Distributed Passive Monitoring in Sensor Networks

Falko Dressler, Rodrigo Nebel and Abdalkarim Awad
Autonomic Networking Group, Dept. of Computer Science 7, University of Erlangen-Nuremberg, Germany
Email: dressler@informatik.uni-erlangen.de

Abstract—Operation and control in wireless sensor networks
(WSN) demands for new concepts and strategies such as dis-
tributed behavior control and self-organization. During the de-
velopment and operation, the verification of the implemented
algorithms is usually hard to discover. Monitoring techniques
are required for this purpose. We present a concept for passive
monitoring of WSN. Our hierarchical architecture allows a
distributed monitoring and a subsequent analysis of the network
traffic in the sensor networks. Basically, we employ sensor nodes
with two radio interfaces. The first one is used to passively
intercept radio packets in order to prevent any impact on
the observed network behavior. The other one sends received
information to the next level in the monitoring hierarchy towards
a central analysis station.

I. INTRODUCTION

The communication in wireless sensor networks (WSN) is
often complex and in some cases difficult to predict. Especially
during the development of WSNs, methods for analyzing and
debugging communication methods are strongly demanded.
Usually, only the behavior of single sensor nodes can be super-
vised using directly attached debugging interfaces. Therefore,
the communication between nodes can only be estimated if all
participating nodes can be analyzed simultaneously. A second
problem lies in the operation and control of already deployed
sensor networks. In failure situations, tools are needed to
analyze the behavior of the network as a whole.

In this work, we present an architecture and a tool to
passively monitor sensor networks. We are able to intercept all
radio packets in the network, and to store and transmit them to
a central computer for further analysis. The transport (and the
coordination of the monitoring environment) is accomplished
in a hierarchical way. For simplified analysis, we developed a
plugin for Wireshark! for graphical analysis.

In network monitoring, passive and active monitoring tech-
niques are distinguished. In general, active monitoring refers to
the active interaction with the system under observation. Thus,
the system behavior is being influenced by the monitoring
actions. In contrast, passive monitoring means the access to the
network traffic without interfering the communicating systems.
Nevertheless, additional hardware is required for this purpose.
The obtained data can be used for several aims. We are fo-
cusing on passive management and control of sensor networks
and on enhanced debugging during protocol development.

The following approaches have been described in the lit-
erature. The nucleus network management system (NMS) [1]
represents a set of TinyOS? components that can be integrated

Uhttp://www.wireshark.org/
Zhttp://www.tinyos.net

Sensor network =
i (low power radio communication)

Sensor network L
(low power radio communication) | _‘ ‘
BTnode
[——— L
—— MONITOR Y — - BTnode
BTnode BTnode
MONITOR

bluetooth communication ﬁ

TCP/IP / WLAN
__| communication

SERVER

PC

Fig. 1. System architecture for distributed passive monitoring in WSN

into developed applications. These components frequently
deliver information to a control unit, which can determine the
behavior of the sensor nodes. The NMS allows to configure
the frequency and event types. Sympathy [2] is an active
monitoring system in which the sensor nodes are supplied with
an additional piece of software. All sensor nodes periodically
send local information to a dedicated sink node. Using this
information, the Sympathy sink can analyze the behavior of
the network, detect failures, and localize these failures. The
raising demand for sensor network monitoring encouraged also
the ScatterWeb project [3] to include monitoring techniques.
The integrated tool ScatterViewer allows to manage sensor
nodes and to collect status information. It also represents an
active monitoring application that may influence the network
behavior. A passive monitoring environment has been devel-
oped, which was named TWIST [4]. It collects information
from the participating sensor nodes using an USB-based cable-
network. This architecture allows to specifically debug all
connected nodes while it does not support the collection
of radio messages. Additionally, an expensive infrastructure
(USB cables) must be provided.

II. PIMOTO — PASSIVE ISLAND MONITORING TOOL

In order to enable a comprehensive monitoring in WSNs,
we developed pimoto, a distributed monitoring environment
for passive monitoring in sensor networks. In the following,
we describe its architecture and characteristics.

A. Architecture

Two aspects should be supported by our passive monitoring
system. First, we want to allow hierarchical monitoring, i.e.
multiple deployed monitoring nodes have to be interconnected
by a network separate from the WSN. Secondly, the collected
packet data should be visualized at the central server in
real time, i.e. the latency from monitoring, transmission, and
analyzing should be minimized.

The hierarchical structure is depicted in figure 1. As can
be seen, monitoring nodes are placed inside a sensor network.
These nodes collect all the radio traffic. Using a second radio
interface (in our case, we employ Bluetooth), the monitor-
ing data is delivered to a PC, which may control multiple
monitoring nodes. The PC forwards the data using a TCP/IP
network, e.g. WLAN-based, to a central server. At this place,
the standard network monitoring application Wireshark is used
to receive, decode, and visualize the packet information.

Two options can be used to transmit the received monitoring
data from the monitoring nodes to the server: push and
pull. We decided to use the push technique as the storage
capabilities of the employed monitoring nodes (actually, these
are typical embedded sensor nodes) is strongly limited. Thus,
the intercepted radio packets must be forwareded as soon as
possible to re-use the memory for further data. Additionally,
the demanded real-time behavior of the analysis as well as
the typically very low data rates in WSN contributed to our
decision.

B. Implementation

For implementing pimoto, we used the BTnode sensor
nodes’. This sensor node incorporates two radio interfaces,
the Chipcon CC1000 for low power radio transmissions and a
Bluetooth interface. We developed a sensor program that sets
the radio interface in the promiscuous mode, i.e. in a mode
that allows to capture any packet regardless of its destination
address. As this capability is currently not supported by
the used B-MAC protocol implementation, we extended the
BTnut driver accordingly. For the Bluetooth communication,
we employed the rfcomm protocol. It represents a simple
serial connection between the sensor node and the PC. This
PC forwards all received monitoring data to the server using
TCP/IP.

Synchronization of the timestamps that are stored with each
captured packet has been proven to be the most challenging
issue. We need accurate timestamps in order to (re-)order
the received packets in the analysis stage. Unfortunately, the
clocks of the monitoring nodes cannot easily be synchronized.
Therefore, we used a trick to synchronize the timestamps in
the second hierarchy, i.e. at the controlling PCs. Each sensor
node provides a 4-byte counter showing the milliseconds since
its last reboot. Thus, the uptime of the sensor node can be
exactly measured for 24 days (then, the counter overflows).
We used this uptime measure as the recorded timestamp in
each collected packet. Then, prior submission to the connected

3BTnode rev3, http://btnode.ethz.ch/

Ble Edi Vew Go Capure Anslye Swistcs el
SEeed =060 KOO F00 HEB AQAAA MBIX 8

Deer Joiodenpe =3 | 4 Expression. | D ciear| ¥ aprly

[Fsoeme

BTnodeRadioProocal (binode), 63 byies

Fig. 2. Network analysis in WSN using Wireshark

PC, the timestamp is subtracted from the current submission
time, i.e. depicting the time difference between reception and
forwarding. The PC can then update the timestamp according
to its, e.g. NTP-synchronized, local time.

At the server, we used the standard monitoring environment
Wireshark for data analysis and filtering. Our plugin "BTnode
Radio Protocol” decodes and interprets the received data
packets. Currently, we support all features from the B-MAC
protocol while other elements (and protocols) can easily be
added. The graphical analysis is depicted in figure 2. Shown
is a decoded B-MAC packet including source and destination
address, length, type, timestamp, and payload data.

III. CONCLUSION

In this paper, we depicted pimoto, our passive monitoring
tool for distributed monitoring and analysis of WSNs. The
primary objectives were to intercept radio data packets in a
completely passive way. Additionally, we wanted to support
distributed monitoring in a hierarchical way. In conclusion,
it can be said that the developed toolkit allows to perform
the envisioned management and control tasks, which are
usually required in WSN. Protocol development as well as
failure detection are simplified by means of graphical protocol
analysis.

REFERENCES

[1] G. Tolle and D. Culler, “Design of an Application-Cooperative Man-
agement System for Wireless Sensor Networks,” in Second European
Workshop on Wireless Sensor Networks (EWSN), Istanbul, Turkey, Jan-
uary/February 2005, pp. 121-132.

[2] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin,
“Sympathy for the Sensor Network Debugger,” in 3rd ACM Conference
on Embedded Networked Sensor Systems (SenSys 2005), San Diego,
California, November 2005, pp. 255-267.

[3] H. Ritter, R. Winter, and J. Schiller, “A Partition Detection System for
Mobile Ad-Hoc Networks,” in First IEEE Communications Society Con-
ference on Sensor and Ad Hoc Communications and Networks (SECON
2004), Santa Clara, California, October 2004, pp. 489—497.

[4] V. Handziski, A. Kopke, A. Willig, and A. Wolisz, “TWIST: A Scalable
and Reconfigurable Wireless Sensor Network Testbed for Indoor Deploy-
ments,” Technical University Berlin, TKN Technical Report TKN-05-008,
November 2005.

