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Abstract—Internet service providers (ISP) rely on network
traffic classifiers to provide secure and reliable connectivity for
their users. Encrypted traffic introduces a challenge as attacks
are no longer viable using classic Deep Packet Inspection (DPI)
techniques. Distinguishing encrypted from non-encrypted traffic
is the first step in addressing this challenge. Several attempts have
been conducted to identify encrypted traffic. In this work, we
compare the detection performance of DPI, traffic pattern, and
randomness tests to identify encrypted traffic in different levels of
granularity. In an experimental study, we evaluate these candidates
and show that a traffic pattern-based classifier outperforms others
for encryption detection.

Index Terms—Deep Packet Inspection; Network Traffic Clas-
sification; Privacy; Ground Truth; Mobile Internet Ecosystem

I. INTRODUCTION

Network monitoring is an essential tool for Internet Service
Providers (ISP) to enhance their functionality such as Quality
of Service (QoS) and Security [1]-[4]. Currently, Deep Packet
Inspection-based (DPI) classifiers are the main tools in the
hands of ISPs in this regard. These classifiers look into the
user payloads to detect a string that is unique for an application
protocol or an attack. The increased use of encrypted commu-
nication affects the performance of DPI classifiers as the user
payload is not exposed clearly to the classifiers anymore.

Several parameters of traffic flows have been investigated
to identify encrypted traffic [5], [6]. Reliance on the traffic
pattern with the help of Machine Learning (ML) algorithms is
among the most promising approaches which are applicable in
the the field [7], [8]. However, Deri et al. [9] showed that it is
not always suitable for mission-critical operations.

Randomness characteristics of the user payloads also can
provide some information regarding the encryption property
of a flow [10]. It relies on the fact that an efficient encryption
algorithm should randomize the user payload significantly.
Therefore, it can be considered an appropriate approach for
splitting encrypted traffic from un-encrypted in the case that
each traffic category should be treated differently.

Despite all the efforts, there is a lack of work that compares
the performance of Deep Packet Inspection (DPI), traffic
pattern, and randomness test classifiers to deal with encrypted
traffic. To this end, first, we propose a randomness test-based
classifier and then compare its performance with the well-
selected candidates from DPI and traffic pattern classifiers. The
selected classifiers compete with each other to classify our
ground truth in three different levels of granularity: i) binary

classification to distinguish encrypted from un-encrypted traffic,
ii) application protocol classification to distinguish between
encrypted application protocols and un-encrypted application
protocols, and iii) classifying the flows according to the content
and identifying encrypted content among un-encrypted contents.
We also propose a traffic generator that can provide a ground
truth with labels in three different levels of granularity.
Our main contributions can be summarized as follows:

e We propose a randomness test-based network traffic
classification and make it is publicly available for the
research community '.

« We study the time consumption of several randomness
tests which applicable in the field of network traffic
classification.

o Also, we measure and compare the performance of DPI,
traffic pattern, and randomness test classifiers to detect
the encryption traffic in granularity levels binary, protocol,
and content.

II. RELATED WORK

Although distinguishing encrypted traffic based on the port
number is the most straightforward approach, it is not very
accurate in modern Internet traffic [11].

In the network monitoring community, DPI has become
the main approach for identifying traffic, including encrypted
traffic. nDPI? is an upgraded version of OpenDPI, which has
been developed by Deri et al. [9]. Using the unencrypted part
of packets (application payload, headers, etc), it can identify
applications. As DPI is a resource-demanding process, Alcock
et al. [12] proposed Libprotoident,® which processes only
a specific amount of traffic. Despite the high accuracy of DPI
classifiers, their detection performance is limited to the scope of
their signature set. Also, the processing performance is rather
limited.

An alternative is the use of Deep Learning (DL) to identify
encrypted traffic. Rezaei and Liu [13] overviewed the capability
of DL to identify encrypted traffic. They discussed the imple-
mentation of DL in the field from different perspectives such as
data collection, data preprocessing, and feature selection. Aceto
et al. [6] proposed DISTILLER as a multimodal multitask deep
learning architecture [14] to classify encrypted traffic. Their

Uhttps://github.com/tkn-tub/encryption_detection
Zhttps://www.ntop.org/products/deep-packet-inspection/ndpi/
3https://github.com/wanduow/libprotoident



measurements on human-generated ground truth data showed
a performance boost of up to 7.9% better in comparison with
the state of the art for multi-task architectures.

Finally, the entropy of data can be used to identify encrypted
traffic. Cheng et al. [5] target the encrypted part of traffic to
do the identification. They proposed a classifier based on N-
gram entropy and cumulative sum test (cumsum) [15]. Their
measurements show that their proposal identified encrypted data
in embedded files, such as pictures and compressed files. Casino
et al. [16] proposed HEDGE (High Entropy DistinGuishEr)
for classifying the high entropy files such as MPEG-1 Audio
Layer 3 (MP3) and Portable Document Format (PDF) as well
as encrypted files. This method was based on the evaluation of
the randomness of the data streams and by using a tree-based
threshold system.

Despite all of the above studies, it is still unclear which
approach performs best in different scenarios. We assess
and compare the performance of DPI, traffic pattern, and
randomness tests to shed light on this question.

III. DETECTION METHODS

We select a well-representative instance from DPI traffic
pattern and randomness test-based approaches to compare their
performance in different scenarios. We particularly emphasize
on the randomness tests as these have found little attention
from the network monitoring community so far.

1) Deep Packet Inspection: DPI classifier is well-known
because of its high accuracy and low false-positive rate [17].
It is equipped with a set of signatures of either application
protocols, or attacks and looks for them in the network traffic
with the help of a string matching algorithm. This limits the
detection scope of DPI to its signature sets and makes it a
resource-demanding approach.

Encryption protocols randomize the bitstream of user pay-
loads and hide the content from the DPI eye. Therefore,
processing the encryption traffic is challenging for a DPI
classifier. Some research works [18], [19] proposed to apply
decryption techniques before DPI. Other works [9], [12]
considered a different approach and investigated the un-
encrypted part of flows (e.g. headers, SSL certificate).

Several open-source classifiers were developed based on DPI
principle (i.e., L7, nDPI). However, Bujlow et al. [20] indicated
the superiority of Libprotoident [12] as a lightweight
and highly accurate DPI classifier. The key factor that makes
Libprotoident very fast is that it processes only the
first four bytes of payloads in each direction instead of the
entire packet payload. We choose Libprotoident as the
representative of DPI and apply it with its default setting.

2) Traffic Pattern: Different application protocols including
encryption protocols generate traffic with different patterns.
Therefore, it is possible to identify the application protocol of
a flow from its pattern.

Detection based on traffic pattern mainly relies on ML
techniques and follows a training and testing paradigm. An ML
algorithm learns to distinguish between traffic from different
applications in the training phase and classifies the rest of
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Fig. 1. Work flow of the proposed Randomness Test-based classifier

the traffic accordingly in the testing phase. The classifiers
developed based on traffic pattern cannot process the raw
traffic directly. Therefore, in the preprocessing phase, the
feature that represents the pattern characteristics of flows
is extracted from the raw traffic. The required information
for extracting the features determines the offline or online
operational capability of the classifier [21]. E.g. if the duration
of flow is among the features in the defined feature set, then
the feature extraction cannot be completed before the end of
the flow and consequently, the classifier cannot process the
flow before its end.

Since the online performance of the classifier is our point
of interest, we consider only the features that can be extracted
from the first packets of a flow. Our feature set consists of the
statistics (min, max, mean, standard deviation) of the packet
size and the inter-arrival time of the first five packets. TIE [22]
is used to extract the mentioned features from a flow in each
direction as stated by several works like [23].

Since Artificial Neural Network (ANN) has been heavily
applied to the field of network classification in the recent
years [6], [24], it has been selected as the ML algorithm for
learning the pattern of encrypted traffic.

3) Randomness Tests: Encryption protocols are intended
to convert the user payload to a randomized bitstream.
Consequently, several tests have been developed to evaluate
the quality of randomness of bitstreams that an encryption
protocol generates. As we could not find any implementation
of a Randomness Test-based classifier in the public domain,
we propose and implement a novel Randomness Test-based
classifier. Figure 1, depicts the structure of our proposal.

Our proposal processes only the payloads of the first five
captured packets of a flow. Theoretically, any bitstream with
high randomness characteristics can be considered an encrypted
stream. However, there are several contents like MP3 or
PDF that generate highly randomized bitstreams. To this end,
the proposed classifier includes multiple Randomness Tests
to measure the randomness of a bitstream from different
perspectives such as distribution of 1 and 0 or pattern
repetition. By taking the required size of a bitstream and the
complexity of the Randomness Test into account, we find the



TABLE I
THE SIZE OF ANN IN DIFFERENT EXPERIMENTS, ( #HIDDEN LAYER,

#NEURONE,)
Binary  Protocol  Content
Traffic Pattern (6, 100) (2, 60) (2, 100)
Randomness Test (5, 100) (4, 60) 4, 80)

following tests appropriate for processing the network traffic:
Monobit, Frequency Test within a Block (BlockFreq), Runs
Test, Approximate Entropy Test (AprEnt), Test for the Longest
Run of Ones in a Block (LRuns), Cusum, Serial Test (Ser), DFT,
Topological Binary Test (TBT), Greatest Common Divisor test
(GCD) and Book Stack test (BckStack) [15].

Each Randomness Test processes the five payloads separately
and generates a P-Value for the correspondent payload. The
P-Value is in the range of [0,1] [15]. Following, the mean
value and the standard deviation of P-Values derived from
the payloads of a flow are calculated and considered as the
final output of each Randomness Test. Finally, a trained ANN
classifies the flow according to the Randomness Tests outputs.

IV. EVALUATION

We design three experiments to compare the performance of
the considered classifiers in different granularity levels. At the
highest level, we do a binary classification to distinguish the
encrypted flows from unencrypted ones. At the next level, the
classifiers classify the flows according to their application
protocol or by doing Protocol classification. Here, there
are encrypted protocols (e.g., Secure Shell (SSH)) as well
as unencrypted protocols (e.g., File Transfer Protocol(FTP)).
At the lowest level of the granularity, we run a confent
classification and measure their performance to detect encrypted
content among others such as MP3 and text file (txt).

The size of ANN is defined according to the try and error
strategy and separately for each measurement. Each hidden
layer has the same number of neurons. Table I reports the

number of hidden layers and their neurons in the tuple format.

Softmax and ReLu [25] are selected as the activation functions
of neurons in hidden layers and I/O layers, respectively. The
number of neurons for the input layer is 16, correspondent
to the number of features that we have in both traffic pattern
and randomness test-based classifiers. The number of output
classes defines the number of output neurons that varies across
different experiments. We follow 2-fold cross-validation for
testing and training the ANN.

The classifiers performance is measured based on Recall

(equation 1), Precision (Equation 2) and FI (Equation 3) [23].

Equations 1, 2, and 3 explain the definition of the parameters
where TP, FN and FP represent true positive, false negative
and false positive, respectively. The values of the considered
parameters are in the range of [0, 1] where 1 indicates the
maximum performance of a classifier.

TP
Recall = m (1)

DigitalOcean

Fig. 2. Schematic of the ground-truth generator
TABLE II
THE DISTRIBUTION OF APPLICATION PROTOCOLS AVAILABLE IN

GROUND-TRUTH

Protocol # Flows  # Packets
FTP 5.1k 207.9k
NETCAT S5k 87.8k
HTTP 5k 343.7k
SCP 5k 423.6k
HTTPS 4.9k 373.7k
SFTP 4.9k 735.6k
Total 29.3k 2.3M
TP
Precision = ———— 2
TP+ FP @

Pl 2 x Precision x Recall

3)

Precision + Recall
A. Ground-truth Generator

Although there are publicly available datasets, it is hard
to obtain one with the user payload and labels in different
resolution levels. Therefore we propose a testbed Ground-Truth
Generator (GTG) which generates the required dataset for the
measurements.

GTG consists of six servers for different protocols (Table II)
that host an identical set of contents in different types (Table III).
To this end, we use six servers from the public cloud platform
DigitalOcean #. Also there is a client which plays a critical role
in controlling the volume of traffic originating from different
protocols and contents. It selects a pair of protocols and content,
randomly. Following this, the client sends the request for the
pair to the correspondent server and captures the following
traffic. As the client has the information of the requests and
their correspondent traffic, we can label the traffic with its
protocol and the payload content.

Tables II and III report the distribution of the protocols and
the contents exists in our ground-truth. Also, the ground-truth
is publicly available for researchers [26].

B. Randomness Test Classifier Quality Performance

It is common to deploy an encryption detector in a high-speed
network environment. In such a case, the processing speed is
among the key factors to select an appropriate classifier. Despite
some research works in [12], [23], [27] that reported the speed

“https://www.digitalocean.com/
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of DPI and traffic pattern classifiers, we could not find any
measurement regarding the classification speed of a randomness
test classifier. Therefore, we arrange an experiment to study
the classification time required by the considered randomness
tests for processing our dataset. The experiment is repeated
five times for each randomness test to minimize the effect of
any undesirable artifact.

Figure 3 reports the median, whiskers (upper and lower),
upper quartile, and the lower quartile of the randomness tests’
time consumption in five iterations. As shown in the Figure,
there are slight differences in the time consumption among the
different iterations.

Remarkably, the randomness tests TBT, GCD, and BckStack
are drastically slower than the rest. The reason is that all the
three randomness tests are implemented in R. Even though the
R instance is initialized only once in the application, processing
an R module for each randomness test is costly and increases
the overall processing time significantly. We exclude the R
implemented randomness tests (TBT, GCD and BckStack) from
the rest of our measurements due to their low process speed.

TABLE III
THE DISTRIBUTION OF DIFFERENT CONTENTS IN GROUND-TRUTH

Content Type  # Flows  # Packets
au 1.2k 18k
txt 1.1k 21,9k

.mp3 1.2k 25.8k
.pdf 1.2k 82.3k
.wav 1.2k 73.5k
.png 1.2k 33.8k
xls 1.2k 66.7k
.csvV 1.1k 25.6k
.webm 1.2k 35.7k
.mat 1.1k 59.5k
.Zip 1.1k 33.5k
Jjpg 1.2k 82.3k
.mp4 1.2k 25.9k
Encrypted 14.8k 1.5M
Total 29.3k 2.3M

TABLE IV
THE PERFORMANCE OF LIBPROTOIDENT, RANDOMNESS TEST AND
TRAFFIC PATTERN BASED CLASSIFIERS TO DETECT ENCRYPTED TRAFFIC

Metric Randomness Test  LibProtoident  Traffic Pattern
Precision (%) 96.7% 100% 100%
Recall (%) 99.9% 100% 100%
F1 (%) 98.3% 100% 100%
TABLE V
DETECTION FLOW FROM SFTP CLASS
Metric Randomness Test  LibProtoident  Traffic Pattern
Precision (%)  65.6% 0% 89.9%
Recall (%) 96.7% 0% 90.9%
F1 (%) 78.2% 0% 90.4%

V. MEASUREMENTS

We compare the performance of Randomness Test-based,
Traffic Pattern-based, and DPI classifiers to classify our ground
truth in the following experiments.

A. Binary Classification

We put all the flows generated from the encrypted protocols
in one class and the rest in the other. According to the
Table IV, all the classifiers successfully identify encrypted
flows. However, it is notable that the randomness test classifier
has a slightly lower performance than the rest. This experiment
proves that the encryption footprint is identifiable in all flow
aspects t at this level of granularity. Therefore, other criteria
such as memory consumption and classification time can define
the optimum approach. In the next experiments, we continue to
compare the classifiers’ performance to detect the encryption
protocol level.

B. Protocol Classification

Within this experiment, we study the capability of each
classifier to seperate the encrypted protocols from others.

Secure-FTP (SFTP) and Secure Copy Protocol (SCP) both
use OpenSSH for encryption. It is interesting to study the
performance of the classifiers for identifying such traffics.
Tables V and VI indicate randomness tests and traffic pattern
classifiers despite their different performances, they classify
part of traffic successfully. However, DPI fails to classify any
traffic from these application protocols. In fact, DPI classifies
both classes as SSH.

Following, we change the label of SCP and SFTP flows
to SSH and repeat the experiment. Table VII shows that
merging these classes under the SSH class not only improves

TABLE VI
DETECTION FLOW FROM SCP CLASS.

Metric Randomness Test  LibProtoident  Traffic Pattern
Precision (%) 92.4% 0% 90.8%
Recall (%) 50.1% 0% 89.8%
F1 (%) 65% 0% 90.3%




TABLE VII
DETECTING FLOW FROM CLASSES SCP AND SFTP As SSH

Metric Randomness Test  LibProtoident  Traffic Pattern
Precision (%) 95.8% 100% 100%
Recall (%) 98.6% 100% 100%
F1 (%) 97.2% 100% 100%
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Fig. 4. Precision of considered classifiers to identify the protocol of flows

the performance of DPI significantly but also improves the
performance of the other classifiers positively. Since this change
does not affect the performance of the classifiers over the rest
of the classes, we continue to keep the SSH class for the next
experiment.

According to Figure 6, traffic pattern classifies all the
flows with the maximum performance. DPI classifies ap-
proximately 50% of the NETCAT flows as FTP and the
rest as Unknown_TCP. Although DPI detects all FTP traffic
(Figure 5) correctly, the false positive generated from NETCAT
reduces the precision of the FTP class drastically (Figure 4).
The randomness test classifier does not reach the maximum
performance. However, it classifies all the classes with an F1
score higher than 86%.

C. Content Classification

Within this experiment, we increase the granularity level
of classification to its highest level that is reachable in the
scope of our ground truth. We measure the performance of
the considered classifiers to separate encrypted contents from
plaintext. DPI is not applicable in this level of granularity as it
does not have the required signatures. This is the reason why
it is excluded from the experiments.

Figures 7 to 9 show that both classifiers can detect encrypted
content with high level of performance. However, the F1 (figure
9) of unencrypted classes are mostly bellow 60%. Although
the traffic pattern classifier outperforms the randomness test
classifier, none of them perform well. Considering that per-
formance of none is 0, each identifies part of the information
which is required for the classification. Thus, we expect the
combination of extracted information from traffic pattern and
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randomness tests can improve the overall performance.

VI. CONCLUSION

We focused on encryption detection problems in network
traffic classification and compared the performance of classifiers
based on DPI, traffic pattern, and randomness test. We selected
Libprotoident and an ANN as the representative instances
from DPI and traffic pattern respectively. We also proposed
a novel classifier to classify the network traffic according to
their payload bitstream randomness characteristics. Moreover,
we compare the performance of the selected classifiers to
detect encryption among our generated traffic in three different
granularity levels. The results showed the classifier which is
designed based on traffic pattern detected the encrypted classes
in all the three levels with the highest performance metrics.
The performance of Deep Packet Inspection (DPI) reduced
drastically with increasing the granularity level. Although
the randomness test classifier never reached the highest
performance, it preserved its performance (F1 > 90%) to detect
the encryption traffic at different levels.

As future work, we plan to extend this line of research by
comparing the performance of traffic pattern and randomness
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test classifiers from resource consumption and time of classi-
fication points of views. We will also study the significance
of considering both randomness and traffic pattern features to
detect encryption on the overall performance of a classifier.
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