
Query Processing and System-Level Support
for Runtime-Adaptive Sensor Networks

Falko Dressler, Rüdiger Kapitza, Michael Daum, Moritz Strübe, Wolfgang
Schröder-Preikschat, Reinhard German und Klaus Meyer-Wegener

Dept. of Computer Science, University of Erlangen, Germany
{dressler,rrkapitz,md,moritz.struebe,wosch,german,kmw}@cs.fau.de

Abstract We present an integrated approach for supporting in-network
sensor data processing in dynamic and heterogeneous sensor networks.
The concept relies on data stream processing techniques that define and
optimize the distribution of queries and their operators. We anticipate
a high degree of dynamics and heterogeneity in the network, which is
expected to be the case for wildlife monitoring applications. The dis-
tribution of operators to individual nodes demands several system level
capabilities not available in current sensor node operating systems. In
particular, we developed means for replacing software modules, i.e. small
applications, on demand and without loss of status information. In order
to facilitate this operation, we added a lightweight module support for
the Nut/OS system and implemented a new memory management that
uses tags for preserving state across module updates and node reboots.

1 Introduction

Sensor networks are being investigated for many application scenarios includ-
ing precision agriculture, industrial automation, and habitat monitoring. In this
paper, we focus on the latter one, i.e. wildlife monitoring, which represents a
challenging domain in terms of network dynamics and energy efficiency. Depend-
ing on the specific targets to be observed, extreme resource constraints together
with requirements for continuous tracking can be found, e.g. for studying small
animals such as bats. The application scenario can be roughly described as fol-
lows: A number of sensor nodes are distributed (either placed stationary on the
ground or tagged to moving animals) to collect sensory data, to aggregate and
to process this data according to specific needs of the investigating scientists,
and to present the final outcome during the experiment or after its completion.

We believe that user-centric scenario descriptions can be used to balance and
define contradicting properties and capabilities in such networks such as mon-
itoring precision vs. scalability vs. energy consumption. We completely rely on
network-centric data processing techniques [1], specifically on distributed stream
processing [2]. Data stream queries provide means for translating higher-level ap-
plication requirements into low-level distributed operators. Data stream queries
in sensor networks can be strongly influenced by the dynamics of the application
domain, e.g. mobile systems and node failures. Furthermore, the environment,

Node1S1 Base station

Filter

er
ge

CatalogS2

Applicaton POR Node1“

Filter M
e

Node2

e

Catalog

Query
Processorw

ay

Applicaton „POR_Node1“

M
er
ge

WIN_1

Join

G
at
ew

Module
BuilderApplicaton „POR_Node2“

S3
WIN_2 Libraries

(a) Two sensor nodes executing different queries and
base station; shown is the data flow direction

stress

threshold

time

end of stress period

(b) Example scenario: detection
of stress and recreation

Figure 1. Principle scenario description

e.g. day-night-cycle, seasons, and anomalies like earthquakes, introduces addi-
tional dynamics. Fortunately, scientists using the sensor network usually get a
fine grasp of the application domain and the working behavior of the nodes. They
will be able to continuously refine the global queries, which are to be processed
by the sensor network. Therefore, data stream systems need to dynamically
tailor the queries to the current situation. At the same time, algorithms for self-
optimization of data stream queries are being developed, which further increase
the demand for frequent updates. Such updates of data stream queries demand
for two system level functions: First, sensor nodes need to be able to update the
software during run-time, even in case of resource constraints such as limited
local flash memory and available communication bandwidth. Secondly, replace-
ment of query operations without loss of status information needs persistent
storage of data in volatile memory. Accordingly, we developed an architecture
that allows us to reprogram sensor nodes at the OS level and more fine grained
on a per-module basis. Furthermore, we developed a new memory management
system that allocates memory and associates tags for simplified identification
after module replacement or node reboot. We selected the BTnode, a typical
sensor node, as our primary hardware. The used operating system is Nut/OS, a
non-preemptive, cooperative multi-threaded OS for sensor nodes.

The contributions of this paper can be summarized as follows. We discuss
a global query management with separation of queries and node configuration,
partitioning of global data stream queries, and mapping of partitions to module
descriptions (Section 2). Furthermore, we present developed system level support
for node specific linking of modules and replacing the modules during runtime
(Sections 3.1–3.4). Finally, we developed a new memory management system
with support for tagging memory with names for persistent storage in volatile
memory during module replacement and even system reboot (Section 3.5).

2 Distributed Stream Processing

The need for distributed stream processing is apparent as processing nodes and
data sinks are distributed. In [2], the Data Stream Management System (DSMS)

Cougar is presented, which deploys distributed queries over a sensor network. We
have a similar architecture but different focus. First, we have a heterogeneous
network, secondly, we use a different approach to querying, and, thirdly, we are
tailoring software that is deployed on each node depending on the specific query.

2.1 A Scenario for Global Query Management

In our scenario, we use sensor nodes that can communicate with each other and
may have different sets of sensors, different locations, and different sets of in-
stalled modules. An example is depicted in Figure 1a. Node2 is connected to the
base station and has higher energy capacity. Node1 measures skin conductivity
level (SCL) with sensor S1 and body temperature (TEMP) with sensor S2. S3
connected to Node2 delivers position (POS) data. The base station processes
global queries and configures the nodes, i.e. it maps a partial query to an op-
erator assembly and deploys it on the adequate node. The catalog contains all
information (metadata) about nodes, communication paths, configuration, and
sets of code fragments that can be composed to modules. Users like behavior
scientists want to describe their needs using an abstract query language with-
out considering the sensor network’s topology in order to describe a query in a
formal way. We assume that the biologists want to find out in which area the
observed animals have stress and where they go to for recreation. The fictive
stress curve (Figure 1b) shows a threshold that might be reached if the two sen-
sor values exceed certain values. Our query determines the area of recreation as
the animal’s position at 10 min after the last stress event.

2.2 Global Queries

Many DSMS use SQL-like queries that are fundamentally influenced by consid-
erations about reusing database technologies [3]. Alternatively, some of the early
DSMS like Borealis [4] use a box-and-arrow description of data stream queries
as it is more intuitive considering the direction of the data flow. Both language
families have limited expressiveness, which can be reduced by user-defined ag-
gregates [5] in SQL or by user-defined boxes [6] in DSMS like Borealis.

We are using an extensible abstract query language that is currently be-
ing developed in the data management group. A user can define a set of input
streams, a sequence of abstract operators, and a set of output streams. Our
language keeps the data flow direction and, therefore, it is less declarative than
SQL. All operators are either commutative or have a definite position, e.g. num-
ber of input streams. Subqueries can be used as input stream. The location of
input and output streams, sensors, schema information, and topology is part of
the catalog. In our example, we have three sensors that should be merged, if:

– The animal’s TEMP is higher than 38 ◦C and its SCL is greater than 8 Mho.
– The last position of a stress situation (POS) and the position of recreation

(POR) (10 min later) are of interest.
– The observation at POR lasts at least 2 min.

1 (S1 ,S2,S3,TIME:$1.filter(SCL >8), $2.filter(TEMP >38), MERGE()),
2 (S3 , TIME:MERGE()) :
3 WINDOW (1),JOIN($2.TIME -$1.TIME >10 min &&
4 $2.TIME -$1.TIME >12min) :
5 POR ≈
1 CREATE STREAM POS AS
2 SELECT *,sysdate () as TIME
3 FROM S1[ROWS 1], S2[ROWS 1], S3[ROWS 1]
4 WHERE S1.SCL > 8 AND S2.TEMP > 38;
5 CREATE STREAM POR AS
6 SELECT *
7 FROM POS[ROWS 1], (SELECT *,sysdate () AS TIME FROM S3[ROWS 1]) S3
8 WHERE time_to_min(S3.TIME)-time_to_min(POS.TIME) BETWEEN 10 and 12;

Figure 2. Sample query in the abstract query language and its SQL-like representation

The sample query depicted in Figure 2 has three input streams and one
output stream. Further, the query has two subqueries in the input stream list.
The first subquery has three abstract operators: one filter operator that selects
all interesting SCL values from the first stream, another filter operator that
does the same for TEMP values from the second stream, and a ternary merge
operator that merges all three streams after filtering the first and the second.
The merge operator waits for all input events and creates one element including
all inputs. The second subquery simply adds the current time to the sensor value.
In our main query, the last items of the two subqueries are joined if the temporal
condition is fulfilled. The last items are realized by sliding windows. The main
difference between a merge and a join operator is that merge operators use input
values only once in the resulting events. As we do not focus on query languages,
we also depict the query in a SQL-like notation for a better understanding.
The result is not exactly the same, as expiration by window-definitions cannot
express that an event should only be delivered once.

2.3 Query Partitioning and Distribution of Operators

The global query goes through the process of partitioning and mapping (Fig-
ure 3) in order to define modules that can be deployed on the nodes. Compared
to data stream queries in heterogeneous sensor networks, distributed query pro-
cessing is reasonably well researched. The classical steps can be adapted to the
context of stream processing as depicted in Figure 4. Available methods from
database systems can be used for “query parsing” and “rule-based optimiza-
tion”. The step “creation of enumerated plans” additionally has to consider the
different possibilities of software deployment. A metadata catalog is essential for
query processing as it contains all information about data sources, topology of
nodes, and even the set of available operators (our query language is extensible).

“Cost estimation” (cost-based optimization) is part of our ongoing work.
Thus, we describe a straightforward approach for distributing our sample query.
In the scenario (Figures 1a and 2), we have topology information and a de-
scription of available sensors. First, a dependency graph of operators is created.

Global Query

Partial Query 1 Partial Query 2

Partitioning

Module
Description 1

Module
Description 2

Module
Description 3

Mapping Mapping Mapping

Node 1 Node 2 Node 3

Assembling Assembling Assembling

Deploying Deploying Deploying

Partial Query 3

Figure 3. Mapping of global queries

Query Rule‐Based Creation of Cost Plan Query Query Q y
Parsing Optimization enumerated plans estimation Refinement

Q y
Deployment

Q y
Execution

Changing Query Changing Topology Changing Data Source Properties

Figure 4. Steps of query processing and reorganization of queries at run-time

Thus, all subqueries have to be translated first. The first subquery has two filter
operators that can be pushed close to the data sources and the ternary merge
operator is split into two binary ones. Unlike join operators, the merge operator
has always a data rate that is less or equal than its input rate. Therefore, the
first binary merge operator is set to the first node. As S3 is deployed on the
second node, Node1 sends the result of the first merge operator to Node2 that
merges the result with the values of S3. The second subquery is processed ac-
cordingly. Both subqueries are input streams that are available at Node2 for the
main query. This one has a window operator that refers to both input streams.
As there is no other stateful operator, it is only used by the join operator. We
have adopted the separation of operator’s state (synopsis) and operator that is
used by STREAM [7] for our purposes. This is essential for reorganization of
queries at run-time. In this paper, we will just take this plan and assume that
all node capacities will suffice the needs. Later on, it needs to be compared with
alternatives (“plan refinement”).

Now, the query plan can be mapped and installed on the nodes (“query de-
ployment”). During “query execution”, there might be several reasons for the
reorganization of queries. For example, there might be the need for changing
a query, e.g. the threshold for the body temperature. In this case, all steps of
query processing have to be done, but the topology of nodes is more restrictive
as the operators’ states have to be considered. Another reason for dynamic re-
organization is a changing topology of nodes. In this case, the step “creation of
enumerated plans” has to be repeated as other operator distributions lead to
valid plans. Furthermore, properties of data sources may change, e.g. the distri-
bution of values. A repetition of “cost estimation” leads to a re-adapted plan. In
some cases, it might not be possible to get valid plans without state migration.

2.4 Creation of Operator Assemblies

“Query deployment” supports the generation of deployable code. The system
support for module linking and module deployment is explained in Section 3.
We separate queries from configuration information. Therefore, the partial plan
for each node has to be enriched by metadata like addresses, data rates, and
others. At this point, the partial plan is still platform independent. Due to space
restrictions, we only depict a shortened operator assembly in form of C-code for
Node2 in Figure 5.

In a first step, operator assemblies are created that can be used in the fi-
nal deployment process. In our approach, each input stream has a schema that
is manipulated by operators. Thus, we provide schemes of input and output
streams that are either used internally or for communication with data sinks.
All schemes are mapped to local data types first. In the next step, all transient
fields are created that will be used as temporary variables. A special feature
is the handling of persistent fields. For every operator the synopses are sep-
arated and mapped to structures that use named memory (see Section 3.5).
The crucial step is mapping the partial plan itself. Operators’ predicates like
($2.TIME-$1.TIME>10min && $2.TIME-$1.TIME>12min) have to be mapped to
callback functions. A dependency graph is used to guarantee the right order of
operators. There is a template for each operator that is completed by structural
information, e.g. variable names. The template for operators like join contains a
for() loop as the cardinality of the results may be greater than one.

The resulting module (Figure 5) starts with the initialization of streams
and sensors. POR Node2 OUT 01 stands for one of five structs that represent
schemas. Templates create the persistent fields for the windows. Name and the
size of a window are known, thus, they are not persisted. The main concept of
query execution is periodic execution. The “plan refinement” step calculates the
length of the sleeping period with metadata.

3 Reprogramming Support

After mapping a global query to a set of sensor nodes, the assigned operator
assemblies have to be deployed. The primary system of a sensor node is repre-
sented by a kernel containing a scheduler, I/O interfaces, and other system level
functions. Additional functionality such as operator assemblies can be added at
a later point of time. Besides replacing the entire kernel, we also support mod-
ules that can be added, updated, or replaced at run-time. Software updates in
sensor networks can be performed at various levels of granularity. For example,
the Deluge system [8] propagates software update over an ad hoc sensor network
and can switch between several images to run on the sensor nodes. Jeong and
Culler [9] studied incremental network (re-)programming with focus on the de-
livery of software images in sensor networks. We contribute to this domain by
investigating techniques to upload and to replace software modules in an effi-
cient way. Despite the fact that there are already two popular micro controller
operating systems like SOS and Contiki supporting modularity, none of them fits

1 APPLICATION("POR_Node2", stack_size , arg) {
2 // Initialization of Streams
3 LocalSensor POR_Node2_s3 = init_pos_sensor ();
4 InputStream POR_Node2_Node1_OUT_01 = init_input("node1");
5 RemoteAddress POR_Client = "base";
6 // Data structures
7 struct POR_Node2_OUT_01 {
8 int struct_size;
9 [...]

10 int time;
11 };
12 [...]
13 // Transient fields
14 POR_Node2_IN_01* in_01;
15 POR_Node2_OUT_01* res_01;
16 [...]
17 // Persistent fields
18 char NAME_POR_Node2_WIN_01 [17]="NAME_POR_Node2_WIN_01";
19 int win_size_01 = 1;
20 POR_Node2_OUT_01* win_01 = NutNmemGet(NAME_POR_Node2_WIN_01);
21 if (win_01 == NULL) win_01 = NutNmemCreate(NAME_POR_Node2_WIN_01 ,

win_size_01*sizeof(POR_Node2_OUT_01)+sizeof(_WIN_STATE));
22 [...]
23 // Query processing
24 for (;;) {
25 in_01 = getSensorData(POR_Node2_s3);
26 in_02 = getInputStreamData(POR_Node2_Node1_OUT_01 ;);
27 res_01 = merge(in_01 ,in_02 ,"")
28 reorganizeWindow(win_01 , res_01);
29 res_02 = merge(in_01 , time());
30 reorganizeWindow(win_02 , res_02);
31 res_03 = join(& join_resultsize_01 , win_01 , win_size_01 , win_02 ,

win_size_02 , join_cond_01);
32 for (int i = 0 ; i < join_resultsize_01 ; i++) {
33 send(POR_Client , res_03[i], sizeof(POR_Node2_OUT_03));
34 }
35 NutSleep (125);
36 }
37 }

Figure 5. Application code for sensor node 2

our demands w.r.t. dynamic module replacement, hardware support, and failure
handling [10]. Instead, we chose the Nut/OS operating system as basis for our
infrastructure support. In this section, we outline the general process to deploy a
module; briefly summarize our implementation platform and finally give details
related to the implementation and usage of our reprogramming support.

3.1 Deployment of an Operator Assembly

Figure 6a depicts the necessary steps to successfully deploy an operator assem-
bly. Initially, the deploying node, usually the gateway of the sensor network or
an equally powerful mobile system (e.g., a researcher with a laptop), requests the
kernel checksum from the target node. We provide such a checksum to identify
the kernel to obtain information how it was build to prevent problems related to
micro heterogeneity [11]. At this point we anticipate that there is a repository
that can be queried using the checksum to get the necessary information for

Host  Node 

Check kernel version 

Prelink module 

Determine memory address  

Link module 

Transfer module 

(a) Deployment process of an op-
erator assembly

(b) Flash management: deleting and adding
nodes from/to the linked list

Figure 6. Module-based reprogramming support for operator assemblies

pre-linking the module (e.g., the symbol table of the kernel). This enables us to
link the module against the kernel. After this step, we know the exact size of the
module and are able to query the target node for a concrete location to place the
module within the flash memory. This is achieved by transmitting the module
size to the node that needs this information to find sufficient free program mem-
ory space. The module is finalized by linking it again using the provided memory
address. Finally, the module is transferred to the node, initialized, and started.
The initialization might include the recovery of state provided by a previous
version of the operator assembly. This is achieved by supporting named memory
that enables to store and use variables based on a special memory management
library (see Section 3.5). The replacement of the kernel works similar.

3.2 Target Platform

We developed our reprogramming architecture for the BTnode hardware plat-
form developed at the ETH Zurich, which is based on an Atmel ATmega128
micro controller, a RISC processor with 128 KB flash ROM and 4 KB internal
SRAM, which is extended to a total of 64 KB SRAM. The Harvard architecture,
i.e. program and data memory are addressed independently, uses the flash as pro-
gram and the SRAM as data memory. Besides programming the flash using an
In-System Programmer (ISP), the ATmega128 supports self-programming of the
flash memory. The flash is divided into a regular and a boot loader section and
can only be programmed from within the boot loader section, which resides in
the last 8 KB of the flash. Furthermore, the flash is divided in pages of 256 Byte.
Before it is possible to write a page, it has to be erased. Both operations are
independently executed and interrupts are not delayed in between. Thus, repro-
gramming operations need to be synchronized with flash management. During
write operations, the code execution is stalled for about 4 ms. This behavior has

Field Description

Application size Total application size in byte
Application name Unique application name for identification
Entry function pointer Needed to start the application
Module start address Used for consistency checks
Stack size Enables memory allocation at application start
CRC32 checksum Determine memory corruptions
Optional flags E.g., to indicate free space or kernel

Table 1. Header information used for flash memory management

to be considered as applications may have strict timing assumptions. As operat-
ing system we use BTnut, which is build on top of the multi-threaded Nut/OS
framework. Nut/OS makes extensive use of dynamic memory management. Op-
posed to other operating systems including recent versions of TinyOS, a Nut/OS
thread does not need any static variables. The stack and heap as well as memory
used for thread management are allocated during thread startup. Therefore, it
is not necessary for the compiler to know such details at compile time.

3.3 Flash Management

As the flash is normally not used for saving multiple modules and kernel versions,
we developed a new flash memory management system. We decided to use a
simple linked list of data blocks. Each data block is page aligned and starts with
a header that contains information about the block contents and its length. To
detect corruption, the header is equipped with a checksum calculated over the
contents of the data block. An exception is the kernel. As it must always start
with the interrupt vectors, the header is placed behind the interrupt vectors.
Kernels, which are saved on flash as a replacement of the original kernel, get an
additional header. If a module is saved in a data block, the header also contains
information that is needed by the operating system to start the application.
This includes the name, the stack size, and a pointer to the entry function of
the application. Table 1 summarizes all header fields.

Care was taken to avoid a flash corruption. When data is overwritten, the
data is first erased from back to front and then written the opposite way. This
allows the bootloader to easily recover data as the old header is kept as long
as possible. Otherwise, the next non-empty page must contain a valid header.
Figure 6b outlines the usage of the linked list in detail. An application is saved
between two other blocks (1). Its header points to the next node. If part of the
data is deleted, the linked list is still valid (2). After deleting the block, the
header is still pointing to the next block (3). When the header is deleted (4), the
list can be recovered by finding the first non-empty page. Writing a new module
starts with inserting a new header (5). The pointer points to an empty page.
Again, this can be fixed by searching the next non-empty page. After writing
the application, the header marking the empty space is written (6).

3.4 Creating Binaries and Flash Management

The binaries of the kernel and the modules need to contain information that
is provided only after the linking process, e.g. the size of the binary and the
checksum. Instead of adding the header to the final binary, it is added during
the build process in order to enable support for tools such as debuggers. The
header used for the flash management is added at compile time using compiler
attributes to put it into a special section. During linking, the section is placed
at the correct location and missing information is added. Symbols are used to
replace the name of a function with an address after it is placed at its final
address. Similarly, instead of passing an address this technique can be used to
pass a variable. The following expression can be used to initialize a variable foo
with the address of a symbol: uint16 t foo = (uint16 t)&usersymbol foo;
When assigning a value to usersymbol foo instead of an address and passing
this to the linker, foo gets initialized with this value. This approach makes use
of the default tool chain and avoids further manipulations.

For the CRC32 calculation, all files are linked twice. For the first linking, the
CRC symbol is set to zero. After calculating the CRC32 for the binary image, the
files are linked again with the correct CRC. As only 16 Bit pointers are available,
the CRC has to be passed to the linker using two symbols, each containing a
word of the CRC. If a new kernel was created, its symbol table is extracted
and saved in a special directory, using the calculated CRC as an identifier. This
symbol table is passed to the linker when creating a module for this specific
kernel. This way, an application may access all functions provided by the kernel.
Missing functions are taken from libraries that need to be linked to the module.

Flashing is done either by the bootloader (replacing the kernel) or by the
kernel (when receiving an application or new kernel). As the flash functions are
part of the bootloader, a jump table is used to allow the kernel to access these
functions without explicit information about the bootloader. The ATmega128
supports moving the reset vector to the bootloader section. This gives the boot-
loader complete control after a node reset. When the bootloader starts up, it ver-
ifies the flash using the CRCs, if necessary deletes broken modules, and checks
whether it finds an updated kernel. To avoid having a corrupted kernel, the
bootloader verifies the CRC of the new kernel before deleting the old one. It also
makes sure that the new kernel does not overlap with itself when being copied.
After copying the kernel, the copied kernel gets verified, before the buffered copy
gets deleted to free memory. Finally, the kernel is started.

3.5 Named memory

In order to recover data saved in SRAM after a reboot, we decided to use a con-
cept similar to shared memory. Shared memory is accessed using a key. Similarly,
we decided to use a string to build named memory. It is now possible to allocate
memory and assign a name to it. Later on, it is possible to get a pointer to this
memory using this name – even after the node got rebooted. Named memory is
allocated like other managed memory but it is assigned an extra header. This

Figure 7. Named memory

header contains the name of the memory block, a pointer to the next named
memory block, and a checksum, which is calculated over the header. The root of
this linked list is placed at the very end of the memory during the initialization
of the managed memory. This way, the probability of a conflicted with a resized
data section of the kernel is minimized. During the boot process, the root ele-
ment and all following headers of the list are verified using their checksums. This
does not verify the data itself but it is very unlikely that the memory is modi-
fied without touching the headers. Figure 7 shows how the memory is organized
when using the concept of named memory. (1) is the linked list of free memory.
(2) is the root of the linked list for the named memory located at the very end
of the memory. Allocated memory always has a header containing the size of the
block (3). (4) shows a named memory block. The memory used for this block
is allocated by the normal memory management and, therefore, has its header
containing the size. Behind that, the named memory header is saved. Although
normally allocated memory is preferably taken from the beginning and named
memory from the end, this can still be mixed (5).

3.6 Application Programming Interface

As detailed earlier, Figure 5 shows a shortened listing of a sensor application
that has been created in the “query deployment” step of the query processing
architecture. The sample code starts with the APPLICATION macro, which adds
the header to the module that is needed for dynamic deployment and life cycle
operations. As parameters, it requires an application name, a stack size, and a
pointer to pass arguments to the application.

Besides the declaration of the module, a developer has to decide which parts
of the application’s state should be preserved across module updates. In the
example application, a sliding window should be persistent in case of a module
replacement. This is achieved using NutNmemGet() and providing the name of
the variable (line 19). If a previous version of the module allocated the mem-
ory, an address is returned or NULL if the variable is not present in the named
memory system. In the latter case, the named memory has to be created calling
NutNmemCreate() supplying the name and the required size (line 20). Finally,
NutNmemFree() is provided to deallocated memory that is no longer needed.

4 Conclusion

We presented a set of system level support mechanisms for distributed data
stream query processing in sensor networks. The concept of data stream process-

ing allows to define and to optimize the distribution of queries and their operators
among heterogeneous nodes working in dynamic environments. Additionally, it
provides means for elegant and efficient user-centric query definitions. In order
to support abstract higher layer query update strategies, the efficient replace-
ment of application modules in individual nodes is necessary. We implemented
an update architecture for BTnode sensor nodes running Nut/OS. We demon-
strated that it is possible to load and execute modules during runtime. We also
developed the concept of named memory, a simple way to save and recover the
module state, i.e. the content of variables, after a reset or kernel update. Future
work includes the state migration between sensor nodes, which is necessary for
efficient query optimization w.r.t. metrics like scalability and energy-efficiency.

References

1. Culler, D., Hill, J., Buonadonna, P., Szewczyk, R., Woo, A.: A Network-Centric
Approach to Embedded Software for Tiny Devices. In: First International Work-
shop on Embedded Software (EMSOFT 2001), Tahoe City, CA (October 2001)

2. Gehrke, J., Madden, S.: Query Processing in Sensor Networks. Pervasive Comput-
ing, IEEE 3(1) (January – March 2004) 46–55

3. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues
in Data Stream Systems. In: 21st ACM Symposium on Principles of Database
Systems (PODS 2002). (June 2002)

4. Abadi, D.J., Ahmad, Y., Cetintemel, M.B.U., Cherniack, M., Hwang, J.H., Lind-
ner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.:
The Design of the Borealis Stream Processing Engine. In: Conference on Innovative
Data Systems Research (CIDR 2005). (January 2005)

5. Law, Y., Wang, H., Zaniolo, C.: Query Languages and Data Models for Database
Sequences and Data Streams. In: Thirtieth International Conference on Very Large
Data Bases, Toronto, Canada (VLDB 2004). (August – September 2004)

6. Lindner, W., Velke, H., Meyer-Wegener, K.: Data Stream Query Optimization
Across System Boundaries of Server and Sensor Network. In: 7th International
Conference on Mobile Data Management (MDM 2006). (May 2006)

7. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.,
Olston, C., Rosenstein, J., Varma, R.: Query Processing, Resource Management,
and Approximation in a Data Stream Management System. In: Conference on
Innovative Data Systems Research (CIDR 2003). (January 2003)

8. Chlipala, A., Hui, J., Tolle, G.: Deluge: Data Dissemination for Network Repro-
gramming at Scale. Technical report, University of California, Berkeley (2004)

9. Jeong, J., Culler, D.: Incremental Network Programming for Wireless Sensors. In:
First IEEE International Conference on Sensor and Ad hoc Communications and
Networks (IEEE SECON). (June 2004)

10. Dressler, F., Strübe, M., Kapitza, R., Schröder-Preikschat, W.: Dynamic Soft-
ware Management on BTnode Sensors. In: 4th IEEE/ACM International Confer-
ence on Distributed Computing in Sensor Systems (IEEE/ACM DCOSS 2008):
IEEE/ACM International Workshop on Sensor Network Engineering (IWSNE
2008), Santorini Island, Greece (June 2008) 9–14

11. Dunkels, A., Finne, N., Eriksson, J., Voigt, T.: Run-time dynamic linking for
reprogramming wireless sensor networks. In: 4th ACM Conference on Embedded
Networked Sensor Systems (SenSys 2006), Boulder, CO (November 2006) 15–28

