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Abstract—Video streaming is in high demand by mobile users.
In cellular networks, however, the unreliable wireless channel
leads to two major problems. Poor channel states degrade video
quality and interrupt the playback when a user cannot sufficiently
fill its local playout buffer: buffer underruns occur. In contrast,
good channel conditions cause common greedy buffering schemes
to buffer too much data. Such over-buffering wastes expensive
wireless channel capacity.

Assuming that we can anticipate future data rates, we plan
the quality and download time of video segments ahead. This
anticipatory download scheduling avoids buffer underruns by
downloading a large number of segments before a drop in
available data rate occurs, without wasting wireless capacity by
excessive buffering.

We developed a practical anticipatory scheduling algorithm
for segmented video streaming protocols (e.g., HLS or MPEG
DASH). Simulation results and testbed measurements show that
our solution essentially eliminates playback interruptions without
significantly decreasing video quality.

I. INTRODUCTION

Delivery of video content over wireless broadband networks
is already widely used today and is expected to increase heavily
in the upcoming years. Studies by Cisco [1] and Akamai [2]
indicate that mobile data traffic will increase by a factor of
25 from 2011 to 2016 with around two-thirds of this traffic
being streamed video traffic. The wireless infrastructure cannot
keep up with this trend by merely increasing data rate. It is
necessary to organize mobile data transmission in a better way,
as also indicated by Akamai [2].

We present an approach to combine buffer control and video
quality selection based on anticipation of wireless data rates.
Our approach and the following motivation is based on the
HTTP Live Streaming (HLS) protocol [3], but can also be
applied to similar video streaming protocols, like MPEG DASH
[4], [5].

In HLS a video is not transmitted as a continuous stream
of data, but it is divided into segments of a certain duration
and then transmitted segment by segment. These segments
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are downloaded via HTTP from the server and are then
concatenated by the player application for playback. For
example, a video of 120 s using segments of 10 s would be
divided into 12 segments. This implies that for uninterrupted
playback, segment i + 1 has to be fully downloaded before
segment i has been played to its end in the HLS player
application. If a segment is downloaded before it is needed for
playback, it is buffered at the HLS player application.

Another key feature of the HLS protocol is video quality
selection: each segment can be present on the server in different
quality levels. A quality level is determined by the resolution
and the encoding bit rate of the video and is then identified in
HLS by the resulting file size of the video segment. As our
approach optimizes downloading of video segments and the
file size has a direct implication on the required data rate for a
download. Because of the segmented nature of HLS, a video
segment is only played back if it has been fully downloaded.
There are no visible artifacts or visual degradation if the video
is played back and thus applying standard metrics for perceived
video quality like PSNR or MOS provides limited gain. So in
this paper video quality always refers to the different quality
levels in HLS. As the quality of experience for the users is
also impacted by the occurrence of playback interruptions
caused by buffer underruns, we also evaluate the accumulated
playback interruptions in our evaluation. We refer to this metric
as lateness. Together the video quality level and the lateness
indicate the quality of experience provided by our approach.

To download a segment, the player application has to decide
in which quality level to download it. This is done in current
HLS-compatible players like VLC or the Apple iOS and
Android media players, but the selection only relies on the
measurement of the current and past data rates.

In order to integrate anticipatory knowledge of future data
rates into our approach we use what we call data rate
anticipation. The idea behind this is somewhat similar to
classical channel prediction used for improved scheduling
decisions in mobile access networks, but our approach works
on different time scales and accuracy levels. The time scales in
which our approach has to work are defined by the length of
the video segments, which are usually on the order of tens of
seconds, in contrast to channel prediction for a few milliseconds.
On the other hand, we are only interested in rough estimates of
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achievable data rates and not precise channel quality samples,
making this a simpler problem.

The idea of incorporating knowledge of future data rates into
wireless video streaming already exists in research [6]–[12],
which has shown that future data rates can be anticipated in
practice. A recent study [13] on different prediction mechanisms
for different time scales also shows such anticipation of future
available data rates to be feasible with an acceptable margin of
error. Thus, we do not focus on an actual implementation of
data rate anticipation, but investigate how it can be gainfully
utilized.

With the idea of anticipation we extend the default behavior
in the HLS protocol by explicit buffer control and quality
selection based on the anticipated data rates. The motivation
for this extension is straightforward: As long as enough data
rate is available in the future, the HLS video player should
not download and buffer too many segments. Buffering too
many segments in this case has no benefit for the user’s QoE,
but may have the downside of using wireless resources that
could otherwise be used to benefit other users. We call this
problem over-buffering. If there is a future decrease in available
data rate, the HLS player has to download and buffer more
segments in advance. If the HLS player does not download
enough segments in advance the playback will stall; we call
this problem buffer underrun.

In parallel to this decision on when to download segments
is the decision in which quality to download segments. If the
data rate is insufficient to download segments in a high quality,
but a lower quality is available, the HLS player should switch
to the lower quality to prevent a buffer underrun.

We call this combination of when to download each segment
in which quality a download schedule. Such a download
schedule is only executed on the application layer. For the
physical layer schedule we assume that a normal, fair scheduler
has already assigned radio resources to the users. This makes
our scheduling independent from the physical layer scheduling
of different wireless technologies. Additionally this allows us
to perform our scheduling for each user individually, because
the physical resources are already shared and we do not have to
consider any resource sharing. Hence, the anticipated wireless
data rates are actually achievable and effects like number of
users per cell are already incorporated by the anticipation
scheme.

In our previous work [14] we have presented an mixed integer
quadratically constrained optimization problem (MIQCP) to
create a download schedule. In Section III we introduce a
new heuristic algorithm. In Section IV, we explain how our
scheduling approach can be integrated into an existing system
and describe how we developed a testbed implementation. We
use this testbed implementation together with a simulation in
Section V to evaluate our approach and to present the results.
We conclude our work in Section VI.

In our previous work [15] we have already introduced the
overall idea of anticipatory scheduling for segmented wireless
video streaming, but did not elaborate on the heuristic algorithm
and the testbed implementation.

II. RELATED WORK

Incorporating channel anticipation into video streaming
in mobile networks has been investigated in general [6],
[16] and specifically for public transport scenarios [8], [9],
but all without considering video quality selection, which
is significantly less complex than our combined approach.
Recent studies has also investigated the quality adaptation
mechanism of HTTP video streaming [17], [18], but only
in a reactive way without the combination with data rate
anticipation. Anticipatory approaches based on existing data
rate traces have also been presented [19], [20], but focus solely
on the quality selection and do not incorporate the full download
scheduling with the option to pre-buffer a variable number of
segments.

The measurements in [21] and [22] illustrate the performance
of HLS in mobile networks, but do not include any anticipation
mechanism or cross-layer approach.

III. HEURISTIC ALGORITHM

We assume a discrete time model. Time is represented as a
sequence of time slots ti of constant length. For simplification,
we further assume that the length of each time slot is equal to
the playback duration of one video segment. Thus time slots and
segments are unitless and can be used together in a constraint.
Additionally, each video segment has to be downloaded within
exactly one time slot, i.e. the download of a video segment
must not be spread across multiple time slots. This implies
that for an uninterrupted playback of a video, the i-th video
segment has to be downloaded within time slot ti or earlier.
Downloads in a given time slot are limited by the data rate
for each user in this slot. Each user is connected to at most
one base station per ti. We assume that the allocation of data
rates to the users is done by an underlying, non-modifiable
radio resource scheduler, limiting our scheduling approach for
the download of video segments to a higher layer. The file
size for each video segment, i.e the required amount of data
to download, is determined by the selected video quality level.
The data rate limits and the video quality levels are given in
the same units.

Consistent with our existing optimization problem, the
heuristic algorithm, called FILL, is an offline scheduler, which
means the anticipated data rates for all time slots are known in
advance and the result of the heuristic is a complete schedule
for all users over a given number of time slots.

The FILL algorithm takes the available data rate for each user
in each time slot as its parameter and it also iterates over all
time slots to fill the buffer with video segments (independently
for all users). Algorithm 1 shows this main structure. The
function ANTICIPATEUSERRATES(u) returns anticipated data
rates for a user for all time slots based on the underlying radio
resource scheduler and channel anticipation.

The basic operation of SCHEDULESEGMENT is illustrated in
Figure 1. For each time slot there are two different operations
possible, depending on the available data rate in the time slot.

If there is enough data rate to download a new segment in
the currently examined time slot (Algorithm 2, lines 3 and 4),



Figure 1. Flowchart for Fill Scheduler

Algorithm 1 FILLSCHEDULER(U, T,Q)
1: // users U, times T, qualities Q
2: for all u ∈ U do // schedule all users
3: C ← ANTICIPATEUSERRATES(u) // from channel anticipation
4: s← 0 // initialize counter for scheduled segments
5: for all t ∈ [0..|T |] do // schedule all time slots/segments
6: s← s + SCHEDULESEGMENT(u, t, s,Q,C)
7: end for
8: end for

the FILL algorithm will just schedule this video segment at
maximum possible quality. This behavior ensures a minimum
number of segments in the buffer as long as there is no need for
buffering more segments for future time slots with insufficient
data rate.

If, during the iteration, the anticipated data rate in some
time slot t does not suffice to download a new video segment
(Algorithm 2, lines 6 to 22), even at the lowest video quality
level, the FILL algorithm has to change the schedule for one
or more previous time slots to download and buffer a video
segment before time slot t with insufficient data rate. This

Algorithm 2 SCHEDULESEGMENT(u, t, s,Q,C)
1: q ← GETBESTQUALITY(Q,C[t])
2: if q 6= false then // enough capacity in current time slot for new segment?
3: SCHEDULE(u, s, t, q) // schedule new segment with maximum quality for available

data rate
4: return 1
5: else // even lowest quality not feasible in time slot t
6: for all g ∈ [t..0] do
7: // enough capacity in range [g..t] for all scheduled segments and new one?

8: if GETBESTQUALITYRANGE(Q, t − g + 1,
t∑

i=g
C[i]) 6= false then // going

back to g provides enough data rate
9: q ← GETBESTQUALITYRANGE(Q, t− g + 1, C[g...t])

10: p← 0
11: for all r ∈ [g..t] do // reschedule all segments from range
12: n← GETSEGMENTSFORQUALITY(q, C[r])
13: for all v ∈ [(g + p)..(g + p + n)] do
14: SCHEDULE(u, v, r, q)
15: end for
16: p← p + n
17: end for
18: return 1
19: end if
20: end for // video start reached
21: return 0 // incur lateness for new segment
22: end if

part of the algorithm, as outlined in Algorithm 2, requires the
definition of the following helper functions:
• GETBESTQUALITY(Q, c)

Returns the best downloadable quality (out of Q) for a
segment with anticipated available data rate c, or FALSE
if there is not enough data rate even for the lowest quality

• GETBESTQUALITYRANGE(Q,n, c)
Returns the best possible quality (out of Q) in which n
segments can be downloaded with anticipated available
data rate c, or FALSE if there is not enough data rate to
download even in the lowest quality

• GETSEGMENTSFORQUALITY(q, c)
Returns the number of downloadable segments with
quality q and available data rate c

• SCHEDULE(u, s, t, q)
Schedule the download of segment s for user u at time t
with quality q

These functions can be easily implemented and their precise
implementation is omitted in this paper to improve the
readability of the algorithm.

From time slot t where a download of a full segment was
not possible, the algorithm goes back time slot by time slot.
In these previous time slots, it downgrades the video quality
of the segments, freeing up capacity to enable the download
of the segment that has to be playout out in time slot t. It
can push up the scheduled download times of earlier segments
in order to fit more segments into time slots. Once a range
of time slots is found where all segments including the one
to be played out in time slot t fit in (at reduced quality), the
computation of the schedule up to time slot t is complete. This
schedule is then the basis to plan the download for the segment
for time slot t+ 1 in the next iteration.

IV. SYSTEM INTEGRATION

In this section we discuss how the previously introduced algo-
rithms can be integrated into a real system, using existing tools
and extending existing protocols with backwards-compatible
extensions as needed. We first explain the system architecture in
Section IV-A and then in Section IV-B implementation details
and adjustments to the HLS protocol necessary to use the
scheduling algorithms. The concrete testbed implementation
which we used to verify our simulation results is described
afterwards in Section IV-C

A. Architecture

For our implementation use a modified video player on the
UEs, so we can fully control the buffer and we can analyze
the performance of the system. Our implementation supports
arbitrary content providers (in our tests we used our own video
source to eliminate external influences).

To implement our schedulers we assume an overall archi-
tecture as depicted in Figure 2. This architecture does not
require any changes to current cellular radio interfaces and
networks (RANs) and can be implemented in a cellular network
as well as in a wireless LAN scenario, since the scheduler
is implemented in higher layers. It also does not require any



Figure 2. System Architecture

changes to the content provider since all scheduling decisions
and the schedule is enforced in the Anticipatory Scheduling
Controller.

The Anticipatory Scheduling Controller, as the central entity
in this architecture, intercepts the requests from the UEs to the
content providers. It can then perform the buffer control and
quality selection with the following three steps:

1) Intercept the video request from the UE and analyze it
(video data rates, available variants)

2) Calculate schedule based on video data and anticipatory
information on future data rates

3) Control the buffering behavior of the UE according to
the schedule

To do so, the Anticipatory Scheduling Controller could be
configured as an HTTP proxy (as HLS video requests are
transported via HTTP). This could be enforced in cellular
networks or be done voluntarily by the users. Both operators
and users have incentives to do so (less load on the network,
better QoE for the users).

B. Protocol Extension

We concentrated on HLS (HTTP Live Streaming) [3] as
the streaming protocol for our implementation. It is available
in the stock media players on Android and Apple iOS and
is also available as an open-source implementation in the
VLC player. To stream a video using HLS, regardless of our
extension, the video has to be encoded properly. This encoding
is a CPU-intensive, one-time task. The video input is cut
into independently playable segments with the same playback
duration. URLs to these segments are then added to a playlist.
An example of such a normal HLS playlist is shown in Figure 3.

#EXTM3U
#EXT-X-VERSION:3
#EXT-X-TARGETDURATION:10
#EXTINF:10,
http://hostname/high/001.ts
#EXTINF:10,
http://hostname/high/002.ts
#EXTINF:10,
http://hostname/high/003.ts

#EXTINF:10,
http://hostname/high/004.ts
#EXTINF:10,
http://hostname/high/005.ts
#EXTINF:10,
http://hostname/high/006.ts
#EXT-X-ENDLIST

Figure 3. Single quality HLS example with high quality segments, each 10
seconds long (playlist is split into two columns)

HLS streams can provide multiple qualities of the same video.
Each quality can be encoded using a different codec, bitrate, or
resolution. HLS players can switch between different qualities
because all segments have equal length and are independently
playable. A separate playlist is created for each quality and

#EXTM3U
#EXT-X-STREAM-INF:BANDWIDTH=1000000
http://hostname/low/hls.m3u8
#EXT-X-STREAM-INF:BANDWIDTH=1500000
http://hostname/med/hls.m3u8
#EXT-X-STREAM-INF:BANDWIDTH=3000000
http://hostname/high/hls.m3u8

Figure 4. Multi-quality master playlist with three qualities

additionally a master playlist with links to all quality playlists
is used. An example of a master playlist with three qualities
is shown in Figure 4. The master playlist contains parameters
for each quality to enable HLS players to select the most
appropriate one. We use the BANDWIDTH parameter, given as
a data rate in bit/s, for each quality for this paper. The created
playlists and segments can then be placed on an HTTP server.
An HLS player only needs the URL to the HLS master playlist.
From there, all qualities and their segments are accessible.

To control the buffering behavior of HLS players, we need
a method to pass messages to them. HLS players have no
interface to receive control data besides playlists and segments
via their own HTTP-GET requests. We intercept the requests for
playlists and modify the replies in the anticipatory scheduling
controller.

The anticipatory scheduling controller is aware of the sched-
ule but also needs a means of inserting buffering instructions
in the playlists. Thus, we introduce two new tags to HLS
playlists: BUFFERSIZE and REFRESH. Both are defined as
natural numbers including 0. These new tags are backwards
compatible because the HLS standard instructs players to ignore
tags which they do not recognize [3].
BUFFERSIZE sets the size of the HLS player buffer to the

given value. Up to this amount of segments, the player will
just greedily try to download more segments. If there are more
segments in the buffer than instructed, the buffer content is
played, and no downloaded segments are discarded. As soon as
there are fewer segments in the buffer than the given limit, the
HLS player downloads additional segments to fill the buffer.

The REFRESH parameter instructs the HLS player to refresh
the playlists every REFRESH seconds. This will then update
the BUFFERSIZE and REFRESH parameters. We suggest to
set REFRESH to the playback length of a segment, thus after
playing one segment the HLS player will update its buffering
parameters.

The two parameters together solve the over-buffering and
buffer underrun problem by precisely adapting the HLS player
buffer size according to the schedule. This indirectly influences
when an HLS player can download a segment.

Another property of an HLS stream that the scheduling
algorithm needs to decide is which quality to download. In
the case of multi-variant HLS streams, the player would try
to download the segments in the quality it prefers by doing
its own local measurements. But the schedules also include
the HLS video quality for each segment, selected from the
available HLS qualities.

Every time the HLS player requests an HLS master playlist



the anticipatory scheduling controller downloads the playlists of
the scheduled qualities and creates a single variant playlist out
of the multi-quality playlist. As shown in Figure 5, segments
from different qualities are being selected and placed in a new
single-quality playlist. Only the joined (single-quality) playlist
is then returned to the HLS player. The decision which quality
to download is hereby made by the anticipatory scheduling
controller and not by the player anymore. The joined playlist
contains the REFRESH and BUFFERSIZE parameters. Each
time a player refreshes an HLS playlist, it can receive a different
value for the BUFFERSIZE parameter.

#EXTM3U
#EXT-X-VERSION:3
#EXT-X-TARGETDURATION:10
#EXT-X-BUFFERSIZE: 2
#EXT-X-REFRESH:10
#EXTINF:10,
http://hostname/med/001.ts
#EXTINF:10,
http://hostname/med/002.ts

#EXTINF:10,
http://hostname/med/003.ts
#EXTINF:10,
http://hostname/med/004.ts
#EXTINF:10,
http://hostname/low/005.ts
#EXTINF:10,
http://hostname/med/006.ts
#EXT-X-ENDLIST

Figure 5. Joined playlist with REFRESH and BUFFERSIZE extensions
(BUFFERSIZE set to 2 and REFRESH set to 10, playlist is split into two
columns)

Through both mechanisms, the buffer size (when to down-
load) and preselection of variants (which quality to download)
can be controlled. Thus, anticipatory buffering and variant
selection based on the previously described algorithms can be
performed by simply extending the HLS protocol with two
small extensions to the playlist parameters.

C. Testbed

In order to analyze our algorithms and to test our HLS
protocol extension in a real system, we developed a testbed
that allows us to run extensive tests with real hardware and
compare the results of these tests with our simulations. We
describe our testbed setup here and will present the simulation
and testbed measurement results in Section V.

The testbed is based on the general architecture explained
before. The UEs are smartphones and tablets with a customized
Android OS and a modified VLC video player. Our modifica-
tions enable VLC to parse the additional playlist parameters
and adapt its buffer size accordingly. It also outputs extended
information about the buffer size and the downloaded segments
which is used for our measurements. The customizations to the
Android OS are only necessary to control the behavior of the
smartphones and tablets and have no influence on the video
streaming itself.

The radio access in the testbed is implemented with 802.11g
wireless LAN [23] without any modifications and four access
points. As explained before, scheduling only happens on the
application layer, thus changes to the wireless MAC are not
necessary. The access points are normal PCs with wireless
LAN cards and Linux with hostapd running on them.

A fifth PC serves as central control and measurement unit
and as a host for running the anticipatory scheduling controller.
All phones are connected to this PC via USB and are controlled
with the Android debug bridge (ADB); the access points are
controlled via an SSH connection. With the ADB we execute

arbitrary shell commands on the phones and emulate simple
user interaction like starting or stopping a video stream. No
data is transmitted via USB; it only serves to make experiments
repeatable. The resulting overall testbed architecture and setup
can be seen in Figure 6.

Figure 6. Testbed Architecture

For the HLS video stream content we used the publicly
available movie “Tears Of Steal” (http://www.tearsofsteel.org/)
which we converted using the VLC framework. The segments
and playlists are served by an unmodified Apache webserver.

The anticipatory scheduling controller, which intercepts and
modifies the playlist requests from the UEs, is implemented as
a transparent HTTP proxy using the Python framework Twisted
(http://twistedmatrix.com). The access points redirect all traffic
coming from the UEs to the proxy thus it is not necessary to
change any preferences on the UEs.

We wanted to be able to run a lot of repeatable and
comparable tests, which is why the movement of the UEs is
emulated and not done physically. Movement emulation works
by limiting the link speed and enforcing handovers between
access points. We achieve this by using standard traffic shaping
capabilities of Linux on the access points and on the phone.
From a predefined scenario we get the data rate for every UE
and base station per time slot. These values are then set as speed
limits on our access points at the corresponding time. Handover
events between the access points are also precalculated from
the scenario and then triggered on the phones. With this setup
we can run tests without the need to physically move the UEs.

We automatically start the video stream via the ADB
connection to the phones and collect information about the
streaming (i.e. when a segment has been actually loaded in
which quality). The results returned by the testbed runs are in
the same format as the simulation results and allow a direct
comparison.

V. SIMULATION AND TESTBED RESULTS

In this section we present both simulation results and results
from measurements with the previously described testbed. For
the simulation we use our own Python implementation. Before
presenting the results we define the evaluation scenarios.

In addition to the optimization problem (MIQCP) and Fill
we also include two greedy scheduling algorithms, QualityFirst
and BufferFirst, that represent the state-of-the-art behavior of
a HLS video player. Both algorithms are also described in
our previous work [14] and greedily fill a fixed-size segment



buffer with two different strategies: QualityFirst schedules
segments in the highest possible quality before filling the
whole buffer. BufferFirst schedules filling the whole buffer
before switching to a higher quality. Neither strategy uses any
form of anticipation of future data rates.

A. Scenario

The basic structure for the evaluation scenario, for both
simulation and testbed measurements, is a line of base stations
with the users moving through the scenario from the first
base station to the last base station as illustrated in Figure 7.
To reduce the available data rate and to create the need for
buffering, we remove cells from the scenario, as illustrated
with base stations B and D. The more cells we remove, the
more gaps without any available data rate occur and the more
segments have to be buffered to avoid playback interruptions.
The users all move as a group from the first base station to the
last base station (e.g., a public transport scenario). Apart from
the pattern in which the base stations are removed, the scenario
parameters for the simulation and the testbed measurements
are the same.

Figure 7. Scenario

The wireless radio is modeled according to 3GPP Long Term
Evolution (LTE) [24]. The base stations are placed equidistantly
with an inter-site distance of 1500 meters, which is slightly
larger than a normal urban scenario in order to augment the
effects resulting from removing cells. We consider four active
users in the scenario because the testbed setup only contains
four devices and we want to maintain comparability between
the simulation and the testbed measurements.

The path loss in dB between the base stations and the users
is obtained by 128.1 + 37.6 · log10(d) + Sln [24], where d
represents the distance between the base station and the user
in kilometers and Sln is a normal random variable with zero
mean and standard deviation of 10 dB to model slow fading.

For the channel capacity we assume an asymptotically
error-free communication channel, modeled by the Shannon
equation with the following parameters: 10 MHz bandwidth,
46 dBm transmission power, isotropic antennas with 0 dB gain,
-174 dBm/Hz noise power spectral density and -149 dBm/Hz
average interference. The maximum data rate for a base station
is limited to 30 Mbit/s to account for the small number of users
in the scenario. The allocation of data rates to the users in
each time slot is up to a wireless resource scheduler, which is
in our case a simple proportional fair scheduler.

The maximum buffer size for the greedy scheduling algo-
rithms is set to 3 segments, which corresponds to the default
setting for VLC on Android.

The video quality levels and the resulting required data rates
are taken from the test video we generated from the clip “Tears
of Steel”. The resulting segment sizes for the three video quality
levels are 1.77 MB (low), 3.69 MB (medium) and 4.51 MB
(high). As the real file size of all segments varies slightly by a
few hundred kilobytes due to the video encoding, we use the
maximum size over all generated video segments in one video
quality level as the parameter for the scheduling algorithms.
We use a segment length of 10 seconds, corresponding to the
recommended value in the HLS standard.

1) Simulation Scenario: For the simulation scenario we are
not limited to the number of physical devices we have in the
testbed. Thus we use a total of 44 base stations and a video
length of 44 segments.

To induce the need for buffering we randomly remove base
stations from the scenario. The number of removed base stations
varies from 0 to 20, which means that in the worst case half
of all base stations are removed. The removed base stations
are selected uniformly, whereas the first and last 2 of the 44
base stations are never removed to avoid side effects.

2) Testbed Scenario: In the testbed, which we described in
Section IV-C, the scenario is limited by the number of physical
devices in the testbed. We have again 4 users, the phones and
tablets in the testbed, but in contrast to the simulation only 4
base stations. The base stations are again arranged in a line
but with only one fixed gap without any available data rate in
the middle .In order to vary the need for buffering we perform
measurements with a gap equal to the range of 2 and 4 base
stations.

B. Results

For both the simulation and the testbed measurements, we
evaluate three different metrics: the average downloaded video
quality level in MB per segment, the lateness averaged over all
users in seconds and the average buffer fill level in segments.
All plots are based on multiple simulation or testbed runs
and show confidence intervals at 95% confidence level, small
intervals might be covered by the plot markers.

1) Simulation Results: The simulation results for the average
video quality are shown in Figure 8a. The dashed lines indicate
the reference value of the high and medium video quality levels.
MIQCP delivers the overall highest video quality level, which
decreases only slightly once more than 10 base stations are
removed from the scenario. This indicates that MIQCP can
fully exploit the available data rate in order to deliver and buffer
high quality segments whenever possible. The QUALITYFIRST
algorithm delivers the overall second highest video quality level,
which is only slightly less than the one from the MIQCP. This
corresponds to the expected behavior of the greedy algorithm.
The BUFFERFIRST algorithm exhibits the opposite behavior
and delivers the overall lowest video quality level, which also
corresponds to the expected behavior. The FILL algorithm
provides the same high video quality level as the MIQCP when
only a small number of base stations is removed and enough
data rate is available. When more base stations are removed the
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Figure 8. Simulation Results

delivered video quality level from the FILL scheduler decreases,
but is still higher compared to the BUFFERFIRST algorithm.

Figure 8b shows the results for the average lateness over all
users in the simulation. MIQCP and the FILL algorithm are
able to prevent any lateness. For both the QUALITYFIRST and
BUFFERFIRST algorithms lateness increases when more than 10
base stations are removed. Because of the objective to download
segments in higher quality levels instead of buffering more
segments, the QUALITYFIRST algorithm incurs the highest
lateness.

The simulation results for the average buffer fill level are
shown in Figure 8c. Both greedy scheduling algorithms always
try to fill their buffer up to the maximum buffer level of
3 segments. Because the greedy scheduling algorithms have
no mechanism to reduce buffer usage, the buffer levels only
decrease when there is not enough available data rate to fill
the buffer entirely as more base stations are removed from the
scenario. The MIQCP and the FILL scheduler are designed
to minimize buffer usage where possible, thus both start off
with very little buffering and only increase the buffer usage
as more base stations are removed from the scenario. After
removing more than 10 base stations from the scenario the
MIQCP uses more buffer space than the FILL algorithm. This
is caused by the preference of the MIQCP objective function
to download segments with a higher video quality level before
minimizing the buffer level. The FILL algorithm, on the other
hand, will switch to lower video quality levels before buffering
more segments instead.

2) Testbed Measurements: The plots in Figure 9 show a
comparison between simulation results with the testbed scenario
and the measurements obtained from the testbed. The results
from the simulation are plotted with a solid line and the testbed
measurements with a dashed line, both using the same markers
to distinguish between the schedulers.

Ideally, the simulation results and the testbed measurements
should be identical. Differences in the results are due to the
following effects, which are present in the testbed but not
considered in the simulation:
• Continuous time & rounding effects

The simulation is based on a discrete time model with
time slots, whereas the testbed runs in real time. In

order to compare the simulation and testbed results
the measurements are converted to discrete time. This,
for example, implies that a segment that is actually
downloaded after 61 seconds, but should have been
downloaded at or before 60 seconds, is treated as equally
late as a segment that is downloaded after 69 seconds.

• Network protocol side effects
The simulation does not consider underlying network
protocols for the transport of the HLS segments. In
contrast to that the testbed uses real HLS over TCP/IP
over 802.11g wireless LAN with its own wireless resource
scheduler. We are only sure that the data rate limits we use
in the calculation of the schedules are not exceeded, but
we cannot ensure that they are actually fully achieved in
the testbed. Both TCP congestion control and the wireless
resource scheduler can influence the actual data rates in
the testbed, which result in longer segment downloads,
which are then treated as late.

• Video player issues
In case the video player in the testbed encounters issues
while decoding the video, the timing between the down-
loads from the player and the schedule can be disturbed.
For example, if VLC decides to skip frames from the
video the playback runs ahead of the calculated schedule,
and subsequent segments are needed for playback before
their download was scheduled to be complete. This can
happen because the video player runs on a real Android
device and has to share the CPU with the system and
background processes.

Despite all these complicating factors, the measurement
results for the average video quality in Figure 9a show only
little differences between the simulation and testbed. This
indicates that our mechanisms for quality selection work in
our testbed implementation as well as expected based on the
simulation.

Figure 9b shows the results for the average lateness in the
testbed. The measurement results for the greedy schedulers
again show only a small difference compared to the simulation,
but the measurement results for the MIQCP and the FILL
scheduler show a significantly higher lateness for the testbed.
We discovered that this is due to the buffer minimization in
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Figure 9. Testbed Measurement Results (dashed lines) compared to Simulation Results (solid lines)

these two schedulers: being forced to use a low buffer level
makes the video player more susceptible to the timing side
effects we previously described.

The results for the average buffer fill level in Figure 9c again
show only a small difference between the simulation results
and the testbed measurements.

Taking into account the side effects from the testbed
setup, we can sum up that our testbed implementation of the
anticipatory scheduling works as forecasted by the simulation
results. This agreement of results between two different and
independent evaluation methodologies lends considerable evi-
dence to the utility and feasibility of our proposed anticipatory
scheduling scheme.

VI. CONCLUSION AND FUTURE WORK

We have presented an approach to efficiently exploit antici-
patory knowledge of future wireless data rate for wireless video
streaming. Our simulation results and testbed measurements
consistently show that adapting buffer and video quality to the
anticipated wireless data rate essentially eliminates playback
interruptions while maintaining a high video quality level.

The presented results only show the performance of offline
schedulers, where the data rates are anticipated for all future
time slots. In our future work we will also focus on online
schedulers with limited anticipatory knowledge.
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