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Abstract—Intrusion detection systems (IDS) represent a class
of defensive security tools with the purpose of protecting the
network from intruders in the network administrator’s arsenal.
Despite the high precision of traditional signature-based IDS, its
effectiveness is still under question due to the growth of a number
of encrypted attacks and the volume of network traffic. This is
considered one of the main motivations for researchers to develop
anomaly-based IDS, which usually suffer from a higher false
positive rate. In this paper, we propose and implement a lifelong-
learning anomaly detection IDS (L-IDS) with the capability of
the network environment’s adaption to limit the false positive
rate of anomaly detector in the range of signature-based IDS.
We consider Snort as a baseline and UNSW-NB15 as the ground
truth in the evaluation of our proposal. We demonstrate how
L-IDS achieves a higher level of precision in comparison with
the existing signature-based IDS.

Index Terms—Intrusion Detection System; Lifelong Learning;
Snort; Deep Packet Inspection; Anomaly Detector

I. INTRODUCTION

Based on a report by Statista,! the number of active internet
users worldwide in January 2021 has been increased up
to 4.6 billion. This highlights the importance of utilizing
a secure digital infrastructure, which protects the end users
including companies and individuals from cyber-attacks. Here,
intrusion detection systems (IDS) play a significant role to
protect computer networks. Two well-known intrusion detection
systems are signature-based IDS (S-IDS) and anomaly-based
IDS (A-IDS). S-IDS[1] apply deep packet inspection techniques
on the incoming traffic and looks for the signatures (often
coming from a public database). Whenever the incoming traffic
matches one signature, an alarm is raised as an indication
suspicious activity. Despite the accuracy of S-IDS, it is
resource demanding[2], not applicable over encrypted traffic,
and vulnerable against zero-day attacks[1].

In contrast, A-IDS [1] build a network’s normal profile
considering users’ actions and it recognizes activities outside
the normal profile as an attack. In this way, A-IDS even
process the encrypted traffic and identifies the zero-day attacks.
However, any normal changes in the networks affects A-IDS
accuracy, drastically. Therefore, there will be a need to update
the defined normal profile based on the network changes.

To this end, we propose a Lifelong-learning IDS (L-IDS),
which learns during its life time and improves the detections,
accordingly. Lifelong-learning[3] is an advanced learning
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paradigm where the model learns using continuous learning
setting. A learner trains from the available data in the training
phase and then classifies the incoming data in the testing phase.
The learner periodically gets retrained based on incoming data
to become more knowledgeable.

Hosseinzadeh et al. [4] highlighted the advantages of suing
support vector machine (SVM) as ML algorithm in anomaly-
based IDS. However, Read et al. [5] and Losing et al. [6]
showed that, despite SVM high performance, it is not applicable
in Lifelong-learning schema. In some ML algorithms, the
retraining process leads to forgetting the part of knowledge
that a model has gained from previous training cycles or the
size of new model increase gradually. Therefore, identifying
a suitable ML algorithm is essential for developing L-IDS.
Recently, the Fuzzy Bounded Twin Support Vector Machine
(FBTWSVM) [7] was proposed as an attempt to improve the
SVM algorithm. We consider FBTWSVM as an ML algorithm
candidate to be used in our proposal.

Our main contributions can be summarized as follows:

« We proposing and implement a novel L-IDS with a
mechanism to detect its mistakes and adapt its ML model
accordingly;

« we evaluate the FBTWSVM [7] performance as an
anomaly detector IDS;

o we compare FBTWSVM with C4.5 [8] and ILVQ [9]
ML algorithms from their classification performance and
resource consumption perspectives; and

« we evaluate the performance of proposed L-IDS and
compare it with Snort as a baseline.

II. RELATED WORK

Choosing a proper dataset for a research study requires
substantial analysis and examination. Ring et al. [10] collected
several datasets suitable for anomaly detection systems and
compared their advantages and disadvantages. We took the
dataset of this work and used UNSW-NBI15 [11] in our
measurements.

Signature-based IDS are known to be highly accurate.
They apply string matching to detect any attacks based on
their already known signature. Snort,> Suricata,’® and
Bro[12] are best known publicly available S-IDS with an active
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community behind. Bhosale and Mane [13] compared these
S-IDS from different perspectives such as support platform and
resource consumption. The outcome showed that despite the
flexibility of Snort, it can not perform as good as Bro in high-
speed networks. As a considerable amont of todays network
traffic is using the HTTP protocol, Erlacher and Dressler [14]
proposed FIXIDS processing HTTP traffic based on IPFIX
features. Their experimental results indicated that FIXIDS was
considerably faster than the original Snort when analyzing
HTTP traffic. Despite the mentioned attempts, researchg on
S-IDS is ongoing for processing traffic in high-speed networks.
Additionally, all S-IDS are vulnerable to face zero-day attacks
due to the inherent delay in preparing and deploying new
signatures.

Anomaly-based IDS have been developed as an effort to
overcome the mentioned weaknesses. They classify flows
outside the normality region as an attack. For example, Ertam
et al. [15] compared Naive Bayes (NB), bayer NET(bN),
Random Forest(RF), Multilayer Perception, and Sequential
Minimal Optimization (SMO) classifying the KDD99 dataset.
They showed that RF and bN gave the best results in anomaly
detection. Naseer et al. [16] considered various deep neural net-
work structures for anomaly detection models. They compared
Deep Convolution Neural Networks (DCNN), Long Short-Term
Memory (LSTM), and Convolutional Auto-Encoders with the
conventional ML algorithm in anomaly detection domain. Their
results indicated that deep learning algorithms perform better
than the conventional ML algorithms.

An anomaly detection model requires to be updated after
legitimate changes in the network for limiting resulting
false positives. Therefore, any highly dynamic ecosystem is
a challenging environment for daily operation of anomaly
detection-based IDS. To tackle this issue, Noorbehbahani et al.
[17] proposed Incremental Semisupervised Flow Network-
based IDS (ISF-NIDS), which is an instance-based learning
schema. Their evaluation using the KDD99 dataset showed
that ISF-NIDS had the capability to operate online and to
learn new intrusion efficiently. Later, Constantinides et al. [18]
proposed an IDS consist of a Self-Organazing Incremental
Neural Network (SOINN) [19] and SVM algorithms. They
used the NSL-KDD dataset to measure the performance of
their proposal. The experimental results indicated that the
proposed anomaly detection system could update and learn
online very fast.

Despite the mentioned efforts, we see a gap that we aim
bridging by our L-IDS proposal. L-IDS leverages an online
labeling system which can be used for reliably updating the
ML model. In this paper, we tackle this issue by leveraging
the benefits of signature-based IDS.

III. LIFELONG LEARNING IDS (L-IDS)

Figure 1 illustrates the concept of L-IDS and its main
components. First, L-IDS processes the traffic with an anomaly
detection component to filter only suspicious or abnormal traffic.
The anomaly detector module is an ML-based classifier that
identifies the abnormal traffic according to their traffic pattern.
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Following, the supervisor re-evaluates the abnormal traffic
to identify the false positives of anomaly detection module
as well as reporting the details concerning the nature of the
detected attacks. The high precision rate of signature-based
IDS motivated our design choice to use it as the supervisor.
Lastly, the trainer collects the detected false positives from the
supervisor and retrains the ML model with the mistakes in a
user-defined frequency.

Figure 2 illustrates the realization of the L-IDS system.
The central component is the core of the implementation.
It captures network packets from the network interface or
reads corresponding pcap file and rebuilds the flows with help
of Libtrace* and libflowmanager,’ respectively. The central
component sends the appropriate information to the feature
extractor as well as to the ML model and the supervisor via
a shared memory component depending on the state of each
flow. The following three states are defined for each flow:

« Feature extraction state: it starts from capturing the first
packet of a flow and ends with the arrival of the Sth
packet in the flow. The central component forwards each
captured packet to the feature extractor for flows that are
in this state.

« Anomaly detection state: Upon the reception of the 5th
packet of a flow, the central component sends its extracted
feature to the ML model.

o Classified state: A flow is in classified state after it is
processed by the anomaly detector. The central component
either ignores or forwards the new packet of classified
flow to the supervisor.

The feature extractor calculates the feature of a flow based on
its first five packets that the L-IDS has captured. The central
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component collects the features and forwards them to ML
model. The model classifies the flow as normal or abnormal
and announces the result to the central component. The central
component sends all the received and upcoming packets which
are belonged to the abnormal flows toward the supervisor.
The packets of normal flows get dropped from the further
investigation.

As the supervisor and the central component are two
distinct processes in our implementation, there is a need for
a means of communication between the central component
supervisor. Linux provides several interprocess communication
mechanisms for this purpose. We select the shared memory
mechanismas a low delay connection between the central
component and the supervisor.

In this work, the well-known signature-based IDS Snort is
used as a supervisor. It offers different output formats like fast
alert, full alert and unified 2. Snort is configured to dump
the results in binary format as it adds the minimum overhead
to Snort process. Barniyard® is used to parse the output and
save it in a database.

Mini-batch builder reads the false positives from the database
and prepares the required data for the re-training procedure.
Once the number of detected false positives reaches to the
predefine value, it triggers the re-training procedure. Mini-batch
builder re-trains a copy of the ML model and then substitutes
it with the main model. At the beginning of substitution, the
central component receives an interrupt signal to pause sending
the feature to the ML model.

IV. EXPERIMENTAL SETUP
A. Data Sets

The australian Center for Cyber Security published the
UNSW-NB15 dataset [11] for supporting research in the filed
of IDS. As the original size of UNSW-NB15 dataset (99 GB) is
beyond our resource constraints, we consider a subset’ of it in
our experiments. Table I outlines a list of the available attacks
and their contribution to the ground truth. The dataset is split
up into two parts of training and testing purposes. 20% of the
dataset are used for training the anomaly detector and the rest
is used for testing the performance of our L-IDS. According to
the splitting schema, there is at least one instance from each
attack’s class in each part.

Despite the capability of supervisor to process the raw traffic,
anomaly detectors module (ML) only analyses the characteris-
tics or features of the network traffic. Therefore, defining a set
of features that represents the required characteristics of flows
for the anomaly detection process is important. In addition, each
feature is extractable from the limited information available at
the early stage of a flow and without any need to process the
application payload with DPI. The former constrain improves
the online operation property of the proposal and the latter

Shttps://github.com/firnsy/barnyard2
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TABLE I
GROUND TRUTH STRUCTURE

Attack Name Flows  Packets Size in MB
Exploits 409 33156 28.54
Reconnaissance 211 2354 0.28
Fuzzers 125 2067 0.7
DOS 73 3062 2.058
Generic 61 3908 3.55
ShellCode 25 266 0.024
Backdoor 3 66 0.006
‘Worms 2 18 0.004
Normal 33793 3329686  1963.2
Total 34702 3374583  1998.4
TABLE II
LIST OF CONSIDERED FEATURES
Name Type Description
Service Categorical ~ Application layer protocol
State Categorical ~ State of the flow
sbytes Numeric Source to destination bytes
dbytes Numeric Destination to source bytes
count Numeric Number of flows to the same
host as a current flow in the
past two seconds
srv_count Numeric Number of flows to the same
service as a current flow in the
past two seconds
srv_diff_host_rate Numeric Percentage of flows to different
hosts
dst_host_count Numeric Count of the flows having same
dst host
dst_host_srv_count Numeric Count of the flows having same
dst host and using same service
dst_host_diff_srv_rate ~ Numeric Percentage of different services
on current host
src_ttl Numeric Source to Destination TTL
dst_ttl Numeric Destination to Source TTL
src_window Numeric Source TCP window advertise-
ment
dst_window Numeric Destination TCP window ad-
vertisement

eliminates adding a barrier to the system for processing the
encrypted traffic.

Table II lists the feature set provided by the feature extractor
module for the anomaly detector.

B. Supervisor

Snort version 2.9.16 has been used with rule-set snortrules-
snapshot-291708 consisting of 43939 rules. Tjhai et al. [20]
demonstrated that utilization of irrelevant rules increases the
false positive rate. Therefore, we refine the rule-set by following
the trial and error method for minimizing the false positives
rate originated from the irrelevant rules. This eliminates a
significant number of false positives predictions and increases
the precision from only 3.8% to 61.5%. The final rule-set
contains 62% of the original one.

Shttps://www.snort.org/downloads#



C. Metrics

We measure the performance of the IDS according to
accuracy, precision, and recall, which are defined as:

Accuracy = TP+TN (1)
YT TPYTN+ FPYFEN
. TP
PTGCZSZOTL = m (2)
TP
ll= ———
Reca TPLFN 3

where TP, TN, FP, and FN stand for True Positive, True
Negative, False Positive, and False Negative, respectively. In
addition, we consider the F1 score to show the trade-off between
accuracy and precision:

Precision x Recall
Fl1=2 4
” Precision + Recall @)

All measurements have been conducted on an Ubuntu 20.04.2
platform, which is equipped with an Intel(R) CORE i7 3GHz
processor and 16GB memory.

V. EVALUATION AND COMPARISON

An efficient ML algorithm and a representative feature set
impact the performance of L-IDS significantly. Therefore, as
the first step we evaluate the performance of different ML
algorithms to identify the best candidate. In the following, we
apply three feature selection algorithms to find the ideal feature
set. The evaluation results help us to bias L-IDS in its optimum
operation point. In a second step, the performance is compared
with Snort.

A. Best ML Algorithm

Read et al. [5] and Losing et al. [6] studied the incremental
capability of several ML algorithms. Both reported SVM
classifiers showed the highest performance over datasets from
different fields. However, the size of SVM model is increasing
rapidly after each retraining and is therefore not applicable in
a lifelong learning paradigm. They recommended ILVQ [9]
and C4.5 [8] as appropriate ML algorithms. Mello et al. [7]
proposed FBTWSVM, which was capable of endless learning
and had a better performance than SVM. Based on these works,
FBTWSVM, ILVQ, and C4.5 are considered as appropriate
ML algorithms for the anomaly detector in our proposal.

We trained each ML algorithm with 20% of the ground truth
(cf. Table I) and use 80% for the testing/retraining procedure.
Table III reports the performance of the classifiers. The C4.5
algorithm shows an average performance based on all the
measured parameters. ILVQ does the job with the highest
accuracy and FBTWAVM does it with the highest precision,
recall and consequently F1. It is mentionable that the accuracy
does not represent the performance of a classifier well in
an imbalanced dataset [21]. Therefore, we sort Table III in
a descending manner based on F1 metric to compare the
performance of the ML algorithms.

The speed of traffic processing is an important parameter
for the online application of any IDS. We measure the time

TABLE III
OVERALL PERFORMANCE OF THE SELECTED ML ALGORITHMS

Algorithm Accuracy  Precision  Recall F1

FBTWSVM  85.83% 61.99 % 83.40% 71.11%
C4.5 85.71% 38.20% 30.34%  50.34%
ILVQ 90.66 % 14.48% 16.73%  26.53%

consumption of different processes related to ML module and
the rest of L-IDS processes. This provides us the required
information to compare the impact of different ML algorithmu
on the final speed of the proposal. Besides, it gives a general
impression regarding the speed of L-IDS.

L-IDS with each ML algorithm is run for ten times to
minimize the effect of any undesirable factors. The considered
time intervals are categorised in two groups of online and
offline processes. We measured the following time intervals
during this experiment:

o Training: The time that is required to train the ML model
in an offline mode.

« Retrain: The time needed to re-train each model with
the Mini-Batch. It is done in a separate process without
adding any delay to the L-IDS detection process operation
in its runtime phase.

« ML Classification: The time that is consumed by each
ML to classify the whole traffic in the testing dataset.

« Extraction: The time that feature extraction module needs
to process the traffic.

o Testing: The time that is consumed by the rest of L-
IDS functions (incl. libflowmanager, Snort, SQL, etc) to
process the testing dataset.

Figure 3 reports the mean value and standard deviation of
L-IDS time consumption configured to use the selected ML
algorithms. The figure illustrates the values in two different
bars. The green bars are dedicated to the processes that perform
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TABLE IV
PERFORMANCE OF L-IDS CLASSIFIERS AND THE SNORT BASELINE SYSTEM

Baseline L-IDS
Metric \ System  Snort Standalone ~ Anomaly Detector ~ Supervisor
Precision 61.54% 61.99% 96.56 %
Recall 51.91% 83.40% 48.28%
F1 score 56.31% 71.11% 64.37%

either off-line or in parallel with the main process. Therefore,
they do not affect the speed of IDS directly.

The result shows that ILVQ and C4.5 have approximately the
same impact on the speed of L-IDS while FBTWSVM has the
minimum effect on the proposal speed. Focusing on the training
and re-training phase, FBTWSVM shows a middle performance.
However, this phase does not influence the processing speed
of L-IDS as it can be carry out either in the offline mode, or
in parallel with the main process.

Based on the results shown in Table III and Figure 3, has
been chosen FBTWSVM as the ML algorithm for anomaly
detector module.

B. Comparison

It is essential to measure the performance of L-IDS and
compare it with a well-known IDS for highlighting its strengths
and weaknesses. We select Snort as the baseline for the
comparison. Also, the used supervisor is an identical replica of
baseline. The Snort instances use the same rule-set in both
cases.

Table IV reports the performance of Snort and L-IDS
for detecting attack flows. L-IDS prosesses the incoming
traffic within its anomaly detector and supervisor modules.
The anomaly detector labels all the traffic flow according to
its normality profile as an attack and the supervisor checks the
correctness of the detected attack flows based on its rule-set.

The result show that lifelong learning concept achieves a
recall rate up to 83% and limits the false positives rate of
the anomaly detector module (ML model) to the range of
supervisor in its stand alone version. In addition, it also has
a significant positive effect on the supervisor precision by
filtering normal flows that are wrongly be matched with the
help of a rule of supervisor. However, this filtering decreases
5% the supervisor recall rate in comparison to its stand alone
version (Snort stand alone).

We proceed further in this direction to identify the reason
behind the decrementation by measuring the recall rate of
the classifiers in each attack class. Table V shows that in the
majority of classes the anomaly detector has the least false
negative and consequently the highest recall rate. Furthermore,
a higher recall of anomaly detector makes the recall rate of
the supervisor closer to its stand alone version. For example,
despite the capability of Snort to detect all the Shellcode
attacks, in the role of supervisor its recall is reduced to the
recall rate of anomaly detector module.

L-IDS extends the recall rate of anomaly detector module
beyond its supervisor. This can be seen in the Fuzzers class.

TABLE V
RECALL RATE OF SNORT STAND-ALONE AND L-IDS (INCL. ANOMALY
DETECTOR AND SUPERVISOR) FOR DIFFERENT ATTACK CLASSES

Baseline L-IDS

Attack Total  Snort Anomaly Det  Supervisor
Exploits 248 74.2% 99.2% 72.2%
Reconnaissance 115 27.8% 65.2% 23.5%
Fuzzers 68 0.0% 54.4% 0.0%

DoS 42 57.1% 90.5% 47.6%
Generic 34 44.1% 85.3% 44.1%
Shellcode 14 100% 64.3% 64.3%
Backdoor 2 100% 100% 100%
Worms 1 100% 100% 100%

The recall rate of Snort in this class is 0, which is inline
with other research work [22]. Fuzzers attacks send random
generated input to victims to detect their vulnerability and
to exploit it. The highly dynamic nature of Fuzzers attack
makes it hard to be detected [23]. This motivates [24] to put
Fuzzers in zero-day attack category that is the weakness of
signature-based IDS like Snort. However, anomaly detector
detects more than 50% of Fuzzer attacks by generalising its
understanding from the malicious traffic.

VI. DISCUSSION

Signature-based IDS like Snort are well-known for their
accuracy. However, their low processing speed makes it
challenging to use them in a high speed network. The input
packet rate is one of the key factors which affects the load of
an IDS. The anomaly detector can reduce the input load by
processing all the flows and forwarding only the suspicious
ones to the supervisor. The experimental result shows that the
input of supervisor is reduced to 9% of packets in this way.
Despite this promising result, the current implementation of
L-IDS is slower than Snort stand alone. L-IDS in the current
implementation drops 30% more packets than Snort at speed
of 50 MB/s. As a future work, we plan to improve the L-IDS
performance in terms of its processing speed.

It is well-known that, generally, anomaly-based IDS suffers
from a high false positive rate. Our experiments show that
L-IDS improves the precision of the FBTWSVM anomaly
detector from 10% to about 62%. As precision improvement
is one of the main goals of the L-IDS schema, we compare its
performance with Snort. However, in future work we also
plan to compare the performance of our proposal with different
anomaly-based IDSs to study L-IDS performance from other
aspects.

Encryption is an effective mechanism that attackers utilise
to bypass accurate signature-based IDS like Snort. Anomaly
detector in L-IDS schema can learn the traffic pattern of any
attack from its unencrypted version in re-training cycles and
generalizes it to encrypted version of the attack. Preliminary
results show that L-IDS detects the attacks which are encrypted
by SSL. However, as our dataset contains only two of such
attacks, it is not possible to draw a strong conclusion in this
regard. Therefore, studying the capability of L-IDS to detect
encrypted attacks needs to be further evaluated.



We select FBTWSVM as the ML algorithm after study-
ing previous research works and evaluating its competitors
through extensive experiments. However, we observed that
the FBTWSVM model size changed from 700kB to 1100kB
after 5 retraining cycles. This limits the feasibility of using
FBTWSVM in an L-IDS schema. An appropriate ML algorithm
should preserve its performance and its size after each re-
training phase. Therefore, developing a ML algorithm appro-
priate for L-IDS can be another research line for extending
this work.

VII. CONCLUSION

Despite the rapid evolution of security threats in recent years,
the corresponding countermeasures have not been developed at
the same pace. To this end, we proposed an IDS with lifelong-
learning capabilities (L-IDS). Making use of an anomaly
detector and a supervisor module, the system can gradually
learn from its false positives. We compared several machine
learning (ML) algorithms in terms of accuracy, precision,
recall, Fl-score, and processing speed to select appropriate
candidates for the anomaly detector module. The experimental
results showed that FBTWSVM could serve this purpose
well. We considered Snort as the baseline and compared
its performance with L-IDS. The outcome indicated that L-
IDS performed better than the baseline and reached to 96%
precision and 83% of the recall.
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