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Summary. Self-organization techniques based on promoters and inhibitors has
been intensively studied in biological systems. Promoters enable an on-demand
amplification of reactions to a particular cause. This allows to react quickly with
appropriate countermeasures. On the other hand, inhibitors are capable of regulat-
ing this uncontrolled amplification by suppressing the reaction. In this paper, we
demonstrate the applicability of these mechanisms in a network security scenario
consisting of network monitoring elements, attack detection, and firewall devices.
Previous work identified most existing detection approaches as not suitable for high-
speed networks. This problem can be alleviated by separating the methodologies for
network monitoring and for subsequent data analysis. In this paper, we present an
adaptation algorithm that allows to manage the individual configuration parameters
in order to optimize the overall system. We show the advantages of self-regulating
techniques based on promoters and inhibitors that lead to maximized security and
that gracefully degradate in case of overload situations. We created a simulation
model to verify the algorithms. The results of the conducted simulations encourage
further studies in this field.

1 Introduction

Network security facilities usually include mechanisms for attack detection
and appropriate countermeasures. If employed in high-speed networks, a third
component is added in order to cope with the steadily increasing amount of
data and the very high bandwidths in nowadays backbone networks: network
monitoring. All these components interoperate in a distributed environment.
Driven by network security demands, network monitoring methods and tech-
niques have been developed and standardized by several organizations, first
of all by the IETF (Internet Engineering Task Force). Figure 1 depicts a typ-
ical scenario. Monitoring probes are used to obtain traffic statistics and to
capture selected packets. This information is forwarded to associated attack
detection systems, e.g. intrusion detection systems (IDS), which in turn ana-
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lyze the data and close the loop by configuring firewall systems to counteract
identified attacks. The same figure also introduces possible extensions to dis-
tributed attack detection by interconnecting autonomous IDS systems to share
information about ongoing attacks and legitimate traffic. In this scenario, the
efficiency of the security mechanisms strongly depends on the performance of
all involved components. In the following, we concentrate on attack detection
as one of the major applications of network monitoring, especially DDoS (dis-
tributed denial-of-service) attacks are concerned [3,20]. Such attack detection
entities rely on the quality of received monitoring data, i.e. their timeliness,
correlation, and completeness. The most important issue is to prevent the at-
tack detection system from becoming overloaded by monitoring probes, which
are sending too much information. Primarily, two reasons lead to this objec-
tive. We need to prevent the detection system from becoming a target itself
as well as to increase the availability of the overall system. In a distributed
attack detection environment, each subsystem can perform the detection au-
tonomously. Nevertheless, a single overloaded system can miss packets of a
primary attack accompanied by a large amount of meaningless packets.
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Fig. 1. Network security scenario consisting of monitoring probes, associated attack
detection systems, and firewall devices

Searching for methods available to reduce the amount of monitoring data,
two solutions can be found: flow monitoring and packet sampling. Flow mon-
itoring [1] provides statistical measures of packet flows described by common
properties, e.g. by the IP-5-tuple [21]. Depending on the specification of the
flow characteristics, the necessary bandwidth to transport all monitoring data
can be successfully reduced at cost of granularity and content. On the other
hand, packet sampling is used for the selection and analysis of a few selected
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packets [13]. Filter are used for deterministic packet selection while statistical
operations allow to select packets based on content-independent measures. All
these mechanisms must be properly configured in order to achieve an optimal
result. In summary, the scalability of the overall system strongly depends on
three parameters: the current network load, the amount of flows that was
successfully identified to be malicious or legitimate, and the configuration of
the involved systems. Similar observations hold for the reliability in terms of
overload prevention of subsystems, e.g. monitoring probes or attack detection
systems.

Turning to nature, we figured out several commonalities between the struc-
ture of organisms and computer networks [9]. This is also true for the cellular
signaling pathways and data communication, thus promising high potentials
for computer networking in general and adaptive network security in par-
ticular [18]. Based on these investigations, we started to adapt mechanisms
known from molecular biology to enable a self-organized operation and control
in network security scenarios.

We developed and analyzed an adaptive mechanism [6,8] for reducing the
amount of monitoring data to adjust the load of involved attack detection
systems. The primary goal is to monitor as much packet data as possible
in order to achieve most accurate detection results. A threshold is given by
the processing capacity of the involved systems, thus, an upper bound is de-
fined. Technically, this threshold depends on the many parameters including
the form and amount of monitoring data. In order to achieve this goal, we
created two separate feedback loops as inspired by similar solutions found in
nature [7]. These feedback loops represent promoter / inhibitor functions, i.e.
they either stimulate monitoring probes to send dare, i.e. higher quality data,
or they suppress this amplification effect if the detection modules approach
their maximum capacity.

The following general objectives are addressed with our adaptive re-
configuration scheme. Self-maintenance relies on the adaptation of config-
uration parameters depending on the environmental conditions. The au-
tonomously working entities must be able to adapt to changing environmental
conditions. Self-healing mechanisms respond to system failures. For example,
on-demand re-configuration is required in the case of resource shortages. Self-
optimization refers to the overall detection quality. This can be achieved by
exchanging information about identified attacks or suspicious network con-
nections and also by statistically forwarding parts of collected data packets
and network statistics to neighboring probes.

We created appropriate simulation models to analyze the scalability of the
developed approaches. Basically, we implemented the behavior of monitoring,
firewall, and attack detection systems. In order to allow practically significant
simulations and to easily compare different configurations, we used previously
monitored data for trace-driven input modeling. We studied the configuration
and possible adaptation of individual subsystems to increase the scalability
and reliability of the overall system. It turned out that the dynamic recon-
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figuration depending on the current network behavior is possible without any
global control, i.e. we achieve an optimized system behavior at all times.

The rest of the paper is organized as follows. Sections 2 and 3 reflect
the state-of-the-art in network monitoring and present an overview to the
investigates biological mechanisms, respectively. The self-organizing adaptive
control scheme is depicted in section 4. The used simulation model including
the discussion of selected results is presented in section 5. Some conclusions
in section 6 summarize the paper.

2 Network Monitoring and Attack Detection

2.1 High-speed network onitoring

In this section, a general overview to monitoring solutions is provided. Due to
the fact that available bandwidths grow much faster than the processing speed
of the monitoring probes and subsequent analyzers, solutions have been de-
veloped that allow reducing the processing requirements at the analysis stage.
The primary idea behind all these concepts is to split the monitoring and the
subsequent analysis into two independent tasks and to discard as much data
as possible at the monitoring stage. The first concept that was developed in
this context is flow monitoring. The key idea is to store information about
flows and the corresponding statistics instead of individual packets. Thereby,
a flow is defined as a unidirectional connection between two end systems as de-
fined by common properties, e.g. the IP 5-tuple (protocol, source IP address,
destination IP address, source port, destination port). Using flow monitoring,
a single measurement data set contains information of one up to several thou-
sand individual packets. For the transmission of the monitoring data to an
analyzing system, a special protocol was developed: Netflow.v9 [4]. Its suc-
cessor, the IPFIX (IP flow information export) protocol provides sufficient
information for a distributed deployment [5, 23]. Even if this methodology
works well under normal conditions (usual connections consist of about 7.7
packets per flow [19]), there is a major problem during DDoS attacks. Typical
attacks are using forged IP addresses, different ones for each attack packet,
which results in the creation of individual flows per packet. Thus, in such an
attack situation, flow monitoring does not scale well, i.e. it tends to overflow
the connection between the monitoring probe and the intrusion detection sys-
tem (regardless of the computational expense at the analysis). To cope with
this problem, recently an aggregation mechanism was introduced [10,12] that
allows to aggregate individual flows into so called meta-flows. This aggrega-
tion mechanism allows a free scaling of the amount of monitoring data and
provides the basic functionality to build adaptive self-optimizing flow-based
accounting solutions.

An additional problem is based on the basic principle of flow monitoring:
the loss of payload information. For intrusion detection reasons, this infor-
mation is often required and, therefore, the applicability of flow monitoring is
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limited. To support the selection of single but complete packets and transport-
ing them to an analyzer, PSAMP (packet sampling) was developed [14, 26].
It allows the free combination of filters and samplers. Filters are used for
deterministic packet selection based on matching fields in the IP packet. Sam-
plers are statistical algorithms that select packets using particular sampling
algorithms, e.g. count-based. PSAMP therefore allows to monitor and to ex-
port complete packets providing sufficient information for intrusion detection.
Additionally, the sampling algorithms, filters, and parameters can be freely
defined and re-configured allowing a full-adaptive behavior. The monitoring
can be optimized to provide all required data to the analyzer and no more
than it is able to process.

To conclude the overview to network monitoring solutions, some strengths
and disadvantages of flow accounting and packet sampling are summarized:
Flow monitoring provides strong data compression in general. Unfortunately,
during ongoing attacks, the number of flow records easily reaches the number
ob observed packets and there is no possibility for signature-based attack de-
tection due to the missing payload information. In case of packet sampling,
the reduction depends only on the sampling algorithm, i.e. on then current
configuration. The methodology-inherent loss of packet information makes the
usage of such approaches in accounting and charging scenarios difficult. There-
fore, even more functionality is required to cope with the growing amount of
network traffic. In the next section, we discuss an approach for adaptively
reconfiguration of involved components in the network security scenario.

2.2 CATS - Attack Detection using Cooperating Autonomous
Detection Systems

The objective of this section is to describe an approach for attack detection
using cooperative autonomous detection systems. This system, CATS [11],
is one of the first approaches that provide an architecture clearly split into
the mentioned three parts: monitoring, analysis, counteracting. Additionally,
aspects of distributed operation are included into the monitoring part as well
as into the analyzing part.

The architecture of an individual detection system is described in [11]. It
consists of an outer part for network monitoring and an inner part for detec-
tion. The network monitoring part is responsible for capturing packets and
flow statistics from the network, either directly using a connected network
interface, or by employing monitoring probes and the standardized protocols
IPFIX and PSAMP. This part also performs necessary preprocessing of the
gathered data, such as packet filtering or generation of statistical flow mea-
surements needed by the detection part. It is further divided into a layer for
packet monitoring and sampling and a layer for statistical measurements. The
detection part is divided into two detection engines, one providing statistical
anomaly detection and the other applying knowledge-based detection mecha-
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nisms. The required packet data and statistical measures are provided by the
network monitoring part.

The main reason for separating the network monitoring part and the de-
tection part is to allow for a multi-hierarchy monitoring environment for cap-
turing packets and flow statistics. The metering NSLP protocol [15] can be
employed for the configuration of the monitoring environment. This allows
for deploying one detection system that analyzes data monitored at differ-
ent points of the network. Furthermore, a detection system can become itself
a source of information to other detection systems by exporting monitoring
data.

In the following subsections, the network monitoring part and the detection
part of the detection system are described in more detail. This and additional
information on CATS can be found in [11].

Packet monitoring and sampling layer

The architecture of our detection system allows two ways to capture packet
data from the network: by using a directly connected NIC, and by employing
PSAMP exporters, which send the collected information in a standardized
way. The packet monitoring and sampling layer is responsible for capturing of
packet data received via NICs or PSAMP. Moreover this layer may preprocess
the packet data. Filters or sampling algorithms may be applied to reduce the
amount of packets being further processed. Within the detection system, the
collected packet data is used for two purposes. First, it can be directly passed
on to the detection part in order to look for known attack signatures. Secondly,
it can be forwarded to the statistical measurement layer that generates flow
statistics from the packet data. Additionally, the detection system can export
packet data to other detection systems using PSAMP.

Statistical measurement layer

The statistical measurement layer generates statistical flow measures based
on the packet data received by the packet monitoring and sampling layer, and
the flow statistics received via IPFIX. Examples for statistical measures are
the number of bytes and packets per flow or per aggregate, the number of
connections per time, and the number of similar connections. The resulting
statistical measures build the basis for further anomaly detections. For in-
stance, an unusually high connection rate may indicate a distributed denial of
service attack where typically each connection consists of only a single packet.

The statistical measurement layer does not only provide the data for the
local detection mechanisms. It may also export the generated flow statistics
via IPFIX. Using the terms of IPFIX, this corresponds to the functionality of
an exporter or concentrator.
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Attack detection

In the detection system, we integrate two separate, independently working
detection engines - an anomaly detection engine and a knowledge-based de-
tection engine - in order to achieve high detection rates. The detection of an
attack results in the generation of an event that is combined with additional
information for characterizing the attack. This information can be exchanged
with other detection systems in order to improve the detection performance.
On the other hand, it can be used to trigger appropriate countermeasures.

The anomaly detection works on statistical data received from the lower
statistical measurement layer. This detection process is looking for unusual
behavior without any precognition. It compares long-time behavior to short-
time behavior and maintains different profiles, e.g. per destination, aggregate,
and others. Potential techniques are statistical tests, neural networks, and
Bayes networks. The architecture of our autonomous detection system allows
to integrate a variety of other detection algorithms. The knowledge-based
approach represents the second main pillar of our detection engine. This engine
searches the packet stream for known signatures and misbehaviors. Open-
source tools such as Snort [2, 24] and Bro [22], which are widely used in the
Internet community, build the basis for this part of the detection.

3 Biological Background

In an interdisciplinary team we are identifying appropriate mechanisms in
cell biology and to adapt them to networking technology with the focus on
self-organization based on adaptive feedback loops. A structural comparison
of organisms and computer networks depicts that both show high similarities.
Also, the communications between the systems, the signal transduction path-
ways, follow the same requirements [9]. Here, a specific regulation mechanism
is discussed.

Some organs such as the kidney do play a central role on physiological
functions and dysfunctions of the organism. For example a descent of arterial
blood pressure below a critical value which will have many negative conse-
quences for the whole body is monitored by a small population of cells in the
filtration unit of the kidney [25]. As an answer to this information, these cells
produce a protein (renin) which has the function to initiate a cascade of con-
versions and activations, respectively, of another constitutive but quiescent
protein (angiotensinogen) produced by the liver and distributed in several or-
gans. The conversion of this protein to a shorter one (now called angiotensin I)
is the first step to form the right answer for solving the initial problem. Further
proteins are necessary for the formation of this final answer. The protein ACE
(angiotensin converting enzyme) further modulates this protein, angiotensin
I by cleaving it into the short and potent protein angiotensin II. This protein
represents the final answer which now has many effects on different cells in
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different organs in order to increase the blood pressure to normal level. On the
one hand, angiotensin II stimulates the production of further protein signals
in the adrenal gland, which is e.g. a hormone called aldosterone. This protein
in turn stimulates the retention of Na+ ions in the kidney which finally has
consequences for the blood volume regulation. On the other hand, angiotensin
II stimulates the contraction of smooth muscle cells surrounding blood vessels
within the kidney. Finally, angiotensin II also activates the production of the
hormone vasopressin in the adenohypophysis in the brain which finally plays
a role in the blood volume regulation. All these effects enhance the blood
pressure in the whole body. The complete procedure is depicted in figure 2.

Kidney

Renin

Angiotensinogen

Angiotensin I
ACE

Angiotensin II

Arterial blood pressure ↓

Adenohypophysis
(brain):    
vasopressin

Kidney:      
aldosterone → Na+

retention → regulation 
of blood volume

Smooth muscle cells: 
contraction

Increase of 
blood volume

Liver

Arterial blood pressure ↑

Fig. 2. Overview of the regulation of blood pressure (signaling cascades including
a molecular negative feedback mechanism)

Looking at one of the target cells of angiotensin II in the kidney or smooth
muscle cells, the protein binds to certain receptors on the cell surface. This
binding induces an intracellular signal transduction cascade that finally results
in the aforementioned actions to increase the blood pressure. A molecular neg-
ative feedback mechanism finishes the whole cellular reaction. If all receptor
are bound by angiotensin II, the reaction is blocked which in turn also blocks
the primary conversion of angiotensinogen to angiotensin II in the way that
the initial renin secretion is blocked. Therefore, this mechanism describes a
very effective remote and local control of the blood pressure which plays a
central role in the body.

In summary, renin is a promoter for the development of angiotensin II,
which in turn works as an inhibitor for the production of renin. A smooth
self-regulation is the result of this feedback loop [17]. We will describe the
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application of this methodology for the envisioned network security scenario
in the next section.

4 Adaptive Control Scheme

Our developed adaptive control scheme depends on the current network be-
havior, i.e. on the observed traffic as well as on the current state of the individ-
ual subsystems. The primary intention of this approach is to prevent overload
situations. In this section, we outline the used models and the application of
previously depicted biological promoter / inhibitor principles. The developed
model is the basis for the conducted performance measures.

4.1 Modeling the Security Solution

The overall goal is to adapt the rate of packets sent to the attack detection
system. The following three methods can be used to regulate the rate of moni-
tored data: Compression/encoding – Monitored packet data can be encoded in
a way reducing the number of transmitted bytes to the minimum. This is done
using IPFIX and associated aggregation mechanisms. Statistical sampling – In
many cases statistically chosen packets can be successfully used to determine
possible attacks or to identify legitimate traffic. The PSAMP framework spec-
ifies a number of sampling algorithms that fulfill the requirements of anomaly
detection systems. Blacklists/whitelists – Usually, blacklists represent hosts
involved in an attack and whitelists represent legitimate traffic. Blacklists in
packet filtering systems, i.e. firewalls, represent a functionality having two ad-
vantages. First, the packets are prevented from reaching the systems under
attack and, secondly, these packets also no longer reach the monitoring sys-
tem. Therefore, the data rate being sent by the monitoring systems to the
attack detection systems is reduced. Additionally, whitelists are used at the
monitoring probes to reduce the amount of data transmitted to the analyzing
systems.

Adaptive flow aggregation has been addressed by Hu et al. [16], propos-
ing to adapt the aggregation level dynamically according to the available
resources of the monitoring probe. Although this approach avoids flow loss in
DDoS attack situations as described above, it does not take into account that
arbitrarily defined flow aggregates usually do not meet the requirements of
the analyzer.

In figure 3, a model is shown that represents the considered architecture.
On the lower half, the packet-oriented monitoring part is shown. The observa-
tion domain reflects the network behavior. All data packets regardless of their
content are received by the overall system. In a first step, a firewall component
is used to filter all packets that belong to previously detected attack flows.
A blacklist is involved here that can be configured dynamically by an IDS
system. In a subsequent step, the monitoring probe is used to gather packet
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Observation 
Domain

λ
Firewall

IDS

IPFIX
WhiteList

BlackList

Packets

Flows

IDSλ

wλbλ

Fig. 3. Basic model for adaptive re-configuration including the main components
and the control and data flows

information, invoke flow accounting and/or packet sampling algorithms, and
to transmit the monitored data sets to the attack detection system. We intro-
duce a whitelist, also configured by the IDS, representing all legitimate flows.
Therefore, appropriate filters can be used at the monitoring probe to reduce
the amount of data packets to be processed. Finally, an IDS system is used
to process the monitoring data. All well-detected flows, either attack or legit-
imate, are communicated to the firewall or monitoring systems, respectively.
The depicted parameters as used in figure 3 represent possible measures to
adapt the system behavior. The total arrival rate λ can be decomposed into
attack traffic λb, legitimate traffic λw, and unknown data flows λ− λb − λw.
λIDS is a system parameter describing the maximum data rate that can be
processed by the attack detection system. Finally, λbi is the arrival rate of
‘black’ packets belonging to the i-th flow, i.e. representing the possibility to
optimize the system behavior depending on particular attack flows.

4.2 Biologically inspired Promoters and Inhibitors

As previously mentioned, bio-inspired methodologies can be used to create ap-
propriate feedback loops for adapting the system parameters. In our system,
we want to adapt the parameters of the monitoring environment depending
on the load of the detection system and of the current network behavior. Usu-
ally, two kinds of feedback loops are used in combination: positive feedback
for short-term amplification and negative feedback for long-term regulation.
Both loops are depicted in figure 3. The intrusion detection reports detected
attacks to the firewall that in turn blocks this traffic and, therefore, reduces
the number of packets that have to be monitored. Additionally, the detection
system reports legitimate traffic to the monitor. This monitor stops report-
ing on packets belonging to these flows and, therefore, reduces the number of
packets that have to be analyzed. Obviously, both configurations cannot be
permanent. Sources sending legitimate traffic might begin to send attack pack-
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ets at any time. Also, previously attacking machines might become ’corrected’
and should not be starved by our firewalls.

Renin

Angiotensinogen

Angiotensin I

Angiotensin II

Promoter

Suppressor
Firewall

IDS

IPFIX
WhiteList

BlackList

IDSλ

wλbλ
Suppressor / Promoter

Fig. 4. Adapting the biological model to network monitoring; promoter and sup-
pressor mechanisms are needed

In contrast to other system that dynamically configure firewall rules based
on attack detection results, we introduce two other basic methods:

1. direct configuration of filters at the monitoring probes corresponding to
legitimate data flows and

2. associated timeout values to each blacklist and whitelist entry correspond-
ing to the current overall system load.

The adaptation of biological promoters and inhibitors is depicted in fig-
ure 4. The self-regulating process that amplifies the production of angiotensin
II by the production of renin is reflected by the measurement of λb and λw.
If there are resources available at the attack detection system, the amplifica-
tion effect is initiated by decreasing the associated timeouts for entries in the
backlists and whitelists. Similarly, the suppressing reaction, i.e. angiotensin
II inhibits the production of renin, is modeled by modifying the timeouts in
the opposite direction in case of overload situations. Thus, a methodologi-
cal approach can be developed that is based on the parameterization being
adapted to the current situation in the network. The attack detection system
can communicate its current load to the monitoring probes. These can adapt
a number of parameters, usually timeouts, based on the number of packets
received from the network, the number of packets reported to the detection
systems, and the current load of the analyzers.

4.3 Mathematical Modeling

Finally, the adaptation is done using the following formulas for calculating
appropriate timeouts. TOblack as estimated by (1) corresponds to the firewall
system. Obviously, this timeout depends on the measured rate of attack and
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legitimate flows as well as on the maximum load of the IDS system. Particular
interest is expressed in specific attack flows, or more precisely in the long-term
behavior of such flows. Therefore, the load of attack flows is measured for each
flow separately by λbi. We used this measure to punish flows that reappear
multiple times in the blacklist. The constants C1 and C2 explicitly define the
system behavior. Two different values are required because of the different
scaling of t1 and t2...t4.

TOblack = C1
λbi
λ︸︷︷︸
t1

+C2

 λb
λ︸︷︷︸
t2

+
λ

λw︸︷︷︸
t3

+
λ

λIDS︸ ︷︷ ︸
t4

 (1)

On the other hand, TOwhite as computed by (2) corresponds to the mon-
itoring probe. Here, we only focus on the behavior of the firewall system and
the capacity of the IDS represented by λb and λIDS , respectively. Again, C3

is used to define the system behavior.

TOwhite = C3

 λ

λIDS︸ ︷︷ ︸
t5

+
λ

λb︸︷︷︸
t6

 (2)

The single terms (t1...t6) are discussed in the following. In principle, all
terms belonging to one timeout are summed up and scaled by a constant
(C1...C3). In our simulation experiments, we tried to find appropriate values
for these constants. In a next step, the constants themselves can be adapted
to the current scenario.

• t1 – Ratio of the i-th attack flow to the overall attack rate. Used for
penalizing previously discovered attack flows. This term must be scaled
separately using C1 because it is usually very small.

t1 =

{
λbi

λ if λ 6= 0
0 if λ = 0

(3)

• t2 – Similar to t1 but it defines the ratio of arriving attack traffic to the
overall throughout. The larger t2 is, the more aggressive the attack.

t2 =

{
λb

λ if λ 6= 0
0 if λ = 0

(4)

• t3 – This term describes the safety of the arriving traffic. The larger the
amount of ”white” packets, the smaller the requirement for large timeouts
at the firewall.

t3 =

{
λ
λw

if λw 6= 0

0 if λw = 0
(5)
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• t4 – This term is a measure for the overload of the attack detection system.

t4 =

{
λ

λIDS
if λIDS 6= 0

0 if λIDS = 0
(6)

• t5 – Similar to t4 but used at the monitor instead of the firewall system.

t5 =

{
λ

λIDS
if λIDS 6= 0

0 if λIDS = 0
(7)

• t6 – Similar to t3 but defining the potential risk of arriving packets.

t6 =

{
λ
λb

if λb 6= 0

0 if λb = 0
(8)

5 Simulation Model and Evaluation

5.1 Simulation model

In order to evaluate the potentials of the described feedback-based adap-
tation, we implemented a simulation model using the JAVA-based discrete
simulation tool AnyLogic. The simulation model is depicted in figure 5. Sev-
eral meters have been included to measure the performance of the overall
system. In all setups, we executed a set of simulations showing the reduc-
tion of packet data that is to be received and processed by the attack de-
tection systems. The simulation model has to be interpreted as follows. The
observation domain ‘creates’ packet data (see below) that is inspected by the
observationDomainLinkMeter. Afterwards, a firewall element is used to filter
packets according to the current blacklist configuration. The packets arriving
at the monitor are measured by the firewallLinkMeter. Depending on the
simulation setup, the monitor is providing IPFIX or PSAMP data (after ap-
plying the whitelist) that is measured by the exportLinkMeter. Finally, the
IDS selects packets to belong to attack or legitimate traffic according to a
probabilistic scheme. The results are used to adapt the blacklist and whitelist
entries. All measured information is transmitted to the meterLogger object
for subsequent performance analysis.

For reasonable comparability between the simulation environment and real
communication behavior, we decided to use trace-based input modeling. We
accumulated several traces in front of our workgroup server and directly at
the Internet gateway of our university. As am example, figure 6 shows the
throughput as observed by the monitor at the Internet gateway. The utiliza-
tion is quite constant (58.6kpps ± 1.8kpps) as shown in figure 6 left. Due to
few attacks, the firewall removes only few flows (around 0.5%). Therefore, the
packet rate arriving at the monitor is quite the same but shaped (58.2kpps ±
1.8kpps, figure 6 right).
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IP Packets

Flow data

FeedbackMeasurement 
Information

Fig. 5. Simulation model including message types on the communication channels:
a) IP packets, b) flow data, c) feedback, d) measurement information

Fig. 6. Measurement at the Internet gateway: input ratio (left) and input ratio at
the monitor (right)

5.2 Results using flow monitoring

In a first set of simulations we evaluated the capabilities of the proposed
adaptive reconfiguration scheme for flow-based monitoring. Besides the main
objective to assess the overall system behavior, the primary goal was to find
adequate values for the scaling factors C1, C2, and C3. In the following,
selected simulation results are presented and discussed. In multiple experi-
ments, we evaluated candidate values for the scaling factors. The parameters
used for the presented simulation results were C1 = 9 ∗ 108, C2 = 236, and
C3 = 120. The other simulation parameters are λIDS = 0.6, E[white]= 0.1,
and E[black]= 0.01. As already mentioned, we monitored the traffic at the bor-
der gateway of our university. The utilization was quite constant (58.6kpps
± 1.8kpps). Due to few attacks, the firewall removes only few flows (around
0.5%). Therefore, the packet rate arriving at the monitor is similar but shaped
(58.2kpps ± 1.8kpps).

Even though the number of discarded packets at the firewall is very small,
this is primarily a result of the small timeout of each entry. The attack de-
tection system is not overloading, therefore, it may analyze detected attacks
over and over again. The behavior of the firewall is depicted in figure 7. In
steady-state, around 6000 blacklist entries exist with an average timeout of
260s.

Finally, the numbers of whitelist entries and the corresponding timeouts
have to be examined. As shown in figure 8, in steady-state, the number of
whitelist entries is around 60000 and the average timeout is 320s. The number
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Fig. 7. Number of blacklist entries (left) and timeouts TOblack (right)

corresponds to the detection quality of legitimate traffic which is about ten
times higher then for attacks. The timeout oscillates around the requested
value.

Fig. 8. Number of whitelist entries (left) and timeouts TOwhite (right)

In figure 9, the measured parameters λb (left) and λw (right) are depicted.
These figures allow a more convenient analysis of the simulation results.

Fig. 9. Measured parameters λb (left) and λw (right)

5.3 Results using packet sampling

For the packet sampling based measurements, we used the packet trace taken
in front of out workgroup server. The monitor is executing a sampling algo-
rithm that selects 50% of the packets (count-based). Obviously, the output
packet rate is about one half of the input packet rate and the output byte rate
represents the reduction due to keeping only parts of the packet (IP header
including transport protocol information).

In the following, we used the implemented blacklist and the whitelist rep-
resenting the detected attack and legitimate flows. The most important pa-
rameters to analyze are: Timeout – A timeout value associated to each entry
in the blacklist and whitelist. This defined how long an entry as determined by
the attack detection system will be valid in the firewall system and the mon-
itoring probe, respectively. Detection ratio – We assume a constant detection
ratio resulting in new blacklist / whitelist entries. This is a presumption that
does not correctly correspond with the behavior in a real network. Neverthe-
less, it reflects the behavior of the global system pretty well due to the proper
configuration of the blacklist / whitelist.

In the following simulation results, we always display the output packet
rate as issued by the monitoring probe and the input rate as a reference,
because this reflects the corresponding amount of data that is to be processed
by the detection system. In the first simulations, we examined the effect of the
timeout value associated with the single entries in the blacklist and whitelist.
For analyzing this behavior, we statically configured a detection ratio of 10%
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Fig. 10. Output rate for variable timeout and fixed detection ratio (10% whitelist,
1% blacklist)
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Fig. 11. Output rate for variable detection ratio and fixed timeout (10s)

for new whitelist entries and 1% for new blacklist entries. These values seem
to be adequate to reflect the behavior in real networks because about ten
times as mush flows can be detected as legitimate traffic that as attack traffic
and most of the network packets are not directly categorizable.

In figure 10, the simulation results are shown. Obviously, the adaptive con-
figuration has a large impact on the amount of output packets. Additionally,
it can be seen that a large timeout, which results also in large blacklist /
whitelist tables and therefore, exhaustive search operations, does not lead to
a massive reduction of the output packet rate. The reason for this behavior is
the relatively short time a flow is lasting in the network. In figure 11, a second
simulation run is shown. This time, the timeout was fixed at 10 seconds and
the detection ration was modified. Interestingly, especially the whitelist has
not that large impact on the amount of packets sent to the detection system
as expected by the percentage of ”white” packets (up to 20%). Additionally,
it can be seen that the amount of data presented by the monitoring probe to
the attack detection system can be adapted using an information exchange
between all involved systems. An optimal adaptation to the behavior of the
network seems to be very important and will lead to an optimized global
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system. This optimization step can be executed independently by each par-
ticipating entity in the network by two meanings: local parameterization and
communication / interoperation of neighboring entities. Therefore, we have
shown that it is possible to self-organize the complete monitoring and analyz-
ing environment for network security enhancement focusing on the monitoring
part.

6 Conclusion

In this paper, we studied the adaptation of biologically inspired promoter /
inhibitor schemes for adaptive parameter control in network security environ-
ments. Using an amplifying positive feedback loop and a suppressing negative
feedback loop, we achieved a self-organizing autonomic behavior of the overall
system. Especially the capabilities of the adaptation to reflect the local needs
of an analyzing system in combination to the observation of the environment,
i.e. the arrival rates at each subsystem make this approach useful for most
monitoring scenarios. In a next step, we will evaluate the algorithm in an
experimental setup to compare this evaluation to the simulation results.
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