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Abstract: We discuss the need for adaptive load control 
in network security environments in order to cope with 
the increasing bandwidth requirements. In earlier work, 
we developed a simple model to study the behavior of 
feedback loops for self-configuring security 
environments. We primarily considered the traffic 
between the monitoring probes, the IDS systems, and 
associated firewalls. We now enhanced the model to 
study fully self-organized network security environments 
in a simulation model. First simulation results outline 
both the feasibility of the general approach and the 
possibilities of the simulation model. 

Index Terms: Network monitoring, self-organization, 
adaptive feedback loops, complex security environments. 
 
 
I. INTRODUCTION  
 

Performance issues in distributed network security 
environments are being in the main focus of a number 
of research projects. Besides developing even faster 
computing systems, main focus is on algorithmic 
approaches. In the context of this paper, we consider 
attack detection and mitigation architectures. 
Basically, such systems rely on three components: 
Packet data is to be monitored, e.g. using a network 
tap, the collected data is further analyzed on an IDS 
system, and finally, reactive measures against detected 
attack traffic have to be initiated, e.g. by configuring 
firewall systems appropriately. With the increasing 
complexity of today’s networks, the need aroused to 
deploy the named components in a distributed manner 
[9, 13]. Fig. 1 shows a typical distributed security 
environment. 

 

 
Fig. 1 – Distributed network security scenario consisting of 

routers with monitoring functionality, a central IDS, and 
distributed firewalls 

 
In particular, multiple monitoring probes are 

employed to obtain information about the ongoing 

network traffic. This information is forwarded to the 
associated attack detection systems, which in turn 
analyze the data and close the loop by configuring 
firewall systems to counteract the identified attacks. 
Similar scenarios can be thought of for accounting or 
traffic engineering purposes. 

Driven by the needs of network security 
installations but also by the demands of accounting 
and charging systems, network monitoring methods 
and techniques have been standardized by several 
organizations, first of all by the Internet Engineering 
Task Force (IETF). This includes the communication 
between the monitoring probes to the traffic 
analyzers, among the attack detection systems, and 
for the configuration of monitors and firewalls. In 
order to cope with the steadily increasing amount of 
data and the very high bandwidths in nowadays 
backbone networks, the reduction of monitoring data 
is a key issue for successful monitoring solutions [1, 
11]. Thus, we focus in performance aspects of the 
monitoring and analyzing part. 

The objective is to develop adaptive mechanisms 
for reducing the amount of monitoring data, or, to be 
more precise, to adjust the load in the entire 
monitoring system [8]. Based on earlier work on a 
simplified model to analyze these performance issues 
[7, 10], we developed a more complex model that 
allows to perform evaluations of distributed security 
environments. The primary goal is to monitor as 
much as possible in order to achieve more accurate 
results. A threshold is given by the processing 
capacity of all involved systems; therefore, an upper 
bound is defined. Additionally, this threshold depends 
on the kind of the data to be processed. 

Using the structural model presented in [7, 10], 
we analyze its applicability in distributed 
environments. In particular, we created a new 
simulation model for the network simulator 
OMNeT++ [14], which allows a detailed performance 
evaluation. Using the simulation model, we 
performed a number of experiments that help to 
characterize the basic behavior of the use of feedback 
controlled adaptive monitoring techniques in 
distributed environments. 

The rest of the paper is organized as follows. 
Section II introduces the need for adaptive network 
monitoring in the context of network security 
environments, especially for efficient attack 
detection. Then, Section III outlines the basic 
approach for adaptive parameter optimization using 
two separate feedback loops. The analyzed scenarios 
are presented in Section IV followed by a discussion 



of selected simulation results in Section V. Finally, 
Section VI concludes the paper. 

 
II. NETWORK MONITORING  
 

Major focus of the network monitoring community 
is on flow monitoring that allows to reduce the amount 
of monitoring data to a huge extent. Flows are data 
records that describe network traffic. In most 
applications, they contain aggregated data that 
summarizes connections or packets that were 
transferred over the monitored network. A typical 
configuration would be using the IP 5-tuple <source 
IP, dest IP, source port, dest port, 
protocol> as flow keys, i.e. attributes describing the 
flow. Furthermore, relevant statistical data can be 
added such as the flow start and end times or the 
number of bytes of all packets belonging to the flow. 
If flow records are configured to represent single 
packets, parts of payload data may also be contained. 

A wide number of application scenarios exist that 
relies on flow monitoring. Besides simple anomaly 
detection methods like top-N lists, more intelligent 
traffic summaries [12] or application identification 
methods [5] are being investigated. 

In order to reduce the amount of packet 
information to be analyzed at the attack detection 
level, filtering and sampling techniques can be 
employed. It can be shown that such methods – even 
though reducing the granularity of the monitored data 
– can greatly help to detect attacks and misbehavior in 
high-speed networks using distributed monitoring [6]. 

For the transmission of monitoring data, the IETF 
developed a protocol and information model named IP 
Flow Information Exchange (IPFIX) [3, 4]. The IPFIX 
protocol is built on a template based system for 
information exchange, making it very flexible with 
regards to changing the default information fields of 
the exported flow records. Because of the template 
based solution of flow records, it is fairly easy to tailor 
an IPFIX based flow information export system to 
network operators specific needs. The transmission of 
collected flow information, i.e. the data export in 
IPFIX terminology, occurs in regular intervals 
controlled by an active and an inactive timeout, i.e. a 
measure for the maximum time of storing a flow at the 
monitor and the maximum gap between two 
consecutive packets. Therefore, the protocol is well-
suited for transmission of huge amounts of monitoring 
data between monitoring probes and analyzing 
stations as well as for dynamic flow data mediation. 
 
III. FEEDBACK-LOOP BASED ADAPTATION  
 

In this section, we briefly review the feedback 
based approach presented in [7, 10]. This method is 
based on a bio-inspired technique that creates 
appropriate feedback loops for adapting the 
parameters in the monitoring environment depending 
on the current load in the network. Usually, two 

different feedback loops need to be used in 
combination: positive feedback for short-term 
amplification and negative feedback for long-term 
regulation. The intrusion detection reports detected 
attacks to the firewall that in turn is blocking this 
traffic and reduces the number of packets to be 
monitored. Additionally, the IDS reports legitimate 
traffic to the monitor. This monitor stops reporting 
the packets belonging to these flows and, therefore, 
reduces the number of packets to be analyzed. 
Obviously, both configurations cannot be permanent. 
Sources sending legitimate traffic might begin to send 
attack packets at any time. Also, malicious systems 
may be patched or otherwise “corrected” and should 
not be starved by our firewalls. 

The adaptation scheme is based on two building 
blocks. First, we define blacklists and whitelists 
representing flow patterns of detected attack traffic 
and legitimate traffic, respectively. In particular, the 
blacklists represent the firewall systems that 
completely filter (detected) attack traffic. On the 
other hand, whitelists are used to reduce the amount 
of monitoring data. Usually, it is not necessary to 
report traffic information about clearly identified 
legitimate connections. Secondly, we use feedback 
loops for system control. The adaptation is done by 
calculating appropriate timeouts. TOblack corresponds 
to the firewall system and TOwhite to the monitoring 
probe, i.e. each entry in the blacklist is associated a 
timeout when to expire the particular entry. Similarly, 
each whitelist entry is managed. 

 

 
Fig. 2 – Basic model for the adaptation of the system load 

using a feedback-based approach [7] 
 
Fig. 2 shows the basic model. As depicted, 

different traffic rates (denoted as λk) are continuously 
measured. Table 1 lists all these input parameters that 
are used to calculate the timeout values. 

 
Table 1: Input parameters, i.e. data rates 

λ Arrival rate 
λb Arrival rate of “black” packets 
λbi Arrival rate of “black” packets 

belonging to the i-th flow 
λw Arrival rate of “white” packets 
λIDS Maximum capacity of the IDS 

 



The timeout values TOblack and TOwhite are 
continuously adapted according to the current system 
state, which is reported among the participating 
systems, i.e. the monitoring probes, the attack 
detection systems, and the firewalls. In particular, 
these values are calculated according to Equations (1) 
and (2) as shown below. 

 

 (1) 
 

  (2) 
 
The single terms are discussed in the following. In 

principle, all terms belonging to one timeout are 
summed up and scaled by a constant. 

t1 Ratio of the ith attack flow to the overall attack 
rate. Used for penalizing previously discovered 
attack flows. This term must be scaled 
separately using C1 because it is usually very 
small. 

t2 Similar to t1 but defined the ratio of arriving 
attack traffic to the overall throughout. The 
larger it is, the more aggressive the attack. 

t3 This term describes the safety of the arriving 
traffic: the larger the amount of “white” 
packets, the smaller the requirement for large 
timeouts at the firewall. 

t4 This term is a measure for the overload of the 
attack detection system. 

t5 The same as t4 but used at the monitor. 
t6 Similar to t3 but defining the risk of arriving 

packets. 
Each term is represented by a fraction of two rates. 

Therefore, each has to be read as “ti = 0 if λk = 0”. In 
our first experiments, we evaluated appropriate values 
for these constants. In a next step, the constants 
themselves can be adapted to the current scenario. 
Further details about the model and the calculations 
can be found in [7]. 
 
IV. SIMULATION MODEL AND SCENARIOS  
 

For the simulative analysis of the performance in 
the distributed case, we implemented a simulation 
model in OMNeT++ together with its INET 
Framework extension. OMNeT++ is an event-based 
network simulator. Scenarios in OMNeT++ are 
represented by a hierarchy of reusable modules written 
in C++. Modules' relationships and their 
communication links are stored as Network 
Description (NED) files and can be modeled 
graphically. Simulations are either run interactively, in 
a graphical environment, or are executed as command-
line applications. The INET Framework provides a set 

of OMNeT++ modules that represent various layers 
of the Internet protocol suite, e.g. the TCP, UDP, 
IPv4, and ARP protocols. 

We implemented IPFIX based monitoring probes 
as well as firewall systems capable to maintain the 
described whitelist and blacklist functionality. The 
IDS is modeled as a stochastic process that identifies 
flows as malicious, legitimate, or unknown according 
to a given fixed probability or a probability 
distribution. This is an abstraction from real world 
behavior but we tried to model the ratios as correct as 
possible – and we also evaluated differences in the 
system behavior for varying probability distributions 
of attack detection. 

The basic scenario that we analyzed is depicted in 
Fig. 1 and a screenshot of the main network in the 
simulation is shown in Fig. 3. Three networks are 
connected by two routers. In particular, we observed 
traffic from/to the Internet that comes from the 
computer science department (CSE, right). In 
addition, the “normal” university Internet traffic is 
analyzed (FAU, top). 

 

 
Fig. 3 – Basic scenario used for the simulations: three 

networks are connected by two routers, which also provide 
monitoring and firewall functionalities 

 
In order to obtain as accurate measures as 

possible, we used trace-driven input modeling 
techniques. All the experiments were performed on a 
set of trace data that we collected in advance and 
stored it in an anonymized form. The trace file used 
for simulations have the following formatting: 

 
10:19:31.048660 10.10.37.59.1398 

10.10.37.230.22 tcp 120 
10:19:31.048924 10.10.37.230.22 

10.10.37.59.1398 tcp 88 
10:19:31.083884 10.10.37.1.520 

10.10.37.255.520 udp 52 
 
The first value corresponds to a time stamp, which 

is also used to advance the time in the event-driven 
simulation environment appropriately. Then, the 
source IP address/port and destination IP address/port 
of the packet are denoted. Finally, the protocol and 
the packet size are appended. A separate traffic 
generator module has been implemented that reads 
the trace files, generates new packets within 



OMNeT++, and advances the simulation time 
appropriately. 

In order to analyze the security system’s 
performance, a number of measures have been 
recorded. Main focus was on the different arrival 
rates, i.e. all the λk. Furthermore, we observed the 
number of entries in the blacklists and whitelists in 
order to obtain information about the resource 
consumption on firewalls and monitors, respectively. 
The adaptive feedback algorithm can be best analyzed 
by evaluating the timeouts for each entry in both the 
lists. 

In total, we analyzed four scenarios. First, we re-
created the simple setup used in [7] for cross-
validation of the simulation model. The simulation 
results outlined the validity of the implementation. 
Furthermore, and the main contribution of this paper, 
we analyzed three distributed setups. We started with 
the straightforward approach as depicted in Fig. 1. The 
central IDS analyzes the traffic reported from monitor 
M1 and M2 separately and creates corresponding 
reports for the respective firewalls. In the next 
scenario, we mixed the monitoring traffic before it is 
analyzed. This is a reasonable assumption because 
hierarchical monitoring environments can be expected 
in large-scale networks [2]. In turn, the whitelists and 
blacklists installed on both monitors and firewalls 
contain the same information. Lastly, we added more 
intelligence to the IDS in terms of knowledge about 
the network topology. This can be anticipated in real 
networks as well exploiting network management 
data. With this scenario, we tried to reduce the 
resource consumption of blacklists on the respective 
firewalls. It turned out that this approach does not 
work as expected as we could not provide 
bidirectional flow information. Thus, we concentrate 
on the first two scenarios in the next section in which 
we present and discuss the simulation results. 
 
V. RESULTS AND DISCUSSION  
 

For the simulative analysis of performance aspects 
in the monitoring probes and the firewalls, which in 
turn provide insights into the general behavior of the 
adaptive load management system, we performed a 
number of experiments. Each experiment was based 
on the same trace of network packets to provide 
comparability. The trace includes 20min of packet 
data. Simulation control was applied by performing at 
least five runs for each experiment to analyze 
stochastic effects of the simulation. 

Most of the results are shown as boxplots. For 
each data set, a box is drawn from the first quartile to 
the third quartile, and the median is marked with a 
thick line. Additional whiskers extend from the edges 
of the box towards the minimum and maximum of the 
data set. Data points outside the range of box and 
whiskers are considered outliers and drawn separately. 

We analyzed the impact of a number of parameters 
on the behavior of the whitelist and blacklist 

management. In particular, we evaluated the 
influence of the export interval that is configured at 
the flow processing entities, i.e. the monitoring 
probes. We analyzed equal export interval timing for 
both the monitors, ranging from 5s to 40s as well as 
different export interval timings, e.g. a 5s export 
interval for M1 and 10s for M2. 

Furthermore, we studied the impact of the 
detection ratio of the IDS. In real systems, this ratio 
will largely vary depending on the current attack 
situation. Therefore, we analyzed static detection 
ratios as well as a stochastic behavior, i.e. a uniform 
distribution for the detection ratios. 

The most important simulation parameters are 
listed in Table 2. This includes also the settings for 
the static parameters in the adaptation algorithm, i.e. 
C1, C2, and C3 as well as the processing capabilities 
of the attack detection system, i.e. λIDS. 

 
Table 2: Simulation parameters 
Export 
interval 

5s – 40s; uniform or different for 
both monitors 

Detection 
ratio 

Static: 0.01/0.1 – 0.2-0.2 
(black/white) 
Stochastic: uniformly distributed 

C1, C2, 
C3 

9x108, 236, 120 

λIDS 60 packets per second 
 
In a first step, we evaluated the arrival rates at the 

systems with respect to the analyzed scenario. Fig. 4 
depicts the different arrival rates at the monitoring 
probe M1: λ, λw, and λb. As can be seen, the variance 
of the data rates related to the currently installed 
whitelists and blacklists is rather small. Also, there is 
only a marginal difference between the two scenarios. 

 

 
Fig. 4 – Arrival rates at M1: λ (aR), λw (waR), and λb (baR) 
 

In comparison, the rates at the monitoring probe 
M2 are depicted in Fig. 5. In this case, there is a 
recognizable difference between scenario 1 and 
scenario 2. Obviously, it makes sense to install 
identified information about attack and legitimate 
traffic at both monitors and firewalls. This allows to 
block attack traffic as early as possible as it enters the 
local network. 



 
Fig. 5 – Arrival rates at M2: λ (aR), λw (waR), and λb (baR) 

 
We further analyzed the influence of the export 

interval. For this, we stepwise increased the export 
interval from 5s to 40s. It turned out that the export 
interval has almost no influence on the traffic rates. 
Nevertheless, it is clear that short lasting attacks 
cannot be successfully counteracted if using long 
export intervals because the overall response time 
increases accordingly. 

Our focus was therefore to investigate the resource 
demands on monitors and firewall. In general, the size 
of whitelists and blacklists not only contributes to 
increased memory consumption. The major concern is 
the length of the lists in terms of computational search 
time. In case of high variance of the length of the lists, 
the search operations will take unpredictable time and, 
therefore, lead to an unstable operation of the overall 
security system. 

 

 
Fig. 6 – Number of blacklist entries at M1 

 
In Fig. 6, the number of blacklist entries at 

monitor/firewall M1 is depicted. As can be seen, the 
maximum is at about 12.000 entries, which is a 
reasonable size even for linear search operations. 
Also, after a short startup phase, the size of the 
blacklist converges to a stable state. Another observed 
effect is the independency of the scenario, i.e. whether 
all monitored traffic equally contributes to the attack 
detection analysis and, in turn, to the installed 
whitelists and blacklists; or if each monitor-firewall 
combination is handled separately. 

Similar effects can be observed for the behavior of 
the whitelists as installed at monitor/firewall M1 is 

depicted in Fig. 7. Again, the maximum number of 
whitelist entries (about 70.000) is of reasonable size 
for search operations and the size of the list 
converges quickly to a stable size. 

 

 
Fig. 7 – Number of whitelist entries at M1 

 
We also analyzed the behavior at the 

monitor/firewall combination M2. The numbers of 
blacklist and whitelist entries is depicted are shown in 
Fig. 8 and Fig. 9, respectively. Similarly to the 
behavior of M1, the size converges after a short 
startup phase. Due to the much smaller packet rate, 
the maximum size of the lists is really small 
(blacklist: 400; whitelist: 3.000). Also, the deviation 
is much smaller compared to M1. 

 

 
Fig. 8 – Number of blacklist entries at M2 

 

 
Fig. 9 – Number of whitelist entries at M2 

 



From all these measurements, it can be seen that 
the feedback loops lead in all analyzed cases to a 
quick adaptation of the load of all involved systems 
and, in turn, successfully prevents overload while 
achieving optimal detection rates. Of course, we 
conducted further simulations, e.g. for different export 
intervals and different detection rates at the IDS, that 
confirmed the presented data. 

 
VI. CONCLUSION 
 

We analyzed the need for adaptive load control in 
distributed network security environments. In 
conclusion, it can be said that, in order to cope with 
the increasing bandwidth requirements, the system 
load of deployed monitoring probes, attack detection 
systems, and firewalls need to be and can be 
controlled in a fully self-organizing manner. We 
figured out that a feedback-loop based approach that 
we developed and analyzed in a simple model also 
performs well in a distributed environment. 

The capability of adapting the systems’ parameters 
during runtime makes this approach useful for most 
monitoring scenarios. Using an amplifying positive 
feedback loop and protecting a negative feedback 
loop, self-organizing behavior of the overall system is 
achieved. 

The capabilities of the implemented OMNeT++ 
model were only explored to a small degree. The 
model can further be used and extended for many 
simulative analyses of the performance of methods for 
efficient monitoring and attack countermeasures. 
Explicitly to mention are the implemented blacklists 
and whitelists as well as the IPFIX functionality. 

A future extension of the adaptive feedback system 
is the implementation of bidirectional flows. This can 
be used to optimize the distribution of whilelist and 
blacklist entries to appropriate systems in the network, 
e.g. exploiting topology information as available from 
a network management system. Another possibility is 
to have a sensor at the detection system, which 
maintains the state of the detection system. 

Future work will also include experimental 
validations in a testbed setup. 
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