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Abstract— Self-organization techniques based on promoters
and inhibitors has been intensively studied in biological systems.
Promoters enable an on-demand amplification of reactions to a
particular cause. This allows to react quickly with appropriate
countermeasures. On the other hand, inhibitors are capable of
regulating this uncontrolled amplification by suppressing the
reaction. In this paper, we demonstrate the applicability of these
mechanisms in a network security scenario consisting of network
monitoring elements, attack detection, and firewall devices. Pre-
vious work identified most existing detection approaches as not
suitable for high-speed networks. This problem can be alleviated
by separating the methodologies for network monitoring and for
subsequent data analysis. In this paper, we present an adaptation
algorithm that allows to manage the individual configuration
parameters in order to optimize the overall system. We show
the advantages of self-regulating techniques based on promoters
and inhibitors that lead to maximized security and that gracefully
degradate in case of overload situations. We created a simulation
model to verify the algorithms. The results of the conducted
simulations encourage further studies in this field.

I. INTRODUCTION

Network security facilities usually include mechanisms for
attack detection and appropriate countermeasures. If employed
in high-speed networks, a third component is added in order to
cope with the steadily increasing amount of data and the very
high bandwidths in nowadays backbone networks: network
monitoring. All these components interoperate in a distributed
environment. Driven by network security demands, network
monitoring methods and techniques have been developed
and standardized by several organizations, first of all by the
IETF (Internet Engineering Task Force). Figure 1 depicts a
typical scenario. Monitoring probes are used to obtain traffic
statistics and to capture selected packets. This information is
forwarded to associated attack detection systems, e.g. intrusion
detection systems (IDS), which in turn analyze the data and
close the loop by configuring firewall systems to counteract
identified attacks. The same figure also introduces possible
extensions to distributed attack detection by interconnecting
autonomous IDS systems to share information about ongoing
attacks and legitimate traffic. In this scenario, the efficiency of
the security mechanisms strongly depends on the performance
of all involved components. In the following, we concentrate
on attack detection as one of the major applications of network
monitoring, especially DDoS (distributed denial-of-service)
attacks are concerned [2], [17]. Such attack detection entities
rely on the quality of received monitoring data, i.e. their
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Fig. 1. Network security scenario consisting of monitoring probes, associated
attack detection systems, and firewall devices

timeliness, correlation, and completeness. The most important
issue is to prevent the attack detection system from becoming
overloaded by monitoring probes, which are sending too much
information. Primarily, two reasons lead to this objective. We
need to prevent the detection system from becoming a target
itself as well as to increase the availability of the overall
system. In a distributed attack detection environment, each
subsystem can perform the detection autonomously. Neverthe-
less, a single overloaded system can miss packets of a primary
attack accompanied by a large amount of meaningless packets.

Searching for methods available to reduce the amount of
monitoring data, two solutions can be found: flow monitoring
and packet sampling. Flow monitoring [1] provides statistical
measures of packet flows described by common properties,
e.g. by the IP-5-tuple [18]. Depending on the specification of
the flow characteristics, the necessary bandwidth to transport
all monitoring data can be successfully reduced at cost of
granularity and content. On the other hand, packet sampling
is used for the selection and analysis of a few selected
packets [11]. Filter are used for deterministic packet selection
while statistical operations allow to select packets based on
content-independent measures. All these mechanisms must be
properly configured in order to achieve an optimal result.
In summary, the scalability of the overall system strongly
depends on three parameters: the current network load, the
amount of flows that was successfully identified to be ma-
licious or legitimate, and the configuration of the involved
systems. Similar observations hold for the reliability in terms



of overload prevention of subsystems, e.g. monitoring probes
or attack detection systems.

Turning to nature, we figured out several commonalities
between the structure of organisms and computer networks [8].
This is also true for the cellular signaling pathways and data
communication, thus promising high potentials for computer
networking in general and adaptive network security in par-
ticular [15]. Based on these investigations, we started to adapt
mechanisms known from molecular biology to enable a self-
organized operation and control in network security scenarios.

We developed and analyzed an adaptive mechanism [5],
[7] for reducing the amount of monitoring data to adjust the
load of involved attack detection systems. The primary goal
is to monitor as much packet data as possible in order to
achieve most accurate detection results. A threshold is given
by the processing capacity of the involved systems, thus, an
upper bound is defined. Technically, this threshold depends
on the many parameters including the form and amount of
monitoring data. In order to achieve this goal, we created
two separate feedback loops as inspired by similar solutions
found in nature [6]. These feedback loops represent promoter /
inhibitor functions, i.e. they either stimulate monitoring probes
to send dare, i.e. higher quality data, or they suppress this
amplification effect if the detection modules approach their
maximum capacity.

The following general objectives are addressed with our
adaptive re-configuration scheme. Self-maintenance relies on
the adaptation of configuration parameters depending on the
environmental conditions. The autonomously working entities
must be able to adapt to changing environmental conditions.
Self-healing mechanisms respond to system failures. For ex-
ample, on-demand re-configuration is required in the case
of resource shortages. Self-optimization refers to the overall
detection quality. This can be achieved by exchanging informa-
tion about identified attacks or suspicious network connections
and also by statistically forwarding parts of collected data
packets and network statistics to neighboring probes.

We created appropriate simulation models to analyze the
scalability of the developed approaches. Basically, we im-
plemented the behavior of monitoring, firewall, and attack
detection systems. In order to allow practically significant
simulations and to easily compare different configurations,
we used previously monitored data for trace-driven input
modeling. We studied the configuration and possible adapta-
tion of individual subsystems to increase the scalability and
reliability of the overall system. It turned out that the dynamic
reconfiguration depending on the current network behavior
is possible without any global control, i.e. we achieve an
optimized system behavior at all times.

The rest of the paper is organized as follows. Sections II
and III reflect the state-of-the-art in network monitoring and
present an overview to the investigates biological mechanisms,
respectively. The self-organizing adaptive control scheme is
depicted in section IV. The used simulation model including
the discussion of selected results is presented in section V.
Some conclusions in section VI summarize the paper.

II. NETWORK MONITORING

In this section, a general overview to monitoring solutions is
provided. Due to the fact that available bandwidths grow much
faster than the processing speed of the monitoring probes and
subsequent analyzers, solutions have been developed that allow
reducing the processing requirements at the analysis stage. The
primary idea behind all these concepts is to split the monitor-
ing and the subsequent analysis into two independent tasks and
to discard as much data as possible at the monitoring stage.
The first concept that was developed in this context is flow
monitoring. The key idea is to store information about flows
and the corresponding statistics instead of individual packets.
Thereby, a flow is defined as a unidirectional connection
between two end systems as defined by common properties,
e.g. the IP 5-tuple (protocol, source IP address, destination IP
address, source port, destination port). Using flow monitoring,
a single measurement data set contains information of one up
to several thousand individual packets. For the transmission
of the monitoring data to an analyzing system, a special
protocol was developed: Netflow.v9 [3]. Its successor, the
IPFIX (IP flow information export) protocol provides sufficient
information for a distributed deployment [4], [19]. Even if
this methodology works well under normal conditions (usual
connections consist of about 7.7 packets per flow [16]), there
is a major problem during DDoS attacks. Typical attacks
are using forged IP addresses, different ones for each attack
packet, which results in the creation of individual flows per
packet. Thus, in such an attack situation, flow monitoring does
not scale well, i.e. it tends to overflow the connection between
the monitoring probe and the intrusion detection system (re-
gardless of the computational expense at the analysis). To cope
with this problem, recently an aggregation mechanism was
introduced [9], [10] that allows to aggregate individual flows
into so called meta-flows. This aggregation mechanism allows
a free scaling of the amount of monitoring data and provides
the basic functionality to build adaptive self-optimizing flow-
based accounting solutions.

An additional problem is based on the basic principle
of flow monitoring: the loss of payload information. For
intrusion detection reasons, this information is often required
and, therefore, the applicability of flow monitoring is limited.
To support the selection of single but complete packets and
transporting them to an analyzer, PSAMP (packet sampling)
was developed [12], [21]. It allows the free combination of
filters and samplers. Filters are used for deterministic packet
selection based on matching fields in the IP packet. Samplers
are statistical algorithms that select packets using particular
sampling algorithms, e.g. count-based. PSAMP therefore al-
lows to monitor and to export complete packets providing
sufficient information for intrusion detection. Additionally, the
sampling algorithms, filters, and parameters can be freely
defined and re-configured allowing a full-adaptive behavior.
The monitoring can be optimized to provide all required data
to the analyzer and no more than it is able to process.

To conclude the overview to network monitoring solutions,



some strengths and disadvantages of flow accounting and
packet sampling are summarized: Flow monitoring provides
strong data compression in general. Unfortunately, during
ongoing attacks, the number of flow records easily reaches
the number ob observed packets and there is no possibility
for signature-based attack detection due to the missing pay-
load information. In case of packet sampling, the reduction
depends only on the sampling algorithm, i.e. on then current
configuration. The methodology-inherent loss of packet infor-
mation makes the usage of such approaches in accounting and
charging scenarios difficult. Therefore, even more functionality
is required to cope with the growing amount of network traffic.
In the next section, we discuss an approach for adaptively re-
configuration of involved components in the network security
scenario.

III. BIOLOGICAL BACKGROUND

In an interdisciplinary team we are identifying appropriate
mechanisms in cell biology and to adapt them to networking
technology with the focus on self-organization based on adap-
tive feedback loops. A structural comparison of organisms and
computer networks depicts that both show high similarities.
Also, the communications between the systems, the signal
transduction pathways, follow the same requirements [8].
Here, a specific regulation mechanism is discussed.

Some organs such as the kidney do play a central role
on physiological functions and dysfunctions of the organism.
For example a descent of arterial blood pressure below a
critical value which will have many negative consequences
for the whole body is monitored by a small population of
cells in the filtration unit of the kidney [20]. As an answer to
this information, these cells produce a protein (renin) which
has the function to initiate a cascade of conversions and
activations, respectively, of another constitutive but quiescent
protein (angiotensinogen) produced by the liver and distributed
in several organs. The conversion of this protein to a shorter
one (now called angiotensin I) is the first step to form the right
answer for solving the initial problem. Further proteins are
necessary for the formation of this final answer. The protein
ACE (angiotensin converting enzyme) further modulates this
protein, angiotensin I by cleaving it into the short and potent
protein angiotensin II. This protein represents the final answer
which now has many effects on different cells in different
organs in order to increase the blood pressure to normal level.
On the one hand, angiotensin II stimulates the production of
further protein signals in the adrenal gland, which is e.g. a
hormone called aldosterone. This protein in turn stimulates
the retention of Na+ ions in the kidney which finally has
consequences for the blood volume regulation. On the other
hand, angiotensin II stimulates the contraction of smooth
muscle cells surrounding blood vessels within the kidney.
Finally, angiotensin II also activates the production of the
hormone vasopressin in the adenohypophysis in the brain
which finally plays a role in the blood volume regulation. All
these effects enhance the blood pressure in the whole body.
The complete procedure is depicted in figure 2.
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Fig. 2. Overview of the regulation of blood pressure (signaling cascades
including a molecular negative feedback mechanism)

Looking at one of the target cells of angiotensin II in
the kidney or smooth muscle cells, the protein binds to
certain receptors on the cell surface. This binding induces an
intracellular signal transduction cascade that finally results in
the aforementioned actions to increase the blood pressure. A
molecular negative feedback mechanism finishes the whole
cellular reaction. If all receptor are bound by angiotensin
II, the reaction is blocked which in turn also blocks the
primary conversion of angiotensinogen to angiotensin II in the
way that the initial renin secretion is blocked. Therefore, this
mechanism describes a very effective remote and local control
of the blood pressure which plays a central role in the body.

In summary, renin is a promoter for the development of
angiotensin II, which in turn works as an inhibitor for the
production of renin. A smooth self-regulation is the result of
this feedback loop [14]. We will describe the application of
this methodology for the envisioned network security scenario
in the next section.

IV. ADAPTIVE CONTROL SCHEME

Our developed adaptive control scheme depends on the
current network behavior, i.e. on the observed traffic as well
as on the current state of the individual subsystems. The
primary intention of this approach is to prevent overload
situations. In this section, we outline the used models and
the application of previously depicted biological promoter /
inhibitor principles. The developed model is the basis for the
conducted performance measures.

A. Modeling the Security Solution

The overall goal is to adapt the rate of packets sent to
the attack detection system. The following three methods can
be used to regulate the rate of monitored data: Compres-
sion/encoding – Monitored packet data can be encoded in a
way reducing the number of transmitted bytes to the mini-
mum. This is done using IPFIX and associated aggregation
mechanisms. Statistical sampling – In many cases statistically
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Fig. 3. Basic model for adaptive re-configuration including the main
components and the control and data flows

chosen packets can be successfully used to determine possible
attacks or to identify legitimate traffic. The PSAMP framework
specifies a number of sampling algorithms that fulfill the re-
quirements of anomaly detection systems. Blacklists/whitelists
– Usually, blacklists represent hosts involved in an attack
and whitelists represent legitimate traffic. Blacklists in packet
filtering systems, i.e. firewalls, represent a functionality having
two advantages. First, the packets are prevented from reaching
the systems under attack and, secondly, these packets also no
longer reach the monitoring system. Therefore, the data rate
being sent by the monitoring systems to the attack detection
systems is reduced. Additionally, whitelists are used at the
monitoring probes to reduce the amount of data transmitted to
the analyzing systems.

Adaptive flow aggregation has been addressed by Hu et
al. [13], proposing to adapt the aggregation level dynamically
according to the available resources of the monitoring probe.
Although this approach avoids flow loss in DDoS attack
situations as described above, it does not take into account
that arbitrarily defined flow aggregates usually do not meet
the requirements of the analyzer.

In figure 3, a model is shown that represents the con-
sidered architecture. On the lower half, the packet-oriented
monitoring part is shown. The observation domain reflects
the network behavior. All data packets regardless of their
content are received by the overall system. In a first step, a
firewall component is used to filter all packets that belong to
previously detected attack flows. A blacklist is involved here
that can be configured dynamically by an IDS system. In a
subsequent step, the monitoring probe is used to gather packet
information, invoke flow accounting and/or packet sampling
algorithms, and to transmit the monitored data sets to the
attack detection system. We introduce a whitelist, also config-
ured by the IDS, representing all legitimate flows. Therefore,
appropriate filters can be used at the monitoring probe to
reduce the amount of data packets to be processed. Finally, an
IDS system is used to process the monitoring data. All well-
detected flows, either attack or legitimate, are communicated to
the firewall or monitoring systems, respectively. The depicted
parameters as used in figure 3 represent possible measures
to adapt the system behavior. The total arrival rate λ can be
decomposed into attack traffic λb, legitimate traffic λw, and
unknown data flows λ−λb−λw. λIDS is a system parameter
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Fig. 4. Adapting the biological model to network monitoring; promoter and
suppressor mechanisms are needed

describing the maximum data rate that can be processed by
the attack detection system. Finally, λbi is the arrival rate of
‘black’ packets belonging to the i-th flow, i.e. representing
the possibility to optimize the system behavior depending on
particular attack flows.

B. Biologically inspired Promoters and Inhibitors

As previously mentioned, bio-inspired methodologies can
be used to create appropriate feedback loops for adapting the
system parameters. In our system, we want to adapt the pa-
rameters of the monitoring environment depending on the load
of the detection system and of the current network behavior.
Usually, two kinds of feedback loops are used in combination:
positive feedback for short-term amplification and negative
feedback for long-term regulation. Both loops are depicted in
figure 3. The intrusion detection reports detected attacks to the
firewall that in turn blocks this traffic and, therefore, reduces
the number of packets that have to be monitored. Additionally,
the detection system reports legitimate traffic to the monitor.
This monitor stops reporting on packets belonging to these
flows and, therefore, reduces the number of packets that
have to be analyzed. Obviously, both configurations cannot
be permanent. Sources sending legitimate traffic might begin
to send attack packets at any time. Also, previously attacking
machines might become ’corrected’ and should not be starved
by our firewalls.

In contrast to other system that dynamically configure
firewall rules based on attack detection results, we introduce
two other basic methods:

1) direct configuration of filters at the monitoring probes
corresponding to legitimate data flows and

2) associated timeout values to each blacklist and whitelist
entry corresponding to the current overall system load.

The adaptation of biological promoters and inhibitors is
depicted in figure 4. The self-regulating process that amplifies
the production of angiotensin II by the production of renin
is reflected by the measurement of λb and λw. If there
are resources available at the attack detection system, the
amplification effect is initiated by decreasing the associated
timeouts for entries in the backlists and whitelists. Similarly,
the suppressing reaction, i.e. angiotensin II inhibits the pro-
duction of renin, is modeled by modifying the timeouts in
the opposite direction in case of overload situations. Thus, a



methodological approach can be developed that is based on
the parameterization being adapted to the current situation in
the network. The attack detection system can communicate
its current load to the monitoring probes. These can adapt a
number of parameters, usually timeouts, based on the number
of packets received from the network, the number of packets
reported to the detection systems, and the current load of the
analyzers.

C. Mathematical Modeling

Finally, the adaptation is done using the following formulas
for calculating appropriate timeouts. TOblack as estimated by
(1) corresponds to the firewall system. Obviously, this timeout
depends on the measured rate of attack and legitimate flows
as well as on the maximum load of the IDS system. Particular
interest is expressed in specific attack flows, or more precisely
in the long-term behavior of such flows. Therefore, the load of
attack flows is measured for each flow separately by λbi. We
used this measure to punish flows that reappear multiple times
in the blacklist. The constants C1 and C2 explicitly define the
system behavior. Two different values are required because of
the different scaling of t1 and t2...t4.

TOblack = C1
λbi

λ︸︷︷︸
t1

+C2

 λb

λ︸︷︷︸
t2

+
λ

λw︸︷︷︸
t3

+
λ

λIDS︸ ︷︷ ︸
t4

 (1)

On the other hand, TOwhite as computed by (2) corresponds
to the monitoring probe. Here, we only focus on the behavior
of the firewall system and the capacity of the IDS represented
by λb and λIDS , respectively. Again, C3 is used to define the
system behavior.

TOwhite = C3

 λ

λIDS︸ ︷︷ ︸
t5

+
λ

λb︸︷︷︸
t6

 (2)

The single terms (t1...t6) are discussed in the following.
In principle, all terms belonging to one timeout are summed
up and scaled by a constant (C1...C3). In our simulation
experiments, we tried to find appropriate values for these
constants. In a next step, the constants themselves can be
adapted to the current scenario.

t1 = λbi

λ – Ratio of the i-th attack flow to the overall attack
rate. Used for penalizing previously discovered attack flows.
This term must be scaled separately using C1 because it is
usually very small.

t2 = λb

λ – Similar to t1 but it defines the ratio of arriving
attack traffic to the overall throughout. The larger t2 is, the
more aggressive the attack.

t3 = λ
λw

– This term describes the safety of the arriving
traffic. The larger the amount of ’white´ packets, the smaller

the requirement for large timeouts at the firewall.

t4 = λ
λIDS

– This term is a measure for the overload of
the attack detection system.

t5 = λ
λIDS

– Similar to t4 but used at the monitor instead
of the firewall system.

t6 = λ
λb

– Similar to t3 but defining the potential risk of
arriving packets.

Each term is represented by a fraction of two rates.
Therefore, appropriate countermeasures have to be applied to
prevent the denominator to become zero. Therefore, each of
the terms has to be read in the following way:

ti =
{ λj

λk
if λk 6= 0

0 if λk = 0
(3)

V. SIMULATION MODEL AND EVALUATION

A. Simulation model

In order to evaluate the potentials of the described feedback-
based adaptation, we implemented a simulation model using
the JAVA-based discrete simulation tool AnyLogic. The sim-
ulation model is depicted in figure 5. Several meters have
been included to measure the performance of the overall
system. In all setups, we executed a set of simulations showing
the reduction of packet data that is to be received and pro-
cessed by the attack detection systems. The simulation model
has to be interpreted as follows. The observation domain
‘creates’ packet data (see below) that is inspected by the
observationDomainLinkMeter. Afterwards, a firewall
element is used to filter packets according to the current
blacklist configuration. The packets arriving at the monitor are
measured by the firewallLinkMeter. Depending on the
simulation setup, the monitor is providing IPFIX or PSAMP
data (after applying the whitelist) that is measured by the
exportLinkMeter. Finally, the IDS selects packets to
belong to attack or legitimate traffic according to a proba-
bilistic scheme. The results are used to adapt the blacklist and
whitelist entries. All measured information is transmitted to the
meterLogger object for subsequent performance analysis.

For reasonable comparability between the simulation en-
vironment and real communication behavior, we decided to
use trace-based input modeling. We accumulated several traces
in front of our workgroup server and directly at the Internet
gateway of our university.

B. Results using flow monitoring

In a first set of simulations we evaluated the capabilities of
the proposed adaptive reconfiguration scheme for flow-based
monitoring. Besides the main objective to assess the overall
system behavior, the primary goal was to find adequate values
for the scaling factors C1, C2, and C3. In the following,
selected simulation results are presented and discussed. In
multiple experiments, we evaluated candidate values for the
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Fig. 5. Simulation model including message types on the communication
channels: a) IP packets, b) flow data, c) feedback, d) measurement information
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Fig. 6. Number of blacklist entries (left) and timeouts TOblack (right)

scaling factors. The parameters used for the presented simula-
tion results were C1 = 9∗108, C2 = 236, and C3 = 120. The
other simulation parameters are λIDS = 0.6, E[white]= 0.1,
and E[black]= 0.01. As already mentioned, we monitored the
traffic at the border gateway of our university. The utilization
was quite constant (58.6kpps ± 1.8kpps). Due to few attacks,
the firewall removes only few flows (around 0.5%). Therefore,
the packet rate arriving at the monitor is similar but shaped
(58.2kpps ± 1.8kpps).

Even though the number of discarded packets at the firewall
is very small, this is primarily a result of the small timeout
of each entry. The attack detection system is not overloading,
therefore, it may analyze detected attacks over and over again.
The behavior of the firewall is depicted in figure 6. In steady-
state, around 6000 blacklist entries exist with an average
timeout of 260s. Finally, the numbers of whitelist entries and
the corresponding timeouts have to be examined. As shown
in figure 7, in steady-state, the number of whitelist entries is
around 60000 and the average timeout is 320s. The number
corresponds to the detection quality of legitimate traffic which
is about ten times higher then for attacks. The timeout oscil-
lates around the requested value. In figure 8, the measured
parameters λb (left) and λw (right) are depicted. These figures
allow a more convenient analysis of the simulation results.

C. Results using packet sampling

For the packet sampling based measurements, we used the
packet trace taken in front of out workgroup server. The
monitor is executing a sampling algorithm that selects 50% of
the packets (count-based). Obviously, the output packet rate
is about one half of the input packet rate and the output byte

Number of whitelist entries TOwhite

Fig. 7. Number of whitelist entries (left) and timeouts TOwhite (right)
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rate represents the reduction due to keeping only parts of the
packet (IP header including transport protocol information).

In the following, we used the implemented blacklist and
the whitelist representing the detected attack and legitimate
flows. The most important parameters to analyze are: Timeout
– A timeout value associated to each entry in the blacklist and
whitelist. This defined how long an entry as determined by the
attack detection system will be valid in the firewall system
and the monitoring probe, respectively. Detection ratio – We
assume a constant detection ratio resulting in new blacklist /
whitelist entries. This is a presumption that does not correctly
correspond with the behavior in a real network. Nevertheless,
it reflects the behavior of the global system pretty well due to
the proper configuration of the blacklist / whitelist.

In the following simulation results, we always display
the output packet rate as issued by the monitoring probe
and the input rate as a reference, because this reflects the
corresponding amount of data that is to be processed by the
detection system. In the first simulations, we examined the
effect of the timeout value associated with the single entries
in the blacklist and whitelist. For analyzing this behavior, we
statically configured a detection ratio of 10% for new whitelist
entries and 1% for new blacklist entries. These values seem to
be adequate to reflect the behavior in real networks because
about ten times as mush flows can be detected as legitimate
traffic that as attack traffic and most of the network packets
are not directly categorizable.

In figure 9, the simulation results are shown. Obviously,
the adaptive configuration has a large impact on the amount
of output packets. Additionally, it can be seen that a large
timeout, which results also in large blacklist / whitelist tables
and therefore, exhaustive search operations, does not lead to
a massive reduction of the output packet rate. The reason for
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this behavior is the relatively short time a flow is lasting in the
network. In figure 10, a second simulation run is shown. This
time, the timeout was fixed at 10 seconds and the detection
ration was modified. Interestingly, especially the whitelist has
not that large impact on the amount of packets sent to the
detection system as expected by the percentage of ”white”
packets (up to 20%). Additionally, it can be seen that the
amount of data presented by the monitoring probe to the
attack detection system can be adapted using an information
exchange between all involved systems. An optimal adaptation
to the behavior of the network seems to be very important and
will lead to an optimized global system. This optimization step
can be executed independently by each participating entity in
the network by two meanings: local parameterization and com-
munication / interoperation of neighboring entities. Therefore,
we have shown that it is possible to self-organize the complete
monitoring and analyzing environment for network security
enhancement focusing on the monitoring part.

VI. CONCLUSION

In this paper, we studied the adaptation of biologically
inspired promoter / inhibitor schemes for adaptive parameter
control in network security environments. Using an amplifying
positive feedback loop and a suppressing negative feedback
loop, we achieved a self-organizing autonomic behavior of the
overall system. Especially the capabilities of the adaptation to
reflect the local needs of an analyzing system in combination
to the observation of the environment, i.e. the arrival rates at

each subsystem make this approach useful for most monitoring
scenarios. In a next step, we will evaluate the algorithm in an
experimental setup to compare this evaluation to the simulation
results.
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