
Rule-based Programming of Heterogeneous
Sensor and Actor Networks

Falko Dressler, Abdalkarim Awad, Dongyu Wang, and Reinhard German
Computer Networks and Communication Systems

Dept. of Computer Sciences, University of Erlangen, Germany

Abstract—We present a rule-based programming approach for
Sensor and Actor Networks (SANETs). The developed Rule-
based Sensor Network (RSN) system provides network-centric
communication and data processing with a very small footprint of
necessary instructions. Based on the basic mechanism, rules can
be exchanged among participating nodes in order to optimize the
overall system behavior. In particular, we show the feasibility of
data pre-processing mechanisms such as data aggregation as well
as data-centric communication based on rules that are distributed
throughout the entire network. The support of heterogeneous
nodes is inherently integrated in terms of different hardware, e.g.
sensors and actuators, and different data processing algorithms.
RSN has been implemented as a simulation model as well as
for experiments using BTnode sensors with attached sensors and
actuators.

I. INTRODUCTION

Sensor and Actor Networks (SANETs) represent a specific
class of sensor networks enriched with network-inherent actua-
tion facilities [1]. This is provided by actuation devices, which
are often referred to as actors [2]. In addition to requirements
known from sensor networks, real-time operation in massively
distributed systems and coordination capabilities on a higher
abstraction layer are necessary. Over the last decade, the need
for network-centric data preprocessing has been identified as
a key challenge due to the observation that communication is
much more expensive in terms of energy requirements com-
pared to local processing [2]. This includes communication
constraints for network-wide coordination or, at least, local de-
cision taking strategies that lead to an emergent behavior on a
higher abstraction layer. Self-organizing algorithms have been
developed relying for example on clustering and aggregation
techniques to improve scalability and network lifetime [3].

In this work, we present Rule-based Sensor Network (RSN),
a system for network-centric operation in SANETs, which
addresses some of these challenging requirements. This ap-
proach provides the building blocks for developing network-

Rsn motivation - distributed

S

S

S

S

S
S

S

S

A

A

A

ALARM

ACTION

Fig. 1. Demo setup consisting of BTnodes with attached sensor and actuator
hardware; RSN is used for network-centric data processing

centric operation and control techniques needed in SANETs.
Basically, our rule-based programming approach is the result
from studies in the context of bio-inspired networking –
precisely, in the context of cellular signaling cascades [4].
In the following, we outline the concepts and principles
of RSN. We implemented this system for the simulation
framework OMNeT++ and for the BTnode sensor systems
that we extended to support multiple sensors and actuators
as shown in Figure 1. The main advantages of RSN are the
small footprint of rules and the simple local programming of
nodes – making self-organization possible even in large scale
sensor and actor networks. In particular, this system allows the
quick and heterogeneous reprogramming of (individual) nodes.
Therefore, network-centric optimization of the placement of
computational intensive rules becomes possible.

II. RULE-BASED SENSOR NETWORK

Inspired by the capabilities of cellular signaling, i.e. the
specific reaction to received information and the possibility to
build signaling networks defining complex reaction pattern, we
developed a rule-based programming system for application
in SANETs. The primary design goals were a small footprint
to enable the application of RSN on small embedded sys-
tems, easily transferable code, flexibility, and scalability for
network-wide operations (basically, RSN provides the tools
and concepts but the specific application needs to be designed
properly as well). The rule-system greatly helps in designing
distributed algorithms for use in self-organizing massively
distributed systems. Additionally, RSN was inspired by early
rule-based systems that have been developed in the context of
active networking solutions. Examples are the mobile object
system [5] and communicating rules [6].

The RSN architecture is depicted in Figure 2. It is based
on data-centric communication, i.e. each message is self-
describing to allow data-specific handling and processing
without further knowledge, on specific reaction on received
data using a rule-based programming scheme, and on simple
local behavior control provided by state machines control-
ling the local behavior. Basically, all received messages are
stored in a buffer (source set). Periodically, after a config-
urable timeout ∆t, all these messages are processed by the
instructions defined by the rules. Every rule has the form
if CONDITION then { ACTION(s) } and selects a
number of messages form the source set according to the con-
dition and applies a (set of) actions to the selected messages.

S

S

S

S

S
S

S

S

A

A

A

Rsn node behavior

Message
buffer

Source
set

Working
set 1

Working
set 2

Working
set n

Δt

Action
set

return

drop

Incoming messages

modify

actuate

send

Fig. 2. Working behavior of a single RSN node; the rule-set is applied to
received messages, which can be modified, forwarded, etc.

We distinguish the following action categories: rule execu-
tion, i.e. operations on the received messages; node control, i.e.
control of the local node behavior (e.g., addition of sensors);
and Debugging, i.e. actions needed for experiment control
without influence on the node behavior. Table I lists the
actions that are currently available in our implementation.
Each action is triggered by a condition based on a set of
message parameters and local variables that reflect the state of
the node. Therefore, each message is specifically encoded to
determine the message attributes. All implemented message
and node attributes as well as the available preprocessing
operations are listed in Table II.

Extensive tests and experiments have been conducted based
on an simulation model for different data aggregation al-
gorithms, probabilistic data communication, and distributed
actuation control [4]. In addition, we completed another imple-
mentation for BTnode sensors. The presented demonstration
focuses on the experimental setup using the BTnode systems.

III. EXPERIMENTAL SETUP

We demonstrate the applicability of RSN in an experimental
setup. First, we explore network-centric data aggregation to
improve the efficiency of probabilistic communication (gossip-
ing) [7]. Secondly, we investigated the capabilities of network-
centric actuation control in SANETs in terms of scalability and
real-time behavior. The demo setup is depicted in Figure 1.

Aggregation as a major building block for efficient and
scalable data communication and preprocessing in SANETs
because communication is much more expensive (in terms of
energy consumption) compared to processing. The following
RSN rule allows to aggregate multiple messages into a more
compact message:

if :count > 1 then {
!send($hopCount := @minimum of $hopCount,

$value := @average of $value);
}

The actuators have an even simpler programming. For
each received message, a THRESHOLD is evaluated and, if
necessary, local actuation is initiated.

if $value > THRESHOLD then {
!actuate($type:=rsnActuatorLightSource,

$value:=@average of $value);
}
!drop;

Rule execution
!stop Early termination of the rule execution, the next

iteration will start with the first available rule
!drop Erases all messages in the current set, needs to be

called after messages have been processed
!dropDupl All duplicates are discarded according to a unique

identifier in each message
!return A new message is created and appended to the

source message set
!returnAll Copies of all messages in the current set are

created and stored in the source message set
!send A new message is created and submitted to all

neighboring nodes
!sendAll Copies of all messages in the current set are

created and submitted to neighboring nodes
!actuate A message is sent to locally connected actuators
Node control
!ctrlSensor A control message can enable/disable sensors and

update the type field or the sampling frequency
!ctrlActuator This command controls locally attached actuators

(enable/disable, update type field)
Debugging
!recordAll Statistics are recorded: message source, node-

specific message ID, hop count, time, and delay

TABLE I
CURRENTLY IMPLEMENTED ACTIONS

Message attributes
$name Descriptive name of the message
$type Type of the message; describes the content
$hopCount Number of traversed nodes
$priority Importance factor of this message
$value Message type specific value
Node attributes
:count Number of messages in the current working set
:hostName ID of the current host
:random Random value for probabilistic decisions
Preprocessing operations
@minimum Minimum of the selected value
@maximum Maximum of the selected value
@sum Sum of the selected value
@average Average of the selected value

TABLE II
SELECTED ATTRIBUTES AND OPERATIONS

REFERENCES

[1] I. F. Akyildiz and I. H. Kasimoglu, “Wireless Sensor and Actor Networks:
Research Challenges,” Elsevier Ad Hoc Networks, vol. 2, pp. 351–367,
October 2004.

[2] T. Melodia, D. Pompili, V. C. Gungor, and I. F. Akyildiz, “A Distributed
Coordination Framework for Wireless Sensor and Actor Networks,” in
6th ACM International Symposium on Mobile Ad Hoc Networking and
Computing (ACM Mobihoc 2005), Urbana-Champaign, Il, USA, May
2005, pp. 99–110.

[3] F. Dressler, “A Study of Self-Organization Mechanisms in Ad Hoc and
Sensor Networks,” Elsevier Computer Communications, 2008, to appear.

[4] F. Dressler, I. Dietrich, R. German, and B. Krüger, “Efficient Operation
in Sensor and Actor Networks Inspired by Cellular Signaling Cascades,”
in 1st ACM/ICST International Conference on Autonomic Computing and
Communication Systems (Autonomics), Rome, Italy, October 2007.

[5] J. Vitek and C. Tschudin, Mobile Object Systems - Towards the Pro-
grammable Internet. Springer, 1997, vol. LNCS 1222.

[6] L. F. Mackert and I. B. Neumeier-Mackert, “Communicating Rule Sys-
tems,” in 7th IFIP International Conference on Protocol Specification,
Testing and Verification, 1987, pp. 77–88.

[7] Z. J. Haas, J. Y. Halpern, and L. Li, “Gossip-Based Ad Hoc Routing,” in
21st IEEE Conference on Computer Communications (IEEE INFOCOM
2002), June 2002, pp. 1707–1716.

