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Abstract. The demand for location awareness and, therefore, the de-
mand for self-localization techniques is continuously increasing. As a
result, a good number of systems and methods for self-localization have
been developed. Almost every system described in the literature exploits
specific hardware or scenario features to solve the positioning issue, e.g.
by using anchor nodes, relying on distances or angles, and even focusing
on quite different distances ranging from centimeters to several kilome-
ters. In many cases, the metrics used to evaluate the localization quality
have been chosen according to the scenario. In this paper, we thoroughly
discuss the most frequently used metrics for evaluating the quality of
self-localization techniques. According to our findings, careful handling of
some commonly used metrics is strongly required. We further propose an
area-based solution that is especially helpful to measure and to compare
different localization systems, which only need exact localization in a local
context independently from specific scenario or hardware requirements.
In this paper, we try to shed light on the question how to compare those
very different techniques. In particular, we suggest the use one of two
attribute-independent metrics. The first one is a generalization of an
already quite popular metric, the Global Energy Ratio (GER), and the
latter, the Area Ratio (AR), is a new approach based on the covered area.
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1 Introduction

Location awareness and the related localization techniques have become one of the
most important issues in the field of wireless networking and mobile computing.
With the emergence of a new class of location-aware distributed applications, and
with new developments in the area of massively distributed systems, localization
techniques are even becoming a key factor influencing the quality of those
applications. Among others, Wireless Sensor Networks (WSNs) and Sensor and
Actor Networks (SANETS) are in the main focus of self-localization, i.e. the
capability of autonomously generating (relative) location information [2,4].
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One of the biggest problems of providing this information is to generate a
reference grid or a map in advance. No system is working without this very costly
or complex effort. Pure manual generation is very costly whereas a (partial or
full) autonomous generation tends to be erroneous. The distinction between pure
localization clients and producers is in most cases not obvious. As the system is
growing the producers are expanding it in relation to the previously established
knowledge. If this initial step or some measurements are wrong then this resulting
placement error is mostly propagated through large parts of the set-up.

There is a wide variety of those localization techniques available, using
lateration, angulation, and scene analysis techniques [3,6,16]. Many of the
algorithms described in the literature have been designed for a specific sensing
method but do not perform well in other environments. Some of these solutions
have even been defined in the context of a complete self-localization system.
Obviously, each of the proposed localization techniques has been thoroughly
evaluated — in many cases not relying on a commonly accepted metric. This
makes it impossible to compare or makes it very hard to choose the appropriate
localization technique for an application. To simplify the evaluation of different
approaches it would here be useful to have a limited amount of metrics.

Recently, a number of different metrics have been proposed. Most of them
are taking special hardware attributes, measurement distances, or connectivity
ranges into account; others are not independent of the number of nodes. A survey
of general problems of localization including the used metrics can be found in
the book by Mao and Fidan [14].

In this paper, we try to cast light on the quality of the localization results.
We first briefly introduce the most common metrics and discuss their advantages
and drawbacks. The main contribution is the finding that some metrics produce
misleading results for certain classes of algorithms or scenarios. Furthermore, we
present an area-based metric that is especially useful when studying algorithms
that mainly relay on the localization accuracy in a local context. Based on the
provided recommendations, it is possible to select an adequate metric for a
particular class of algorithms and scenarios.

The remainder of the paper is organized as follows. Section 2 briefly describes
our application scenario and motivates the paper. In Section 3, we introduce and
discuss selected quality metrics including our proposed Area Ratio (AR). Finally,
Section 4 concludes the paper.

2 Evaluation Setup

Our scenario is a completely self-organizing approach to create a stable reference
grid similar to the work by Liu et al. [13] using autonomous robot systems.
Such systems can explore unknown environments and, at the same time, span a
reference grid for highly accurate indoor local. Figure 1 depicts the basis scenario,
which we also used to describe our self-localization approach described in [5, 6]
Mobile nodes are autonomously deploying themselves on the ground forming
a reference grid (step 1 in Figure 1). No global synchronization, knowledge, or
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Fig. 1: Localization reference grid based on self-organizing robot systems

state is available. Thus, nodes can arrive or depart from the system at any point
in time (step 2 in Figure 1). A customer, e.g. a quadrocopter, can finally use the
system to determine its current location (step 3 in Figure 1).

Our system relies on ultrasonic distance and (rough) angle measurements
and supports accurate real-time localization of moving customers [7]. For more
details on the scenario please refer to [8].

During the decision process of finding an appropriate method for creating and
maintaining the reference system (step 1 in Figure 1), we observed that comparing
different approaches is extremely challenging. Even the direct comparison of
related algorithms is not possible in many cases: A lot of attributes have to be
weighted against each other, accuracy and cost being the two primary ones.

Many researchers are creating their own evaluation scenario using hardware
and scenario specific parameters, and are adapting some metric for the evaluation
process. For comparison purposes, one would have to apply the very same
parameters to a testbed, or would have to adjust the previous algorithms to work
on the new hardware (or simulator). Both strategies may be very time consuming
and even not be possible at all. Therefore, a common and widely accepted metric
for comparison is needed, which is independent of any physical constrains such
as the measurement technique, the network size, or the topology.

For the evaluation of different metrics, we implemented our fully distributed
and self-organizing Mass-Spring-Relaxation (MSR) based technique [5, 6] together
with three different optimization steps of this algorithm in a simulation model.
In the following, we use identifiers A1l to A4 to describe the different self-
localization approaches: Algorithm A1 represents the classical MSR approach [11].
For Algorithm A2, variable node weights and an improved initial node positioning
were introduced. Algorithm A3 features the capability of locally solving misplaced
(flipped) node issues. Furthermore, the initial position is generated according to an
existing network. Finally, Algorithm A4 introduces sector-of-arrival measurements
in addition to the distance information. Details of these optimizations are out
of the scope of this paper, please refer to [5,6]. As guideline, we can say that
Algorithms Al and A2 are performing rather poor, A3 performs quite good for
small network sizes and, finally, Algorithm A4 performs nearly optimal for all
tested network sizes.

As depicted in Figure 2, we simulated different network sizes of 2 to 512 nodes.
For statistical evidence, we executed 200 runs for each experiment in randomly
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Fig. 2: Selected simulation results

chosen topologies. The presented plots show the median (50 % quantile). The
error bars depict the stable co-domain (25 % and 75 % quantiles). The details of
Figures 2a, 2b and 2c will be explained later in detail.

Figures 2a, 2b, and 2c depict the variation in quality of the different refine-
ments. The specific characteristics of the metrics will be discussed in Section 3.
Figure 2d shows the average connectivity of a node for the different network
sizes and optimization steps. It can be seen that all algorithms have the same
connectivity. However, connectivity in general is an important attribute for
most localization algorithms. After reaching convergence, this value becomes less
important for evaluating the achieved position accuracy.

3 Towards a Common Quality Metric

We assume that the network the localization approaches are implemented and
evaluated on is represented by an underlaying connected graph G = (V, E)
with vertex set V' and edge set E. Node i is associated with the vertex N, €
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V. Neighbors are defined as nodes that can directly interfere (sense and/or
communicate) with each other. Such a node pair (4, j) is represented by an edge
(N;, Nj) € E in the graph. Two different mapping representations p : V. — R™ for
the underlying graph G exist. The first representation p, is called ground truth
and is defined as a priori knowledge of all physical node positions. Therefore
it assigns a & € N" position tuple to a node (x; = p,(N;)). This knowledge is
typically unknown to the algorithm but can easily be achieved within a simulator
or within a controlled lab environment. The second representation p, is called
virtual coordinate system. Its position tuples Z € R™ represent the result of the
algorithm (Z; = p,(N;)).

Quality metrics in the field of localization techniques shall help to identify
how accurate a certain algorithm is able to reconstruct the ground truth. With
the exception of a few metrics (e.g., [9]), most of the existing metrics rely on this
information. Those few metrics are, due to the lack of global knowledge, not so
reliable, however, quite useful for a real application. In this paper, we assume
that ground truth can be obtained.

Both absolute and relative metrics have to be considered. Absolute metrics
compare the estimated with the physical positions:

This is only applicable if anchors with known positions p,(:) are present.
These are acting as interfaces between the real and the information driven virtual
world. Otherwise, the generated localization grid might be arbitrarily shifted,
rotated, or mirrored. Absolute position metrics cannot be applied without those
interconnecting elements. In contrast, relative metrics can always be applied to
any system, because only relative relationships are necessary, e.g. (|| - ||, is an
arbitrary distance norm):

lpr-(Ni) = pr(Nj)lp = [[po(Ni) = pu(Nj)llp + €55 VNi, Nj € V (2)

A generalized quality metric should be able to rely on such relative positions.

3.1 Distance Based Metrics

In 2003, Priyantha et al. [15] introduced a metric called the Global Energy
Ratio (GER). The authors removed all hardware-specific or technique dependent
attributes by computing a normalized error €;; between the i-th and the j-th node
according to Equation 3 ((N;, N;) € Euu; E C Eqy = {(Ng, Nb)|V NG, VN, € V]
i.e. a fully connected graph), where the distances d;; and c/i\ij represent the true
distance (di; = ||p-(N;) — pr(N;)||l2) and the result of the algorithm (d;; =
”pv(Ni) - pv(Nj)||2)7 respectively.

3)

eij =
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This error is then used for computing the GER as depicted in Equation 4,
where N represents the network size.

5i<i O
GER = % (4)
N(N-1)1

Figure 2a depicts the plot of GER in our simulation results. As the network
size increases, the values are getting smaller. This is certainly not the expected
behavior: The real errors get larger with the number of nodes. This indicates
that the resulting error is not independent of the network size for GER.

In 2005, Ahmed et al. [1] published a new metric called the Global Distance
Error (GDE) where they tried to compensate this defect. The same normalized
error €;; (Equation 3) is used again. However, for computing the GDE according
to Equation 5, a normalization is added according to the connectivity range
R. Thereby, the authors took more than position into concern, which is again
not applicable for arbitrary comparison, e.g. no distance ranges are available for
angulation techniques. We omit the plots of our simulation results in this paper;
the results are comparable to those shown in Figure 2b, scaled by %.

~2
GDE = ~ Zi,j:i<j €ij
R\ NN —-1);

In 2005, Gotsman and Koren [10] presented the Average Relative Deviation
(ARD) metric. Here, each distance error is treated equally. The calculation of
the ARD is depicted in Equation 6. In contrast, the GER explicitly aims to
give more weight to outliers, so that errors become quickly obvious. Thus, this
arithmetic mean is not very suitable for accurate error metrics — even though
the resulting plots are looking pretty much the same as those of Figure 2b due
to nearly uniform error distribution of our obstacle-less simulator.

) T di
ARD = Y 6
NN -1} 2 min(di;, dij) ©

3,j:i<j
Based on the described metrics and the observations made in our experiments,
we suggest to utilize the Root Mean Square (RMS) of the normalized error,
which is actually a minor variation of GER and GDE. The key issue was the
sensitivity of the GER to the number of nodes, which is no longer present for
RMS. In addition, the metric is more influenced by outliers (as the ARD) to
make it more descriptive for worst cases. RMS also relies in the normalized
errors €;; (Equation 3) and weights those compared to the number of nodes N
in the network as shown in Equation 7. The plot in Figure 2b shows monotone
increasing functions. This normalization regarding the network size allows to
compare different approaches even if the network sizes are different. The RMS is
meanwhile being frequently used for evaluating self-localization systems.

RMS =
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Fig. 3: Simulation of an H-shaped network

3.2 Area Based Metrics

During our tests we made an interesting observation: Positioning errors are
mainly located at the border of the network. Furthermore, they usually become
detectable at the borders by deformations, e.g. parts of the network are folded
in. This phenomenon is called flip ambiguity[12]. Nodes connect to previously
flipped ones and propagate the error. The result are large virtually overlapping
parts of the network which are causing large estimation errors. For a more
detailed analysis of this major problem in localization please refer to the work of
Kannan et al. [12]. Inside the network, the connectivity is higher and localization
failures mainly accrue in areas with low connectivity. The probability for node
misplacements inside of the system is low.

Analyzing localization systems described in the literature, we see that in most
cases the deployment of sensor nodes is not relying on globally exact positioning of
the individual nodes but on coverage. The exact distance estimation between two
far away nodes (e.g., across the whole network) based on the virtual coordinate
representation p, () is mostly superfluous. Most location based services, as our
client localization (step 3 in Figure 1), rely on accurate local position estimations
and can absorb long range distance errors. The same holds for many other
wireless applications. Thus, small local localization errors which may result in
slight deformations of the virtual representation p,(-) can be tolerated in most
cases as long as the system makes sure that there is no overlapping of different
network parts.

As an example, we investigated an H-shaped network as depicted in Figure 3
with a small bottleneck between two mass regions. Figure 3a shows the ground
truth p,.(-). The bottleneck in this network is the very thin junction between the
masses. Within this bottleneck, the probability for localization errors strongly
increases. There is a high probability that this connection get bent in the virtual
coordinate system p,(-) as shown in Figure 3b. Table 1 shows the numerical
results of this simulation.

Using the previously described distance metrics, the result shown in Figure 3b
would be rated very poor. This happens, because these metrics synthesize a fully
connected graph G = (V, E4;;) and compare all the nodes with each other in the
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Simulation of an H-shaped network

Left side RMS: 3.659 x 1074
Right side RMS: 4.796 x 1074
Overall RMS: 1.204 x 1071
AR (convex hull): 96.38 %
AR (exact border): 98.73%

Table 1: Metric results of Figure 3

entire network regardless of their actual connectivity E. However, as can be seen,
the error is only high in a certain region. The overall RMS error for this example
is 1.204 x 107! (in total, 220 nodes have been used in this example), which is for
our algorithm and in comparison to Figure 2b at least one order of magnitude
too high. Using this metric would thus result in discarding the result.

However, if both masses are evaluated individually, the resulting RMSs
would be 3.659 x 10~% and 4.796 x 10~*, which are rather good results. The
only problem is the bend in the middle. As stated before, in most cases, the
following two conditions are relevant: First, the local accuracy for the localization
service must be fulfilled (global accuracy, i.e. correct distance approximation
of nodes far away from each other, is mostly negligible) and, secondly, parts
of the network must not be overlapping to guarantee unique coordinates. The
localization accuracy for the left as well as for the right masses are very good.
Applications like location based routing or navigation in general work on the
complete system as long as unique coordinates can be ensured. Based on the
previous introduced metrics it is very had to get a clue whether parts of a network
are overlapping or not.

In order to circumvent these problems,; we introduce the Area Ratio (AR) as
an area-based metric, which suits such non-uniform scenarios much better. AR
brings both, the area of the ground truth A, and the area of the generated grid
A, into relationship to each other as depicted in Equation 8.

Ay
AR = 1 (8)

The area of the covered real and the virtual ground can easily be computed
by creating the convex hull over all nodes and, afterwards, computing the areas of
the resulting polygons. We used the convex hull because our irregular simulation
topologies were roughly formed like a round panel due to the absence of obstacles.
Depending on the scenario, other techniques might be needed to (efficiently) find
the borders of the network.

Figure 2c shows plots of our simulation results of the obstacle-less simulations.
The values are more intuitive as from other metrics as they purely reflect the
covered ground ratio. In this plot, differently to the previously plotted results for
the distance based metrics, 1 (100 %) equals to perfect coverage.

Using the 220 node network shown in Figure 3b as an example, the AR using
the convex hull for building the polygon gives an accuracy of 96.38 %. The convex
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Network size constant variable

Required distance accuracy  global  local (but unique) global

Obstacles any w/o w/ any
GER X - - -
RMS / GDE / ARD X 0 - X
AR (convex hull) 0] X @) @)
AR (exact border) 0] X X O
(?X” — useable; 7O” — use with care; ”-” — do not use)

Table 2: Decision table for the appropriate metric approach

hull cannot fully cover the complexity of this specific shape, thus, the results
might be too pessimistic. Using the exact borders of the shapes an accuracy
of 98.73% can be stated. Obviously, this value provides more realistic results
compared to a distance based metrics such as the RMS metric.

The exact border of a representation p, can for instance be found as follows.
For each intersection of two edge E; ; := (N;, N;) and E,; of a representation
Pz & new vertex N;j; s is added to V. Its position pz(Nij,St) is located at the
intersection of the edges. The original edges E;; and E,; get removed from
E and new edges from N;, N;, N, and N to N;; ¢+ get inserted. Therefore in
the representation p, every intersection of edges gets removed. Subsequently an
arbitrary vertex N located on the border of the graph representation p, had to
be found. The final polygon for the area computation can be found by following
this border until vertex N, is reached again.

4 Conclusions

In this paper, we discussed the need for comprehensive metrics for evaluating
the quality of self-localization systems. We briefly reviewed the metrics available
in the literature. First, we described a class of distance based metrics, the best
known examples being GER and RMS. However, only the RMS provides the
demanded capabilities for comparing the localization quality assuming different
network sizes. We also discussed the quality and the problems of those metrics
in general. In a second step, we presented an area-based metric that better fits
the needs for estimating the localization quality in a local context.

Based on simulation results, we outlined the capabilities and limitations of
these approaches. Depending on the application requirements, an appropriate
evaluation metric has to be chosen. We conclude that the RMS metric should
be used for evaluation if a global accuracy is required. If local accuracy is more
important, e.g. for customer localization or information forwarding, results based
on the RMS might be misleading. Instead, an area-based metric should be
preferred. Table 2 summarizes our findings. It can be considered a conceptual
matrix for selecting adequate metrics.
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A Plausibility of the AR Metric

It is clear that two different graph representations pi, po with the same vertex set
V and edge set E that have equal areas are not necessarily identically looking.
However, at least in the field of self-localization (where distances, positions,
and/or angles are known), it holds that if two graph representations have similar
areas, they are similarly shaped. Taking this into account, the AR (Equation 8)
can only be meaningful if the following assumption holds for the entire connected
graph as well as for the majority of its sub-graphs:

A, < A, 9)

Under the following conditions we can show that Equation 9 is violated with
a probability of Py;oate < 0.5 for two neighboring triangles:

— If |p(Na) — p(Np)||2 < R then (N,, Ny) € E
— ¢€; of Equation 2 is negligible small if (NV,;, N;) € E
— No three connected nodes that are placed collinear

Exploding this entity and increasing the number of vertexes to infinity (|V| — oo
or a sufficiently large number), Equation 9 holds for the entire system.

Self-localization is usually a 2-dimensional problem. Thus, the area of a node
N, in which another node IV, can connect to is defined by:

At = {z e R | |lp(Na) — x|z < R} (10)

Due to the described restriction, flipped areas can only occur if the connectivity
of a newly joined node Ny is d(Ny) = 2. Let previously localized nodes be N,
and Np. The possible placement p(Ny) for the node Ny is within:

AMB =z e R? | AMn ABY (11)

Now, let N, € A48 be a third node. As depicted in Figure 4, the nodes
Ng, Ny, N, are forming the triangle AABC'. The virtual as well as truth graph
representation (p,(-) and p,(-), respectively) must have the same areas. Without
loss of generality we define the x-values of node N, and node N to 0:

p(N;) = (0,4:)7; i € {a,b} (12)

Thereby, two subsets A, and A_ representing the positive and the negative
plane, respectively, are separated by the line AB. A new node N can only be
flipped if it is not connected to node N.. This possible area is defined as:

AABNC = (g € R2 | (Ah 0 AB)\AC) (13)

A bad situation (the inverse of Equation 9) can only happen if for the ground
truth representation p,.(-) the sign of the y-axis of the node N, is the same as of
node Ny (sgn(ys) = sgn(y.)). The resulting intersection of line AC and line BF
is called D. If the virtual representation p,(Ny) for node Ny is flipped to p,(Ny/)
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Fig. 4: Flip scenario

as depicted in Figure 4, Equation 9 does not hold. The area of the polygons can
be calculated as follows:

AABCDF :AAABC+AAABF_AAABD (14)
AAF'BC :AAABC_’_AAABF/ (15)

Note that AAABF — AAABF' Thyg it can be easily seen that Equation 9 does
not hold:

A, = AABCDF < AAF/BC —A (16)

If we assume a worst case flip probability of Pf;, = 0.5 (if no additional

knowledge is present), then the probability of violating Equation 9 can be given

as:
AAB\C
Pm'olate - m <0.5 (17)

Whereas AP\ = AAB\C n A_ and AAB\C = A_’?_B\C U A2\ (AﬁB\C N

AABNC — ¢y,
We now show that the following equation always holds:

AAPNC < pPNC (18)
Thus, the probability of placing a new node into A4 instead of AﬁB\C) is
less then P,;piate < 0.5. If this experiment is repeated for a sufficient number of
nodes, the probability that Equation 9 hold is limy_,sc Prqg9 — 1.
Suppose p,.(N.) € A_; p.(N,) € A, can be shown analog. The area A4% is
symmetrical to the line AB which is equal to the x-axis. Thereby (due to the
symmetry property):

A°NA_>ANA, (19)
due to p,(N¢)y < 0. Thus:
AABO N A > AABCO N AL (20)

By migrating to the complimentary follows Equation 18 (g.e.d.).
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