class at-
tribute stores the current position using this enumeration.
When all events on a lifeline have been processed, the be-
havior records a PASS verdict with the test control module.

A number of different event types, combined fragments,
and constraints may occur on a lifeline. In the following,

we give a detailed description for send signal events, receive
signal events, loop and alternative fragments, and duration
constraints. The remaining elements can be handled in a
similar way.

Send Signal Event: Signal events do not only specify the
type of signal that is to be sent or received, but also the val-
ues for the signal’s arguments and the connection on which
the signal should travel. When a send signal event is next
on a lifeline, the behavior simply creates a new signal of the
specified type. It also sets the given arguments, and sends
the signal to the port indicated by the connection. Then, it
updates the position on the lifeline and immediately starts
processing the next event.

Receive Signal Event: Processing of a receive signal event
is triggered by the reception of a signal. The received signal
is subject to several tests. First, the behavior checks the
type of the received signal against the type specified in the
model. If the check fails, it records a FAIL verdict with the
test control. The detailed report for this verdict includes
information about the lifeline, the event, and the received
and expected type of the signal. If the signal type is correct,
the behavior checks each of its argument values against the
argument value specified in the model. Again, a failed check
results in a FAIL verdict. In addition to the information
above, the detailed report also includes the received and
expected value of the argument. If the signal’s type and all
of its argument values are correct, the behavior updates the
position on the lifeline and starts processing the next event.

Loop Fragment: The processing of combined fragments
depends on the specified operator and the guards on the
operands. A loop fragment has a single operand. Its guard
can specify both the maximum number of loop iterations and
an abortion condition that is checked after a minimum num-
ber of iterations has been performed. For example, the loop
fragment in Figure 6 specifies a maximum iteration count
of three, without an additional abortion condition. The
operand in this example consists of four interaction frag-
ments, namely one sending and one receiving event on the
rdtSender lifeline, and the corresponding events on the net-
workEmu lifeline. The generated code keeps track of the it-
eration count. When the behavior reaches the last fragment
in the operand, it checks the iteration count and, if applica-
ble, the abortion condition. If the abortion condition is true,
or if the maximum number of iterations has been reached,
the behavior sets the lifeline position to the first fragment
following the loop fragment. Otherwise, it sets the lifeline
position to the first fragment in the loop operand.

Alternative Fragment: Alternative fragments may be used
to model test cases where the system under test exhibits
random behavior, i.e. where the system under test may re-
act differently depending on a random selection. In this
case, each of the fragment’s operands describes one valid
alternative. The generated code then checks if one of the
operands matches the system under test’s run-time behav-
ior. It records a FAIL verdict if no operand matches.

Duration Constraint: Any two interaction fragments can
be constrained by a duration constraint. In this way, a min-
imum or maximum duration between the two fragments can
be specified. At the starting point of a duration constraint,
the behavior records the current simulation time. At the
end point of the constraint, the behavior then checks the
recorded duration against the specified duration interval. If
the check fails, it records a FAIL verdict indicating both the

Figure 7: Syntony GUI showing the test verdict as
well as the coverage for several test cases

expected and the recorded durations. Figure 8 shows the
detailed report for a test failure caused by a violation of a
duration constraint.

3.4.3 Test Case, Test Context
For every test case, we create a separate network defi-

nition. This network composes all modules participating in
the test case’s interaction, typically the SUT (taken from the
system model) and the modules created for the test compo-
nent lifelines. The test context’s internal structure specifies
how the modules are connected with each other.

3.4.4 Test Coverage
We measure the test coverage of a given set of test cases

by recording which transitions were executed. To record ex-
ecution of a transition, the transformation creates a subclass
of the system under test and overwrites all transition exe-
cution methods. The new methods record the execution in
an OMNeT++ scalar file and then simply call the original
method. The resulting scalar file is analyzed automatically
after the test execution completes (see Section 3.5.1).

3.5 Integration in Syntony
We integrated the test method presented in the previous

sections into our framework Syntony. If a model contains
test cases, they are translated and compiled together with
the system model. Then, the available test cases are pre-
sented in a separate view in the Eclipse platform. The view
is shown in Figure 7.

3.5.1 Test Control
The test control mechanisms in the graphical user inter-

face handle test case selection, execution, and presentation
of test verdicts and coverage. All test cases in a given model
are gathered in a list. The user may select all test cases
for execution, or choose single test cases. The test control
creates a script governing the execution of the selected test
cases. For every selected test case, the script contains a call
to the generated simulation with the parameters appropri-
ate for the test case. After the test execution has completed,
test control parses the OMNeT++ scalar files generated by
the run-time test control and extracts the test verdict and
detailed messages for every test case (Figure 8). The aggre-
gated verdict for the test context is the worst verdict of the
contained test cases. Both verdict and details are presented
to the user together with the original test case list.

The coverage achieved by the executed test cases is also
computed and displayed. In addition to the coverage per-

Figure 8: Syntony GUI showing the detailed mes-
sage for a failed test case – in this case, due to a
violated duration constraint.

Figure 9: Syntony GUI showing the coverage details
for test case 5.

centage, the user also gets to know which transitions were
not executed by the tests. These transitions are shown with
their qualified name which indicates the exact position of a
transition in the model. Figure 9 shows how these transi-
tions are presented to the user.

Currently, the user interface does not offer the possibility
to start test case execution automatically. However, this is
merely a programming exercise. Automatic execution could
be triggered, for example, by a timer or by changes to the
model. Both variants can be implemented in Eclipse.

3.6 Applicability in other Areas
We implemented our method for UML-based simulation

with Syntony. Syntony offers the possibility to couple UML
simulation models with native OMNeT++ models. In this
case, it is desirable to use only a single unit testing frame-
work for the coupled model instead of one for the UML
model, and one for the existing C++ code. In this sec-
tion, we explain how our method can be adapted to test
native OMNeT++ models with UML test cases. Of course,
the adaptation is not strictly limited to OMNeT++. The
same ideas can be used to adapt our method to arbitrary
simulation tools.

3.6.1 Application to Simulation Tools
Syntony transforms both the system and the test model

to simulation code. If our method is used with native system
models instead of UML system models, the system model’s
class structure has to be represented in UML. This is nec-
essary to allow the UML test model to include correct ref-
erences to all signals, data structures, and classes in the
original model. Fortunately, there are UML editors avail-
able that allow to create class diagrams automatically from
a given body of programming language code, like Java or
C++. In some simulation tools, however, the required in-
formation is described with a custom language. In this case,
the class structure can either be created manually, or, if
the custom language’s grammar is available, an automatic
converter can be created. As OMNeT++ uses the NED lan-

guage to describe the structure and interfaces of simulation
models, we implemented a converter that allows us to create
UML classes automatically from OMNeT++ ned files.

For OMNeT++, representing the class structure of the
existing simulation models in UML is all that has to be
done to apply our method. For other simulation tools, the
test code generated by the transformation algorithms would
have to be adapted to use the target simulation tool’s API.

An important point is that the achieved test coverage can
only be computed by our method if a complete system model
exists in UML. Otherwise, traditional coverage tools such as
gcov2 can be used.

3.6.2 Application to Multigrid Algorithms
Basically, the same modifications have to be made if our

method is applied to Syntony ’s multigrid transformation.
The multigrid transformation works by combining existing
hardware-specific code with automatically generated high-
level code. Therefore, the class structure for the existing
code has to be represented in UML. Then, the code gener-
ated by the transformation algorithms has to be adapted to
the API of the image processing framework. Like before, the
test coverage can only be computed for those modules that
are completely modeled in UML.

3.6.3 Application to Test-Driven Development
Our approach can be used without further modification to

support test-driven development of UML simulation models.
In that case, the user would have to follow three steps. The
first step is to create the basic system structure so that the
entities used in the test cases reference correct UML ele-
ments. In the second step, the user can start to create test
cases and execute them (expecting test failures because the
system behavior is not yet present). In the third step, the
user can add behavior to the system until the test cases pass.
In principle, this procedure is not different from test-driven
development using, for example, JUnit.

4. CASE STUDY
We demonstrate the application of our method using our

model of the stop-and-wait protocol. Although the protocol
is quite simple, it has the advantage of being small enough
so that it can be shown and explained in its entirety. Also,
despite its simplicity and despite the effort we invested in
modeling it, the test cases still revealed a few bugs in the
model. This indicates that the protocol is complex enough
so that useful test cases can be created for it.

4.1 Test Cases
We present a selection of the test cases for the RdtSender

module in Figures 6, 10, 11 and 12. Test case 0 (shown
in Figure 10) tests the basic functionality of the RdtSender
module, i.e. the reception of data from the sender (mes-
sage 1: Data), the transmission of this data item in a single
data frame (message 2: Dataframe) and the reception of the
corresponding ACK (message 3: Ackframe).

Test case 3 (Figure 11) is a little more complex. It assumes
that the ACK is somehow lost or delayed on the channel, and
therefore the RdtSender module has to retransmit the orig-
inal data frame after a certain timeout. There is a duration

2gcov comes with the GCC compiler http://gcc.gnu.org

Interaction of Testcase_0

rdtSender:RdtSendersenderEmu:SenderEmulator networkEmu:NetworkEmulator

2: Dataframe
1: Data

3: Ackframe

Figure 10: Test case 0 for the RdtSender: test the
basic functionality when there are no errors on the
channel.

Interaction of Testcase_3

senderEmu:SenderEmulator rdtSender:RdtSender networkEmu:NetworkEmulator

1: Data

3: Dataframe

2: Dataframe

4: Ackframe

{0 .. 5}

Figure 11: Test case 3 for the RdtSender: test the
timeout duration between retransmissions of data
frames when no acknowledgement arrives.

constraint between messages 2 and 3 indicating the allowed
duration of the timeout.

The test case presented in Figure 12 tests whether the
RdtSender module is able to handle transmission of more
than one data item correctly. To achieve this, the sender
first transmits two data items to the RdtSender (messages
1: Data and 2: Data). The RdtSender should then transmit
the first data frame (message 3), wait for the corresponding
ACK (message 4), and only then send the second data frame
(message 5).

Test case 4 has already been shown in Figure 6. It checks
whether the RdtSender acts correctly when it receives an er-
roneous ACK frame. The ACK could be erroneous because
it has been modified in the channel, or because it contains
a wrong sequence number. The correct action for the Rdt-
Sender is to retransmit the original data frame. It should
do so for an unlimited number of times as long as it receives
false ACK frames. The test case does only check that it does
so for three times. This is noted in the condition on the left
side of the loop fragment (messages 2 and 3). The test case
also checks if the RdtSender stops the retransmissions once
it receives a correct ACK frame (message 5).

When all or some test cases have been executed, the view
shown in Figure 7 is updated to show the test verdict. In
this case, there was a test failure in test case 3. The detailed
report for this test failure is shown in Figure 8. It indicates
that the duration constraint for the retransmission timeout
was violated: a duration between zero and five seconds was
expected, while the observed duration was 50 seconds. This
failure was due to an error in the system model concerning
the calculation of timeout values, and it was one of the bugs
we found in our system model.

The third column in Figure 7 shows the coverage achieved
by the test cases. As you can see in the first line, the test
cases cover 100% of the transitions in the RdtSender module.
The test cases we created for the RdtReceiver also achieve
full coverage.

Interaction of Testcase_5

senderEmu:SenderEmulator rdtSender:RdtSender networkEmu:NetworkEmulator

2: Data

1: Data

5: Dataframe

3: Dataframe

6: Ackframe

4: Ackframe

Figure 12: Test case 5 for the RdtSender: test the
transmission of more than one data frame.

4.2 Usability
In the following, we discuss three aspects related to the

usability of our method: the generation and compilation
times for the test model, the run-time behavior, and the
modeling process.

Compared to the generation and compilation times for the
system model only, the inclusion of a test model naturally
does cause some overhead. This overhead grows depending
on the number of test cases in the test model. The gen-
eration and compilation times also depend strongly on the
size of the system model. Therefore, the times given here
can only serve as a ballpark figure. For the stop-and-wait
model, the generation and compilation process takes about
15 seconds for the system model, and about 21 seconds if
the test model is included.

The execution of the test cases runs very quickly, espe-
cially when compared with the run-time of the entire sim-
ulation. As an example, the execution of all test cases in
the stop-and-wait model completes in less than two seconds.
This is small enough so that the test cases can be executed
frequently and automatically.

As with traditional unit tests, it is possible, or even prob-
able, that creating the test cases for a unit takes longer than
creating the unit’s behavioral model. For every simulation
project, or even for every individual unit, this additional ef-
fort has to be weighed against the added confidence in the
model’s correctness. However, this is not particular to our
approach as it applies to all unit test frameworks. What is
particular to our approach is that the test cases are created
in UML instead of programming language code. Even for an
experienced modeler, this probably takes longer than writ-
ing a corresponding unit test in code. However, we believe
that the clarity added by the graphical representation, and
the improved basis for communication about the test cases,
make up for this additional effort.

The only real drawback of our method is that the cur-
rently available editor support for sequence diagrams leaves
room for improvement. For example, neither Papyrus3 nor
the IBM Rational Software Modeler4 allow to specify or dis-
play constraints in the graphical representation of the model.
Instead, the modeler has to resort to using a tree-like view
of the model which is a lot less comfortable. However, we
expect that this will be improved in future versions of these
UML editors.

3http://www.papyrusuml.org
4http://www.ibm.com/software/awdtools/modeler/
swmodeler

5. CONCLUSIONS
Unit tests are an established test method for code-based

projects. In this paper, we present a method to apply unit
testing to simulation projects based on UML models. The
method consists of modeling test cases in UML and automat-
ically transforming them to test code for the target platform.
In particular, we use sequence diagrams to model individual
test cases. The test setup is modeled using class and com-
posite structure diagrams. We then use our tool Syntony
to transform the test model to C++ code for the simula-
tion engine OMNeT++. The generated code can execute
the test cases and record the test verdict for every test case.
It also computes the branch coverage achieved by the test
cases based on transitions in the system model. We inte-
grated our method into Syntony ’s graphical user interface
to achieve a usability similar to existing unit test infrastruc-
tures. We applied the method to several UML simulation
models, including a model of the stop-and-wait protocol. In
doing so, we uncovered some previously unnoticed bugs in
the models. This again demonstrates the practical usability
of unit testing in general, and our method in particular.

As a next step, we plan to couple our method with model-
based testing approaches. In that way, test cases would
not have to be created manually, but could be generated
automatically from abstract behavior models [1], or from
usage models [10].

6. ACKNOWLEDGMENTS
This research was funded in part by the German Federal

Ministry of Education and Research under grant number
01IA08001C.

7. REFERENCES
[1] A. C. Dias Neto, R. Subramanyan, M. Vieira, and

G. H. Travassos. A survey on model-based testing
approaches: a systematic review. In WEASELTech
’07: Proceedings of the 1st ACM international
workshop on Empirical assessment of software
engineering languages and technologies, pages 31–36,
Atlanta, Georgia, 2007. ACM.

[2] I. Dietrich, V. Schmitt, F. Dressler, and R. German.
SYNTONY: Network Protocol Simulation based on
Standard-conform UML 2 Models. In 2nd ACM/ICST
International Conference on Performance Evaluation
Methodologies and Tools (ValueTools 2007): 1st
ACM/ICST International Workshop on Network
Simulation Tools (NSTools 2007), Nantes, France,
October 2007. ACM.

[3] M. Ellims, J. Bridges, and D. C. Ince. Unit Testing in
Practice. In 15th International Symposium on
Software Reliability Engineering, pages 3–13,
Saint-Malo, Bretagne, France, November 2004. IEEE
Computer Society.

[4] R. G. Hamlet. Testing Programs with the Aid of a
Compiler. IEEE Transactions on Software
Engineering, 3(4):279–290, July 1977.

[5] J. F. Kurose and K. W. Ross. Computer Networking:
A Top-down Approach. Addison Wesley, 4th edition,
2008.

[6] Object Management Group (OMG). UML Testing
Profile Specification, v1.0. Technical report, OMG,
2005.

[7] S. Pickin, C. Jard, T. Jeron, Y. Le Traon, and J.-M.
Jezequel. Test Synthesis from UML Models of
Distributed Software. IEEE Transactions on Software
Engineering, 33(4):252–269, 2007.

[8] R. G. Sargent. The use of graphical models in model
validation. In 18th conference on Winter simulation
(WSC ’86), pages 237–241, Washington, D.C., USA,
December 1986. ACM.

[9] R. G. Sargent. Verification and validation of
simulation models. In 39th Winter Simulation
Conference (WSC 2007), pages 124–137, Piscataway,
NJ, 2007. IEEE.

[10] S. Siegl, W. Dulz, R. German, and G. Kiffe.
Model-Driven Testing based on Markov Chain Usage
Models in the Automotive Domain. In 12th European
Workshop on Dependable Computing (EWDC 2009),
Toulouse, France, May 2009.

[11] A. Varga and R. Hornig. An overview of the
OMNeT++ simulation environment. In 1st
ACM/ICST International Conference on Simulation
Tools and Techniques for Communications, Networks
and Systems (SIMUTools 2008), Marseille, France,
March 2008. ACM.

[12] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit
test coverage and adequacy. ACM Computing Surveys,
29(4):366–427, December 1997.

