
Real-time Indoor Localization Support for
Four-rotor Flying Robots using Sensor Nodes

Juergen Eckert, Falko Dressler and Reinhard German
Computer Networks and Communication Systems

Department of Computer Science 7, University of Erlangen, Germany
{juergen.eckert, dressler, german}@informatik.uni-erlangen.de

Abstract—Flying four-rotor robots (quadrocopters) are on-
board sensor controlled systems. In comparison to classical mono-
rotor objects (helicopters), quadrocopters can be piloted with a
much lower effort. However, lateral drifts can not be compensated
only referring to the built-in sensors. The detection of such drifts
is strongly necessary for indoor operation – without corrections
a quadrocopter would quickly cause a collision. In order to
compensate the dislocation, an additional indoor positioning
system is needed. In our work, we provide a framework for time-
of-flight based localization systems relying on ultrasonic sensors.
It is optimized for use in sensor nodes with low computational
power and limited memory. Nevertheless, it offers scalability and
high accuracy even in case of single erroneous measurements. We
implemented the system in our lab using ultrasound sensors that
are light enough to be carried around by the flying object. Using
this real-time localization system, a position controller can be
implemented to maintain a given position or course.

Index Terms—Indoor localization, flying robot, sensor network,
ultrasound

I. INTRODUCTION

Flying four-rotor robots are similar to helicopters. In con-
trast to mono-rotor systems, these so-called quadrocopters
usually provide more sensors and more robust controllers. A
combination of gyrometers and acceleration sensors is used
to determine its current state. Based on these measurements,
a digital controller continuously adjusts the orientation of
the platform. In such a way devices can easily be piloted
by other digital systems such as a sensor network. By only
controlling the pitch and the roll angles, the current position
cannot be obtained. The quadrocopter always hovers on top of
an air cushion. Thus, any minimal measurement error or any
airflow may cause a drift to a random direction. The system
remains highly in-stable w.r.t. position maintenance. Angle
corrections must be permanently applied and more than on
board instruments need to be used to keep the flying robot in
position.

Figure 1 shows the scenario. A quadrocopter is relying
on an external positioning system to continuously update its
system parameters. In general, there are many cases in which
applications benefit from getting more accurate positioning
information. A discussion of preferences for systems using
active or passive mobile devices can be found in [1]. If privacy
is an issue, passive localization systems should be preferred.
For example, the infrastructure of the Cricket system [2] has
no knowledge about the current position of any mobile device.

Fig. 1. Four-rotor flying robot hovers over reference points

However, this system architecture also has several disadvan-
tages. The accuracy suffers if the mobile device moves during
a series of (at least three) measurements. In some cases, e.g.
using ultrasound, this is a strong limitation because a set of
measurements can take up to several hundred milliseconds. In
our scenario, the object to be localized is flying. That makes
a complete stop during a set of measurements impossible.
The object will always drift in a random direction. In active
systems the mobile device emits a signal and the infrastructure
receives it simultaneously. Thus, better accuracies and higher
velocities for the mobile devices are possible.

There are a number of localization systems described in
the literature, which are based on different measurement and
localization techniques. Each of those systems has its benefits
and problems. Unfortunately, no system (neither commercial
nor academic) fulfills all the requirements for localizing flying
quadrocopters. Real-time localization is frequently an issue,
for example some systems rely on an iterative position es-
timation. Furthermore, many systems are simply too heavy
to be carried by the flying robot. Therefore, we investigated
appropriate real-time localization techniques and came up with
a new solution that perfectly meets the needs in this applica-
tion domain. We implemented a system based on ultrasonic
distance measurements that is lightweight and can be carried
by our quadrocopter. In summary, we not only provide a
framework for our chosen scenario but also for other cases of
real-time indoor localization. More detailed information can
be found in our technical report [3].

The rest of the paper is organized as follows. Section II sur-
veys the state of the art of localization systems. In Section III,



we present the mathematical background of our localization
system. Then, Section IV presents some insights into the
performance of the system. The test system is finally described
in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

A number of different Local Positioning Systems have been
proposed during the last two decades. A system called the
Active Badge [4] is often claimed to be one of the first
developments – it has been published in 1992. The AT&T
research team placed single infra-red (IR) receivers in different
rooms and connected them to a central server. The idea was
to locate persons who are equipped with active badges. Every
10 s, those badges emit an IR pulse with a globally unique
identification number. Thus, it is possible to provide both
absolute and symbolic location information about the people.
However, the system does not know the exact position of a
person, but in which room she/he currently is.

Already three years earlier, a physical position sensing
system has been published [5]. The authors used a combination
of ultrasound (US) and IR sensors. The system to be localized,
in this case a mobile robot at an unknown position, emits
an active US chirp. Beacons placed in the environment can
detect this signal and, after a pre-defined waiting time, the
beacon replies to the chirp with an IR burst containing its
location. The distance between the active beacon and the robot
is determined by the elapsed time interval. Using a certain
number of distance measurements and the time-of-flight (TOF)
lateration technique, a position can be calculated. The gradient
or Newton-Gauss method can be applied to the erroneous data
in order to achieve higher accuracy. In reported experiments,
an accuracy of less than 10 cm has been achieved. Similarly to
the active badge system, the IR localization is very sensitive
to the current light conditions. Also, both systems do not scale
very well.

In 1991, Leonard and Durrant-Whyte [6] used corners,
walls, and other distinctive objects as passive beacons. The
shape, and therefore the object itself, is detected by the
use of an US distance analyzer. A map of the geometric
beacon locations had to be known by the robot a priori. The
proximity technique allows the vehicle to roughly estimate
its location. In addition, the robot uses odometry and an
extended Kalman filter for enhancing the accuracy of the
location estimation. This technique can only be applied if 2-
dimensional positioning is desired. Besides other effects, in
3-dimensional space the number of required measurements for
beacon detection would be too huge.

Angulation techniques are frequently based on optical mea-
surements such as using a digital CCD camera and appropriate
pattern recognition algorithms. Such processes are extremely
time and power consumptive. Hence, Salomon et al. [7]
used an analogue position-sensitive device and equipped the
object to be localized with an infrared emitter. Using these
tools, an angle can be calculated. The power consumption on
the receiver side is less than 60 mW, however, the possible
detection angle of the system is very small.

RADAR [8] uses the signal strength and signal-to-noise-
ratio of wireless LAN for indoor position sensing. Similarly,
Bulusu et al. [9] provide a solution for outdoor usage. Both
approaches use the scene analysis technique. The reference
points are either broadcasting their locations or they are stored
in a database. Depending on the beacons in range, the location
is computed (fingerprint). Reflected signal waves make it very
hard to provide an accurate position, especially for indoor
usage. Yet still an accuracy of about 4 m can be achieved.
Again, this technique works only well for 2-dimensional
localization.

Beep [10] is another approach relying on sound-based TOF
lateration. In contrast to other implementations, audible sound
is used instead of ultrasound. This allows the usage of PDAs
or cell phones as a receiver. A slight disadvantage, besides the
hearable measurement, is that the used hardware was not built
for accurate time measurements. This fact is also reflected
in the position accuracy: errors larger than 1 m have been
observed.

In practice, clock synchronization of all involved controllers
is often not possible. In such cases, time-difference-of-arrival
techniques have to be used. The lack of knowing the time
of departure of a signal can be compensated by taking not
only the position as a variable but also the time. Only one
more reference point is needed to solve the resulting equations.
Mahajan and Walworth [11] give a closed form solution for
this kind of problem.

About seven years after the active badge, the same group
proposed a new localization system called Active Bat [12]. It
relies on US based TOF lateration. A bat, which is carried
around by a person, sends an US chirp to a grid of ceiling
mounted receivers. Simultaneously, the receivers are synchro-
nized and reset by a radio packet that is also transmitted by
the bat. All measured distances are forwarded to a central
computer where the position calculations take place. An accu-
racy of 9 cm has been achieved. The scalability is limited by
the central computer and wires to all the US receivers. That
weakness has been addressed with the Cricket system [2]. All
the wires have been replaced by wireless communication and
distributed location calculation (on the node to be localized).
The localization is initiated with a localization request radio
packet. As this packet does not include any identifier and
because the location computation is performed on the object
itself, location privacy is provided. However, as the position
sensing time intervals can get too big, the solution is not
suitable for continuous real-time localization.

III. MATHEMATICAL PROCEDURE

This section covers the procedure of computing position
information out of gathered distance measurements. We rely
on US distance estimation for TOF based lateration. The
technical details are depicted in Section V.

A. Preliminarities

We assume to start with a set of n tuples Ti, each consisting
of a distance di to a reference point with a known position



and the coordinates of this point −→xi :

Ti = (di,
−→xi) : −→xi = (xi, yi, zi)T ; i ∈ [1, n] (1)

The trilateration problem can be solved for the unknown
position −→x = (x, y, z)T in different ways. Theoretically, the
problem can be solved by a closed mathematical expression
as shown in Equation 2. However, in practice, it is impos-
sible to solve those n equations at once due to error-prone
measurements.

(xi − x)2 + (yi − y)2 + (zi − z)2 = d2
i ; i ∈ [1, n] (2)

Several iterative optimization algorithms exist for the prob-
lem. For example, Foy [13] uses a Taylor-series estimation.
At least for 2-dimensional problems, the method converges to
a good solution within a few iterations. Another common ap-
proach is the use of an extended Kalman filter [14]. Abroy and
co-workers [15] present a non-iterative solution, however, with
tremendous restrictions in terms of scalability and variability.
Exactly three reference points, precisely oriented to each other
are required: the coordinates have to be −→x1 = (0, 0, 0)T ,
−→x2 = (x2, 0, 0)T , and −→x3 = (x3, y3, 0)T . In order to apply this
system to a general case, a coordinate transformation (offset
and rotation) would be needed. Because this requires non-
negligible computational effort, this method cannot be applied
in many scenarios.

B. Position calculation

One common feature of all indoor location systems attracted
our attention. Given that all reference points are mounted to
the ceiling, the wall, or the floor, they all have one coordinate
in common. Let us denote this as the z coordinate. We exploit
this information for a closed position calculation.

First, a distribution of all tuples Ti into m subsets Sj to
pairs of three different points must be done. The precise subset
generation method will be explained later in Section III-C.
For the moment, we assume we have m subsets that fulfill
the condition that all z coordinates within a subset Sj of all
tuples T have to be equal:

Sj ⊆ T | ∀−→xi ∈ Sj : zi = cj , cj ∈ R and ‖Sj‖ = 3 (3)

Furthermore, it must be defined a priori whether the object to
be localized is above the selected cj , i.e. z ≥ cj , or below, i.e.
z ≤ cj .

Then, we can compute m possible coordinates for the
unknown object out of the m subsets. Using a set of three
single equations from (2) and taking the characteristics of each
subset Sj into account, we can form a linear equation system:

A−→x =
−→
b : A ∈ R2×2,−→x ∈ R2,

−→
b ∈ R2 (4)

A = 2 ·
[
x3 − x1 y3 − y1
x3 − x2 y3 − y2

]
−→x = (x, y)T

−→
b =

(
(d2

1 − d2
3) + (x2

3 − x2
1) + (y2

3 − y2
1) + (z2

3 − z2
1)

(d2
2 − d2

3) + (x2
3 − x2

2) + (y2
3 − y2

2) + (z2
3 − z2

2)

)

This 2-dimensional problem can be solved easily be apply-
ing Gaussian elimination.

For the computation of the x and y coordinates, only simple
arithmetic operations are needed such as addition, subtraction,
and multiplication. Those are very basic (and fast) operations,
available on low cost micro-controllers. The z coordinate
can be generated in two ways. The easiest way is simply
to measure it, which is straightforward using an ultrasound
system. Alternatively, the already computed values can be
inserted in Equation 2, which, however, requires a square root
function for the used micro-controller.

Equation 3 restricts the z coordinate of each subset to
be equal. If this condition cannot be fulfilled, the algorithm
will not be applicable. This situation can be avoided using
a coordinate transformation (rotation). After computing the
position, a back-transformation into the original coordinate
system is required:

−→z = Θ(−→x ); position algorithm;−→x = Θ−1(−→z ) (5)

C. Subset generation

In theory, one subset Sj , which contains three tuples Ti,
would be sufficient for position estimation. However, taking
measurement errors into account, more subsets are required.
Let n be the number of collected tuples Ti (of reference
points −→xi and distances di), then m =

(
n
3

)
= n!

3!·(n−3)!
disjunct subsets of three pairs can be computed. The number
of possible subsets increases significantly with the number of
reference points. In terms of scalability it is not feasible to
compute all m subsets and to evaluate them.

Casas and co-workers [16] investigated all kinds of ultra-
sonic measurement errors. They came up with an average rate
of measurement failure of Pmf = 30 %. A position estimation
can only be successful if at least one correct subset Sj is
used for evaluation, where a correct subset corresponds to
one that contains only accurate measurements. Pm denotes
the probability that none of the chosen subsets is correct. The
required number of subsets can be calculated as follows [16]:

m =
log(Pm)

log(1− (1− Pmf )3)
(6)

Thus, for example, 11 subsets are required if we accept a
failure probability of Pm = 1 %. Furthermore, the authors
suggest that Monte Carlo techniques should be applied to
randomly pick m subsets. However, more information about
the subsets could help to improve the selection. In general,
subsets with geometric shapes that minimize the error rate
of the position calculation should be preferred (e.g., regular
or well-formed triangles). Thus, the basic idea is to generate
and, subsequently, to qualify a subset. Afterwards, it can be
placed in a sorted list. Finally, the first m elements in this list
are then used for the position calculations.

We decided to use a weighted combination of the average
measured distances and the covered ground of the three points
would be suitable. Both values are important for a well-formed
but (mostly) non-regular tetrahedron (3 reference points plus
the unknown point). The base area of the figure is a triangle.



Usually, this can not be computed very fast because square
root or trigonometric functions would be needed. Therefore,
we used the cross product −̂→n = −→a ×

−→
b (with −→a = −→x2 −−→x1

and
−→
b = −→x3 − −→x1). Its length directly corresponds to the

covered area. According to (3), the base area is parallel to the
x–y plane, so the cross product only contains a z component
(Equation 7). This length can therefore be computed very fast,
only summation, subtraction, and multiplication methods are
needed.

−→a ×
−→
b =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 =

 0
0

a1b2 − a2b1

 (7)

D. Position estimation

Finally, the m possible positions (stored in X(k+ 1) : X ∈
R3×m) have to be merged to one position −→x (k+1). The trivial
approach would be the calculation the mean of all positions.
However, outliers would significantly influence the result.
Casas et al. [16] used an approach where a squared residual
vector between all measured and all theoretical distances for
each subset is computed. By taking the minimum median of
the individual elements the influence of the outliers vanishes.
Unfortunately, the computational effort for this method in-
creases with the number of reference points and, therefore,
is not very scalable.

In a second step, we incorporated prior knowledge into the
position estimator. Casas method [16] provides localization
without any state information. However, already collected
information could be exploited to gain better localization
results. Thus, we split the estimation process into two steps in
a similar way like an extended Kalman filter. In the first step,
we predict the current position −→xp(k+ 1) using a state vector:

−→xp(k + 1) = −→x (k) + ∆−→x (k, k − 1) · r · κ(r) (8)

r =
∆t(k + 1, k)
∆t(k, k − 1)

(9)

For this vector, in each step we store the position and the
localization time. The second step is slightly different from
the original design of the filter. We generate the new position
−→x (k + 1) by selecting the nearest computed position to the
predicted position out of the set X(k + 1).

The more time has elapsed since the last computation in
relation to the last interval, the less reliable the prediction gets.
The correction function κ() in Equation 8 has been designed
for compensating this effect. It is a function of r (Equation 9),
which denotes the ratio of two time intervals. κ() is a simple
function that returns 1 for values between 0 and 1. For greater
values, the output slowly decreases 0. Figure 2 illustrates
the prediction vector and the growing space of the position
acceptance. As shown on the left side, the prediction vector
grows over time if the ratio r is smaller than 1 and, therefore,
κ() is 1. Thus, κ() does not influence the prediction. The
right side shows the situation if the ratio r increases beyond
1. This means that the last localization interval (i.e., the time
between two accepted positions) was shorter than the elapsed

Fig. 2. Position prediction

time since the last position was accepted. Now, κ() is being
decreased because at this time a proper prediction based on
the movement during the last interval can not be guaranteed.

We achieved very good and fast results using this estimation
technique. However, it can happen that a wrong position is
accepted. For example, if all taken measurements are wrong
and, therefore, all possible positions are as well incorrect. In
this case, the position estimator takes the nearest of these
wrong position if it is within the accepted area. So, invalid state
and positions are stored. Fortunately, the localization technique
is self-correcting. As soon as the object moves (erroneous
measurements are fluctuating) and at least one correct possible
position is calculated, the state will become accurate again
within a few cycles.

IV. LOCALIZATION PERFORMANCE

Scalability is one of the biggest issues in the context of
sensor networks. In order to proof our localization algorithm
works even on resource constricted embedded systems, we
implemented the system and evaluated it in a lab scenario. In
particular, we used the SunSpot sensor node platform [17] run-
ning JavaME as the host operating system. We first estimated
the computational performance of the localization algorithm.
In the next section, we discuss the applicability for real-time
localization of our flying quadrocopter.

One of the key issues is the creation of the subsets. Figure 3
shows the required time of the grouping for different numbers
of reference points and subsets. For reasons explained in Sec-
tion III-C, we limited the number of subsets to 11. Independent
of the number of reference points, an upper boundary for the
classification (depicted in red in Figure 3) can be given. The
limitation of subsets implicitly restricts the position vector
calculation time to an upper boundary, too. Thus, not every
possible position needs to be calculated: Only positions from
subsets that meet a certain threshold in the qualification are
being considered.

In Figure 4, all the tested timings of the position estimation
algorithms are depicted. As mentioned before, the residuum
based method [16] (blue) scales approximately linearly with
the number of reference points. Similarly, the “only point”
based algorithm (red), which recursively generates the mean
of all positions and removes the position that is most distant
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Fig. 4. Position estimation

to the mean, does not scale well, the computation costs are
too high, and the demands for accuracy cannot be met. The
Kalman based predictive method (green) gives accurate and
quick results.

Finally, Figure 5 shows the total computation time. The
worst case scenario (blue) is a combination of the techniques
that are not bounded in computational time. All subsets are
computed and the residual based position estimation was
applied to the best 11 subsets. In the best case scenario (red),
only techniques with a bounded computational time are used.
So an upper boundary for the localization algorithm can be
given independent of the number of used reference points.
This is important to fulfill the real-time specification. The best
case decentral scenario (green) describes the absolute minimal
computational time consumption for the initiator of the local-
ization, if subset grouping and position vector calculations are
distributed on the entire sensor network. Unfortunately, the
overhead of the communication latency is far too big to benefit
from it, at least using our available hardware.

V. TEST SYSTEM

In this section, we describe our localization system for real-
time control of a quadrocopter. We also discuss the practical
implementation of the developed algorithms. Despite the clas-
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Fig. 6. Localization accuracy: the quadrocopter hovers over the ground, the
height error is plotted

sical master-slave topology, we decided for a hybrid measure-
ment architecture. Whether a device is master (transmitter) or
slave (receiver) is completely hardware independent and can
be controlled on application level. The detection field of the
system is designed to be a hemisphere. Thus, the reference
points on the floor can not only detect the flying object but also
each other (this architecture is depicted in Figure 1). This way,
it is possible to span up the grid automatically by attaching the
reference points on top of mobile robots. Another advantage of
a flying active beacon, as mentioned before, is that by sensing
the TOF of its own active chirp the altitude of the object can be
computed without the help of the localization infrastructure.

In order to measure the localization accuracy, we arranged
one reference point in each corner of a square, so in total
four reference points are used. The length of the edges was
2 m. The object hovers randomly in a square of about 3 m
of edge length and at an altitude of 0.5–2.5 m over the
reference square. Figure 6 shows the measurement results. The
histogram shows the difference between the measured (using
the ultrasonic device) and the computed altitude (using the
localization system). An accuracy of ±10 cm can be achieved
with a confidence of 98 %.

For the measurements shown in Figure 7, we placed the
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Fig. 7. Localization accuracy: the quadrocopter is fixed in a position, the
measured x, y, z coordinates are plotted

four-rotor robot at an arbitrary but fixed position over the
detection field. It can be seen that there are four centers of
gravity. Each subspace is the region for the computed position
of one of the four possible subsets. Within this space, the
maximum variance is about ±2 cm. The estimated position
is normally confined to one of those regions. But as soon
as the used subset is missing, the estimated point jumps to
another subspace. The temporary vanishing of a subset can
have two main reasons. First, one of the measurements was
wrong and, therefore, the position was too far away. Secondly,
the wireless communication may be disrupted. The generation
of the regions is based on systematic errors of the reference
points’ positions. In our tests, we ensured an accuracy of about
±3 cm. With increasing deployment accuracy of the reference
points, the resulting regions merge into a single one.

VI. CONCLUSION

We investigated the problem of continuous indoor local-
ization for flying autonomous robots. In contrast to ground-
based robots, any waiting until position measurements have
been completed or taking advantage of additional support
systems such as odometry are not possible in this case. Thus,
a real-time localization is needed that must also take weight
constraints into account.

Considering these requirements, we developed an algorith-
mic procedure that advances the state of the art in indoor
localization by being able to perform real-time localization
based on possibly error-prone distance measurements. The
basic assumption is that one coordinate of the reference points
needs to be equal. Without loss of generality, we set the z coor-
dinates to a constant value. This allows a closed mathematical

calculation that is even possible to be performed by low
resource sensor nodes. If, however, a coordinate transformation
needs to be executed, the localization algorithm suffers from
the computational complexity of this transformation. We im-
plemented and evaluated the algorithm in our lab. The results
demonstrate the feasibility of the solution. We consider our
ultrasound lateration technique a necessary step for completely
autonomous operation of flying robots in indoor environments.
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