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Abstract—Signature-based Network Intrusion Detection Sys-
tems (NIDS) is state-of-the-art for precise attack detection. Using
multiple instances of NIDS in parallel is considered the most
promising solution for improving its processing speed in the scale
of high speed network. This can be realized by (1) distributing
the network traffic between multiple NIDS to reduce the network
load per system or (2) distributing the signatures (rules) between
multliple NIDS to reduce the work load per packet. In this paper,
we study distribution strategies targeting application and transport
layer for both traffic and rule distribution approaches. In addition,
we investigate the importance of considering the processing speed
optimization in the rule development phase. Our experiments
show that in general traffic distribution performs slightly better
in terms of packet drop and alert detection compared to rule
distribution. The Transport layer distribution strategy shows
traffic distribution parallelization detecting 1.6% more alerts and
dropping 6% less packets. We also show that optimizing the rules
sets further improves the processing speed significantly.

I. INTRODUCTION

Attacks on IT infrastructure are ubiquitous, both targeted as
well as untargeted. Despite the diversity of Network Intrusion
Detection Systems (NIDS) available in the market, signature-
based methods offer the highest detection rate compared to
the other concepts [1]. A signature-based NIDS works with a
set of “signatures” or “rules” characterizing a known attack.
NIDS sequentially check the incoming network traffic against
a database of rules until either a rule matches, or all rules
have been checked [2]. According to Cisco, Snort1 is the most
popular IDS on the market with over 4 million downloads.2

Snort performs deep packet inspection such that the rule
options are matched against the payload of the packets, which
is computationally very expensive. Thus, Snort suffers from
packet loss in high-speed networks. This may lead to missing
malicious activities [3].

The lack of performance in high-speed networks can be
traced back to a combination of two factors: Firstly, in high-
speed scenarios the precessing load is to high due to the high
number of packets [4]. Secondly, the very high number of
known attacks leads to a very large number of Snort rules
that the traffic has to be compared to. A common solution is
extending the processing capability of Snort via utilization

1https://www.snort.org/
2In Cisco’s security blog "Exploring Snort" (June. 2019), accessible at

https://meraki.cisco.com/blog/2019/06/exploring-snort/

of multiple machines in parallel [5–8]. Here, one way is
to distribute network traffic among multiple Snort instances.
This approach reduces the incoming traffic of each Snort
instance. The other way is to divide the original ruleset into
multiple subsets and distribute them among multiple Snort
instances, mirroring the whole network traffic to each instance.
Consequently, each Snort instance processes network traffic
faster as less rules need to be processed for each received
packet.

Several research works illustrate the positive effects of Snort
parallelization on the overall network traffic throughput [9–11].
However, they only focus either on rule distribution or traffic
distribution. A direct comparison of their performance is still
missing. We aim at filling this gap by highlight the strengths
and weaknesses of each approach in an extensive experimental
evaluation. In short, we propose and evaluate two strategies
to distribute traffic and rules between two instances of Snort.
Each strategy splits the rules and traffic according to one layer
of protocol stack. Furthermore, we compare the performance
of rule distribution strategies with the performance of traffic
distribution strategies by considering packet drop and detection
rate. Finally, we also explore the ‘fast pattern’ option to speed
up Snort.

Our main contributions can be summarized as follows:
• We propose two strategies for distributing rules and traffic

in the scope of NIDS parallelization;
• we also study the processing speed of rules using the new

‘fast pattern’ option.

II. BACKGROUND & RELATED WORK

A. The Signature-based NIDS Snort

Snort [12–14] is the most well-known signature-based NIDS.
Cabrera et al. [15] analyzed the distribution of processing
times on the different subsystems of Snort. The results show
that content matching which conducted by detection engine
module, has the biggest impact on the overall processing time
of a packet.

The detection engine is the core of Snort. In the initialization
stage, the detection engine parsed and stored the rules in
memory. During this process, Snort builds up several rule trees
based on the similarity between the rules header information
(e.g., network protocol, IP addresses). Later, an arriving packet



will be delivered along the rule tree until it ends up at the
leaf that matches the packet content. This rule tree helps Snort
to compare packets to all rules in an efficient way, by, e.g.,
skipping unrelated rules. Since Snort 2.0, rules are divided in
two groups according to whether they use the content field or
not. Rules without this field will be processed entirely at once.

Rules with content field are processed in two phases and
follow the ‘fast pattern’ matching procedure: In the first phase,
the fast, but memory consuming, Aho-Corasick [16] string
matching algorithm processes the content, which is defined
as ‘fast pattern’. By default, the longest content of a rule is
considered as ‘fast pattern’. If the match failed, the detection
engine will skip to check the rest of the rule in the next phase.
In the second phase, the rule options are evaluated sequentially
using the Boyer-Moore [17] string matching algorithm. If an
option does not match, the evaluation of the rule will be aborted.
Although, Aho-Corasick [16] is faster, it consumes considerably
more memory and resources than Boyer-Moore [17].

B. Related Work

Utilizing hardware with a high processing capability is
among the preliminary solutions. Armstrong et al. [18] proposed
an FPGA-based architecture to process different Snort rules
in a separate thread. The core of their proposal consists of a
logical-based comparator that matches packets and the rules.
The implementation on a medium-scale Virtex-FPGA achieves
a throughput of 208 Gbit/s.

Although hardware accelerators increase the Snort processing
speed significantly, they are relatively expensive and have
limited flexibility. Changazi et al. [19] investigated the influence
of configurable parameters of the Linux kernel networking
subsystem. They demonstrated that changing the default value
of budget B in the Linux NAPI packet reception mechanism
from 300 to 14 improves the packet drop rate both at the kernel
and application levels. As string matching is the most resource-
demanding part of Snort packet process, Trivedi [20] optimized
Aho-Corasick string matching algorithm which improves the
matching process up 40-60%.

Shuai and Li [21] showed that the default capturing and
packet processing modules of Snort are outdated. They designed
a new data acquisition (DAQ) module based on data plane
development kit (DPDK) framework [22] to capture the packet.
They also integrated Hyperscan, a high-performance regular
expression engine developed by Intel [23], to Snort detection
engine. The improved Snort processed all the traffic and
preserved the maximum detection rate at a speed as high
as 1 Gbit/s.

As a considerable amount of today’s network traffic consists
of HTTP traffic, Erlacher and Dressler [3] proposed HTTP-
based Payload Aggregation (HPA) for extracting the valuable
part of HTTP traffic and filtering the rest. They show that a
detection rate of 97% can be achieved by considering only the
first N bytes of the flow. In this way, the packet throughput of
NIDS can be increased up to 44 times.

On a macroscopic scale, running multiple Snort instances
in parallel can improve the performance. Fulp and Farley [24]
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Figure 1. Parallelization approaches supported by either a traffic splitter (load
distribution) or a rule distributor (rule distribution)

showed that the division of the NIDS rule set does have the
same detection capability as the basic rule set when all the
subsets together cover all rules of the original ruleset. Haugerud
et al. [25] proposed dynamic rule distribution algorithms to
preserve the even load distribution on each Snort instance facing
with different traffic patterns. Limmer and Dressler [6] proposed
a load balancer for realising Snort parallelization technique.
The experimental results show that they could improve the
detection performance of the NIDS by 44%.

However, a comprehensive comparison of the distribution
approaches is missing. To address this gap, we propose two
distribution strategies and compare traffic distribution with rule
distribution.

III. WORK AND LOAD BALANCING CONCEPTS

Traffic distribution and rule distribution are the main two
approaches to parallelize NIDS operation for improving the
performance of NIDS. Figure 1 depicts the required components
and their collaboration. In the case of rule distribution, a rule
distributor distributes the rules among the machines, which all
work on identical copies of the network traffic provided, e.g.,
by iptable. In the traffic distribution case, traffic is split
and distributed to different machines, all working on a full set
of rules. We follow two strategies to study the pros and cons
of rule and traffic distribution. We distribute the traffic based
on the available label provided by our dataset. In a real life
scenario, network traffic classifiers like Chain [26] can provide
the label. In addition, we designed an additional experiment to
study the importance of the new ‘fast-pattern’ option of Snort.

a) HTTP vs. Non-HTTP Traffic: The HTTP protocol
represents a big part of the Internet usage. Also about 63 %
of the main Snort rule set are HTTP related rules. However,
most of the them are simple and fast to be processed [3].

b) TCP vs. Non-TCP Flows: The majority of attacks are
targeted to TCP-based applications, corresponding to more
than 91 % of all Snort rules. On the one hand TCP is more
complex to analyze due to its connection-oriented (i.e., stateful)
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Figure 2. Test bench for performance measurements

Table I
SPECIFICATION OF THE MAIN HARDWARES OF THE TEST BENCH

Workstation 1/2 Workstation 3

CPU i7-3930K @ 3.2 GHz i7-2600 @ 3.4 GHz
RAM 32 GB 16 GB
NIC 2x 82599ES 10 Gbit/s

1x 82541PI 1 Gbit/s 1x 82541PI 1 Gbit/s

approach. On the other hand all other protocols represent a
significant amount of traffic (mostly UDP-based multimedia
traffic).

c) Snort Fast Pattern Approach: Snort introduced the
‘fast pattern’ approach in release 2.8. Consequently, the user
can define very short, but significant patterns of malicious
packets that can be processed very fast with the Aho-Corasick
algorithm. Our strategy is to deploy these rules on one machine
(around 15 000 rules, i.e., more than 50 %), while the other
processes the remaining rules.

IV. EXPERIMENT SETUP AND CONFIGURATION

In order to analyze the performance of Snort in all the load
and work distribution approaches, we prepared an experimental
setup as shown in Figure 2. The test bench simulates a high-
speed traffic in a network that is connected to the NIDS under
test. In all experiments, we first measured the performance
of the first Snort instance with the respective traffic, followed
by the second instance and the corresponding traffic to avoid
artifacts of switches and online traffic splitters. As we use
deterministic traffic generation, the result will not be affected.

We use three workstations running the Linux Ubuntu 16.04
operating system Table I. The traffic generator on workstation
1 sends realistic network traffic by simulating client and
server side on its two NICs. Workstation 2 acts as the traffic
distribution device and forwards the traffic to workstation 3
following different distribution strategies.

We use Snort version 2.9.11.1 with a rule set of 30039 rules.
This large rule set is the combination of two smaller ones.
The first one is the basic rule set available at Snort webpage
from snapshot 29120.3 It consist of 10740 registered rules. The
second rule set is publicly published by Emerging Threats4 for
Snort version 2.9.0.

We rely on the packet drop rate and detection rate of Snort
as the main metrics to evaluate its performance under different
distribution strategies. For the drop rate calculation, we extract

3snortrules-snapshot-29120.tar.gz downloaded from https://snort.org/
4https://rules.emergingthreats.net

the rate of analyzed packets from the Snort output and compare
it with the numbers of packets that Snort receives on the wire.
In addition, we measure the alerts that Snort raises in an
experiment and compare it with the number of alerts that Snort
should raise for that specific traffic.

We are using TRex5 in combination with GENESIDS [27]
for traffic generation because of its ability to create definable
and consistent high-speed traffic at low costs. TRex is based
on the Data Plane Development Kit (DPDK)6 and creates
stateful (and stateless) layer 4 to layer 7 traffic based on traffic
templates. To simulate appropriate test traffic, given traffic
templates are mixed with the generated attacks of GENESIDS.
For this purpose, we use the sfr_delay_10_1g.yaml
traffic template that comes with the TRex package, which
represents a realistic traffic mix normalised to 1 Gbit/s that was
defined by SFR France. The template combines a bunch of
typical network traffic and represents a good average of many
internet applications, such as HTTP, mailing services, video
calls, streaming, and pure TCP. The number of connections
per second (cps) is configurable for each traffic flow to attain
a desirable distribution of different application traffic flows.
We include 100 generated attacks to the templates. Each attack
is simulated with 1 cps. The traffic consists of roughly 60 %
TCP and 40 % UDP-based traffic.

Every work and load distribution strategy was tested twice
at seven ascending traffic speeds. As a metric for the traffic
speed we use the packets per second (pps)-rate instead of
bit rate because the pps-rate is more relevant from a systems
perspective (one operation per packet). To this end, we tested
the Snort default configuration with the traffic simulation at
different pps-rates until a point that Snort cannot cope with
the traffic anymore.

V. EVALUATION

In the following, we present and discuss the performance
results we obtained for the comparison of traffic and rule
distribution, respectively.

A. HTTP vs. Non-HTTP Traffic

In the first experiment, we split traffic and rules according
to whether they belong to HTTP traffic. According to Figure 3,
the drop rate is very low for all traffic speeds when only HTTP
rules are considered. The reason behind this is that the HTTP
rules can be processed very fast. On the contrary, the drop
rates in the experiment with the complement ruleset is as high
as Snort with its default configuration. The detection rate is
very stable at 56% in only HTTP rule experiment, while Snort
has to deal with high drop rates when it checks the rest of the
rules. Here, the detection rate is falling monotonously from
the beginning on. As a first conclusion, we can say that this
strategy overly outperforms the default Snort configuration
regarding the detection rate but it failed to distribute the load
among two machines evenly.

5https://trex-tgn.cisco.com/
6https://www.dpdk.org/



20 30 40 50 60 70 80

0
20

40
60

80
10

0

Traffic Speed in kpps

D
et

ec
te

d 
A

le
rts

 in
 %

Default Snort Run
Strategy Run 1
Strategy Run 2
Strategy Combined

Default Snort
1st half of Rule
2nd half of Rule 
Overall

Only HTTP Rule Non-HTTP Rule
Default Snort Overall

20 30 40 50 60 70 80

0
2

0
4

0
6

0
8

0

Traffic Speed in kpps

D
e

te
ct

e
d

 A
le

rt
s 

in
 %

Default Snort Run
Strategy Run 1
Strategy Run 2
Strategy Combined

(a) Detection rates

20 30 40 50 60 70 80

0
20

40
60

80
10

0

Traffic Speed in kpps

D
ro

pp
ed

 P
ac

ke
ts

 in
 %

Default Snort Run
Strategy Run 1
Strategy Run 2

Default Snort
Only HTTP Rule
Non-HTTP Rule

(b) Drop rates

Figure 3. Performance of the HTTP rule distribution strategy
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Figure 4. Performance of the HTTP traffic distribution strategy
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Figure 5. Performance of the TCP rule distribution strategy

Instead of focusing on HTTP rules, we can evaluate just
HTTP traffic (data on TCP ports 30, 443, and 8080) by one
machine and leave the remaining traffic to be analyzed by
the second machine. Figure 4 indicates that the HTTP traffic
is processed extremely – the drop rate for the HTTP traffic
is close to zero. Snort detects 56% of the attacks in the test
traffic, thus, 56% of the attacks are transported via HTTP.
However, the drop rate is highly increased in non-HTTP traffic
processing. It is close to the drop rate of the default Snort
setup. Consequently, the detection rate reduces gradually as
the network speed is increased.

B. TCP vs. Non-TCP Flows

In the second experiment, we split traffic and rules according
to whether they belong to TCP traffic. In this way, the majority
of the rules (91%) are labeled as TCP rules. The results in
Figure 5 show a significant improvement regarding the detection
rate in TCP rule distribution. Until 50 kpps, the machine with
the only TCP rules succeeds to detect all the attacks. Even at
a speed as high as 80 kpp still, it can reach to 80% detection
rate. Also, the drop rate is much lower than for Snort with
the default configuration. As our dataset delivered attacks only
over TCP, the detection rate of the machine with only TCP
rules represents the overall detection rate as well. However,
the drop rate for the remaining rules on the second IDS is
almost as high as Snort with the default configuration. We can
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Figure 6. Performance of the TCP traffic distribution strategy

conclude that the high number of TCP rules have a minimum
impact on the Snort performance.

Another approach is to distribute TCP and non-TCP traffic,
and to run Snort with its default configuration. The traffic
splitting is done by looking at the protocol field in the IP
packet headers. This way, also the state of the TCP connection
is preserved. The performance shown in Figure 6 follows the
same trend as with the TCP rule distribution approach. The
drop rate of Snort analyzing only TCP traffic is very low.
However, the drop rate begins to climb at 30 kpps for the
non-TCP traffic. Nevertheless, it stays below the drop rate of
the machine TCP rules in TCP rule distribution (cf. Figure 5b).
Due to the dataset structure, the overall detection rate is equal
to the detection rate of the machine that processes only TCP
traffic.

We can conclude that both traffic and rule distribution based
on TCP flows can maintain a 100% detection rate for higher
packet rates than Snort with the default setup. We can manage
up to 50 kpps with the rule distribution approach before Snort
begins to miss a noticeable amount of attacks. Even 60 kpps
can be reached with the traffic distribution approach.

C. Snort Fast Pattern Approach

In the third experiment, we explore the significance of
considering the processing speed as a factor in the rule
development phase. To this end, we use all the rules that
make use of the ‘fast pattern’ keyword on one machine and the

20 30 40 50 60 70 80

0
20

40
60

80
10

0

Traffic Speed in kpps

D
et

ec
te

d 
A

le
rts

 in
 %

Default Snort Run
Strategy Run 1
Strategy Run 2
Strategy Combined

Default Snort
1st half of Rule
2nd half of Rule 
Overall

fast_pattern Rules Non-fast_pattern Rules
Default Snort Overall

20 30 40 50 60 70 80

0
20

40
60

80
10

0

Traffic Speed in kpps

D
et

ec
te

d 
A

le
rts

 in
 %

Default Snort Run
Strategy Run 1
Strategy Run 2
Strategy Combined

(a) Detection rates

20 30 40 50 60 70 80

0
20

40
60

80
10

0

Traffic Speed in kpps
D

ro
pp

ed
 P

ac
ke

ts
 in

 %

Default Snort Run
Strategy Run 1
Strategy Run 2

Default Snort
fast_pattern Rules
Non-fast_pattern Rules

(b) Drop rates

Figure 7. Performance of the ‘fast pattern’ rule distribution strategy

rest of the rules on the other one. Although more than 50% of
the main ruleset makes use of the ‘fast pattern’ rule, the drop
rate stays very low for all used packet rates. Consequently, the
detection rate stays at 48.7% until 70 kpps Figure 7. For all
other rules, Snort process one content of each rule using the
Aho-Corasick string matching algorithm. The results show that
the drop rates are very close to the results of Snort with the
default configuration, even though less than half of the main
ruleset was processed.

However, the trend for the detection rate is falling nearly
linearly (cf. Figure 7a). This is a result of the very stable
detection rate in the ‘fast pattern’ ruleset, and the fact, that
Snort generates more alerts in the other ruleset.

VI. DISCUSSION

In this paper, we illustrated the effectiveness of parallelization
to improve the online performance of Snort. We split either
the ruleset or the traffic according to two different protocol
layers.

Our results show that any prior knowledge regarding the
nature of expected attacks is highly valuable and can help
to speed-up the processing. As an example, the two HTTP
distributions (Figures 3b and 4b) show that we can easily
configure Snort to operate in a high-speed network if a majority
of the attacks is using HTTP. However, a small deviation in the
attackers’ behaviour can reduce the detection rate (cf. Figures 3a
and 4a). As Figures 5 and 6 illustrates generalizing HTTP to



TCP has a better performance / detection rate trade-off, this
research work recommends considering some margins to the
available information

Our measurements also show (Figure 7) that careful prepa-
ration of the rules can further speed-up Snort significantly.
However, it is not clear whether Snort can select the most
appropriate content of a rule for Aho-Corasick [16] string
matching by default. To this end, we plan to extend this research
work and consider only the rules that use ‘fast pattern’ option.

VII. CONCLUSION

This research work aims to shade light on improving the
performance of Network Intrusion Detection Systems (NIDS)
in a high-speed network environment. To this end, we focus on
the two parallelization strategies targeting two layers of protocol
stack, namely Application and Transport. We developed a test
bench to implement different parallelization strategies following
either rule distribution or traffic distribution approaches. Our
experimental results show that traffic distribution always
outperforms rule distribution with respect to the performance /
detection rate trade-off. We also investigated the impact of
rule developers on the processing speed of Snort. For this
purpose, we only consider the usage of ‘fast pattern’ option
in a rule. The outcome shows that Snort can process these
rules extremely fast but the process requires significant work at
the rule development stage. We plan to study the ’fast pattern’
option in further detail as the future work.
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