
On the Feasibility of Mass-Spring-Relaxation for
Simple Self-Deployment

Juergen Eckert∗, Hermann Lichte†, Falko Dressler‡ and Hannes Frey§
∗Dept. of Computer Science, University of Erlangen, Germany

†net mobile AG, Duesseldorf, Germany
‡Institute of Computer Science, University of Innsbruck, Austria
§Dept. of Computer Science, University of Paderborn, Germany

juergen.eckert@cs.fau.de, hermann.lichte@net-m.de, falko.dressler@uibk.ac.at, hannes.frey@upb.de

Abstract—Self-deployment describes the task of spreading an
autonomously moving swarm of mobile robots over a given area.
All these robots have to move to locations such that the set
of robot locations satisfies a desired property. In this work, we
describe a fully distributed deployment algorithm executed locally
at each robot. The approach requires only few local information
per node: the distances and very coarse angular information to
immediate neighbors. It has been developed for use on small
robots with very restricted memory, communication, and pro-
cessing capabilities. In this paper, we specify the algorithm and
evaluate it in an empirical study. This includes both simulation
studies and real testbed experiments. For the testbed, we consider
two different platforms: ground moving robots and aerial robots.
The results of our simulations show that our local deployment
rules achieve almost globally optimal results. The testbed study
supports and substantiates our simulation study and shows as a
proof of concept that our algorithm works both with real ground
based and aerial based robot swarms.

I. INTRODUCTION

Autonomously acting robots can be a very helpful tool

whenever direct human action is economically impractical,

unsafe, or even impossible [1]. For example, a flying drone can

perform autonomous measurements very economically. More-

over, autonomous robots can prevent life-threatening situations

in exploration, firefighting and first response operations, or

cleanup efforts in hazardous areas. Furthermore, such robots

can be used for exploration of unknown territories, an abyssal

plain, or, eventually, a foreign planet.

A complex observation or manipulation task may require

multiple robots to jointly collaborate on its execution. For

instance, a single robot might be too small to surmount an

obstacle or to pull an object. Collaboratively, swarm robots may

be able to achieve the task [2]. Another example is monitoring

of large areas. The sensors of a single robot may be able to

only cover a small fraction. In a team, robots can evenly deploy

itself over the area and monitor the whole area at once.

In this work, we consider the problem of covering an area

with a set of robots. This is also referred to as the self-
deployment problem [3]. Starting from a set of arbitrarily placed

robots, the robots have to relocate such that the whole swarm

eventually covers a given area according to some metric. In

this paper, we expect the robots to spread over the area in

a uniform way, i.e., each robot has approximately the same

number of neighboring robots.

(a) Land robot (b) Aerial robot

Fig. 1. Hardware platforms

The target for our approach is a large scale robot swarm

where cost per unit is a crucial factor. Each individual

robot can only be equipped with very limited computational,

communication, storage and sensing capabilities. Thus, all

utilized algorithms, including self-deployment, have to be very

resource efficient.

In our approach, which is based on our previous work in [4],

robots get informed only about the nodes in their immediate

neighborhood without any additional relays. Information re-

quired for each node is just the distance and a coarse angular

estimate towards its neighbors. Based on this information, each

robot follows a small, computationally simple, set of movement

updates. These locally computed updates emerge to a globally

uniformly deployment of robots.

In this paper, we evaluate our approach by means of

simulation as well as using prototype implementations on two

different hardware platforms depicted in Figure 1. Besides

of totally different movement characteristics, they also have

disjoint neighbor sensing techniques. The ground robots sense

their neighbors passively by Ultrasound (US) beacons, whereas

the aerial drones are equipped with GPS and exchange their

position information via radio.

II. RELATED WORK

Typical self-deployment mechanisms require some means to

assess a node’s current location with respect to its neighboring

nodes. Such information can either be determined in a relative

2012 8th IEEE International Conference on Distributed Computing in Sensor Systems

978-0-7695-4707-7/12 $26.00 © 2012 IEEE

DOI 10.1109/DCOSS.2012.14

203

or an absolute manner. In the relative case, distances or relative

bearings towards neighboring nodes are determined. Distance

information can for instance be determined using infrared/laser

scanners. In approaches based on absolute information, each

node knows its own geographic location as well as that of its

neighbors. Such information can be made available by GPS or

some local indoor positioning infrastructure.

Deployment based on geographic location information can be

classified in Voronoi based and tessellation based approaches.

Voronoi based approaches have for example been described

in [5]–[7]. The general idea is to compute a Voronoi diagram

over the set of node positions. The resulting Voronoi regions

are then used to decide if a node can stay put or if it should

move and where it should move. For instance, in [7], a node

whose surrounding Voronoi region is not completely covered

by its sensing range, always moves to the most distant vertex

of that region. If the region is completely covered the node

stays put.

Tessellation based approaches partition the deployment

region with a grid of regular polygons. Approaches based

on tessellations have for example been described in [3], [8],

[9]. In those approaches, tessellation is used to discretize the

deployment problem. Nodes will align themselves towards the

tessellation vertices and start to “jump” along the tessellation

vertices according to some local rules. In [9], for instance, nine

local greedy advance and rotation rules have been described,

which assure that after a finite number of movement rounds

the tessellation vertices, which optimally cover a given point

of interest, are occupied by exactly one mobile node.

Finally, in vector based deployments, a node computes

for each neighbor a vector which is either pointing to or

pointing away from this neighbor. The sum of all these vectors

determines the node’s current movement vector. Approaches

based on such vector addition have for example been described

in [10]–[16]. The approaches differ in the way how attractive

or repulsive vectors are determined from node distances and

how a stable local equilibrium is reached by friction forces.

III. SPRING BASED DEPLOYMENT APPROACH

For the following formal considerations a network is repre-

sented as a connected graph G = (V,E) with a vertex set V
and an edge set E. A node Ni ∈ V represents the ith robot.

An edge (Ni, Nj) exists in E if robot i can sense robot j
Robot j is called a neighbor of i in this case and vice versa.

We consider a mapping p : V → �n which maps each

node into a Euclidean space. The value p(Ni) represents the

physical positions of the ith-robot. In the following we consider

deployment in two dimensional space (n = 2). However,

only minor parameter changes are required to solve the three

dimensional deployment problem.

As shown in [12], [17], [18], an equilateral triangle tes-

sellation can keep connectivity and maximize the coverage

area without coverage gap. Here we want to show how to

efficiently achieve this structure using only a small set of rules,

computations and information. Additionally, we assume that no

r m
in r m

a
x

Ni

Zi,r

Zi,d

Zi,a

(a) Zones around a node Ni

rmin ·
ravoid

N1 N2

N3N4

(b) Base structure

Fig. 2. Basic geometry

global knowledge is available, i.e., computations and actions

must be performed locally.

Recently, we introduced a nature inspired approach [4],

which is based on the principles of Mass-Spring-Relaxation

(MSR) [19]. The physical model is as follows. A node Ni is

represented by a mass point mi and an edge (Ni, Nj) by a

linear elastic spring with a desired/relaxed length of d0. If two

mass points mi,mj are too close (i.e., ‖p(Ni)−p(Nj)‖2 < d0,

where ‖ · ‖2 is the Euclidean distance) then the affecting

force of the spring is pulling them apart. Otherwise, if

‖p(Ni) − p(Nj)‖2 > d0, the spring is pulling them together.

The force affecting a mass point mi can be computed according

to Hooke’s law (see Equation 1), where ki,j is the spring

constant (usually normalized to 1), �ei,j characterizes the unit

vector from node Ni to node Nj , and di,j = ‖p(Ni)−p(Nj)‖2
represents the corresponding measured distance.

�Fi =
∑

Nj∈Zi,s

�Fi,j =
∑

Nj∈Zi,s

−�ei,jki,j(di,j − d0) (1)

MSR-based deployment without additional provision will

not necessarily result in an equilateral triangle deployment.

Our approach extends MSR deployment with additional rules

defining which neighbors of node Ni are used to compute the

force affecting node Ni. Each node considers a small circle

with radius rmin and a larger circle with radius rmax (see

Figure 2(a)). Both circles define the depicted restricted Zi,r,

desired Zi,d, and attractive zones Zi,a of a node Ni. Each

node follows a set of relocation rules with the goal to keep the

restricted area empty and the desired area filled with a certain

minimum number of nodes. The attractive zone is considered

only if the restricted and desired zones are empty. The rationale

behind the latter is to contract nodes together in case of a sparse

initial start deployment. This concept is described in detail in

the following.

A. Procedure

Algorithm 1 displays the main deployment loop. At the

beginning a node Ni needs to sense all of its neighbors. A

wide variety of measurements is feasible. In this paper, we

introduce two different hardware platforms with completely

different sensing techniques. In the end the gathered information

should provide a distance estimate as well as a rough estimate

204

Algorithm 1 Deployment algorithm for node Ni

while deploying do
do measurements → Zi := {Nx|∀(Ni, Nx) ∈ E}
do grouping → Zi,r ⊆ Zi;Zi,d ⊆ Zi;Zi,a ⊆ Zi

do selection → Zi,s := Zi,x; x ∈ {r, d, a}
move → p(Ni)t+Δt = f(p(Ni)t, �Fi(Zi,s),Δt)

end while

of the angle of arrival (±45◦ is sufficient) between a node Ni

and any other neighboring node Nx.

Subsequently these neighbors are grouped into three different

sets according to their distances (Equations 2-4). The radii rmin,

rmax and rc will be explained in detail in Section III-B.

Zi,r := {Nx | 0 < ‖p(Ni)− p(Nx)‖2 < rmin} (2)

Zi,d := {Nx | rmin ≤ ‖p(Ni)− p(Nx)‖2 ≤ rmax} (3)

Zi,a := {Nx | rmax < ‖p(Ni)− p(Nx)‖2 < rc} (4)

A node’s next movement decision is based on these sets and

the decision table shown in Table I. A node checks the table

row by row to find the first valid guard. The force vector
�Fi (Equation 1) is then computed using the neighbor set

Zi,s specified in that row as an input. The actual movement

(Equation 5) yields to this virtual force �Fi. The passed time

per step Δt as well as 1
2mi

are constant factors. In case of

no neighbors Zi,s = ∅ the node tries to find a network by

randomly choosing p(Ni)t+Δt.

p(Ni)t+Δt =
1

2mi

−→
F iΔt2 + p(Ni)t (5)

The second rule of Table I allows two different ways how

the deployment algorithm reacts in case a sufficient amount

of neighbors is in the desired set (λ ≤ |Zi,d|). If the goal

is to deploy a system in a shortest possible period (in terms

of active movement), to use as little energy as possible, and

to have a stop/suspend criteria, then the robots should stop

their movement as soon as rule 2 can be applied (case B). As

long as the neighbors of node Ni do not enter Zi,r or leave

Zi,d (preferably also stopped), node Ni will not move again

and thus conserves energy. This is the case for the ground

robot scenario (Section V-A). For the flying robot scenario

(Section V-B) the energy costs for the movement are the same

as for the hovering. Therefore, the movement can be continued

in rule 2 and a more regular grid is formed (case A).

TABLE I
PLACEMENT DECISION CONSTRAINTS

Guard Action Use nodes (Zi,s)

|Zi,r| > 0 move Zi,r

λ ≤ |Zi,d| (A) move or (B) place found (A) Zi,d or (B) ∅
|Zi,a| > 0 move Zi,a

else random move ∅

B. Parametrization

The factor kiΔt2

2mi
for the movement (Equations 5 and 1) is

constant and system dependent. It defines how fast the system

reaches a steady state. As a rule of thumb: a good starting

value is 0.5 (each variable set to 1). If nodes overshoot (due to

measurement and/or positioning inaccuracies) and continuous

oscillations remain in the system, this value should be lowered.

Four additional parameters need to be defined such that a

regular grid structure is achieved: rmin, rmax, λ and d0. The

first two parameters divide the space around a node Ni into

three sections (see Figure 2(a)). The key idea is to cover as

much ground as possible. By definition, the algorithm does not

allow neighbors to be within the restricted set Zi,r. Therefore,

rmin which defines Zi,r also indirectly defines the system costs

in terms of nodes required per unit area.

An optimal solution would be to set rmin very close to

the communication/measurement range rc. However, there are

some other constrains like convergence time that also need to be

fulfilled. The convergence is affected by the belt around node

Ni defined by rmin and rmax. For example, for an optimal

regular triangle tessellation those radii should be very close

since in such structure all node distances are equal. However,

in the real world this is not applicable. The algorithm may

never find a steady state, may take too much time, or obstacles

might inhibit convergence.

The upper bound of rmax is defined as follows. Figure 2(b)

depicts two adjacent regular triangles (base structure). Consider

the worst (cost inefficient) case: all node distances are rmin. It

must be avoided that node N2 connects to node N4. If those

nodes connect, they start to form a square grid. This approach

is without extensions rather limited applicable for variable

relaxed node distances. Also a square grid structure has the

worse area-cost ratio. To avoid this the following condition

must hold (ravoid =
√
3 rmin): rmax <

√
3 rmin.

To achieve the maximal coverage, rmax can be set to rc. If

so rule 3 of Table I can also be ignored. However, mostly the

sensing gets non-linear at the boards of the detection range

or packages get dropped more frequently. To counteract this

rmax should be set to the maximum linear detection range.

The outer domain still gets evaluated if needed.

The desired spring length d0 of Equation 1 is defined as:

d0 =
rmax + rmin

2
(6)

That way nodes always try to reach the center of the desired

belt to maximize the tolerance range.

In a regular hexagonal grid cell structure the neighbor

connectivity is in the range of 3 to 6. The inner nodes all

have 6 neighbors. Nodes on a corner 3. Therefore, λ which

represents the minimum connectivity must be set to 3. For

small grid sizes |V | < 7, as depicted in Figure 2(b), λ needs

to be reduced to 2 to find a steady state. However a long chain

of nodes instead of a grid structure might result from this. To

counteract this additional techniques are required as introduced

by Casteigts et al. [20]. Another alternative is to start all nodes

at the same place. That way a circular network is created.

205

(a) Continuous movement (b) Stop citeria

Fig. 3. Exemplary simulation outcome

IV. SIMULATION STUDY

Before conducting real experiments, we analyzed the ap-

proach in the JBotSim simulator [21]. We are mainly interested

in the behavior of the algorithm, thus we neglect measurement

and communication errors. Figures 3(a) and 3(b) depict

exemplary outcomes for a network size of |V | = 25. The gray

circle around each node indicates the desired node distance d0.

An edge between a node pair depicts a virtual spring. Nodes

in the former plot continuously move (case A) and therefore

the shape is more regular than the latter one (case B).

We evaluated the convergence time using the following

parameters: rmin = 3.9m, rmin = 6.1m, rc = 7.0m. A node

can have a maximum speed of 0.5m s−1. We conducted two

different time-evaluating experiments using a network size of

|V | = n. We repeated each experiment 200 times to achieve

statistically significant results. The following figures show the

self-displeased node ratio that we defined as follows: A node

Ns which cannot apply rule 2 in Table I is considered to be

self-displeased Ns ∈ Vd. It moves until rule 2 can be applied.

The ratio is then defined as a quotient of the amount of nodes

in this moving state and the total number of nodes: SD = |Vd|
|V | .

In the following, we plot the median (50% quantile) of

the measurement samples. The error bars indicate the stable

co-domain (25% and 75% quantiles).

In the first set of experiments (Figure 4(a)), the initial

positions of all nodes are uniformly distributed in an unbounded

area of 80m× 60m. The nodes need to find each other and

form a network. In general, the formation requires more time

if less nodes are on the field. For a sparse node density, more

than one connected network may be created as no root node

is specified. Uncovered areas are possible.

In the second set of experiments (see Figure 4(b)), all nodes

have nearly the same position when the simulation starts. Here,

smaller networks converge fast because the required movements

of the individual nodes are shorter. The limiting factor is the

velocity. The outer nodes very quickly start to move away from

the center with maximum speed.

Both variants of the algorithm (rule 2 in Table I) have similar

deployment times. Introducing the stop criteria (case B) slows

down the deployment a bit, but still is negligible for real world

experiments.

Finally, we evaluated the covered area against other ap-

proaches which lead to a perfect regular hexagonal deployment.

For example, Li et al. [9] require a set of 9 complex rules

to achieve such deployment. Figure 4(c) depicts the area

ratio AR = Avector

Aopt
between the covered area Avector of our

approach and the covered area Aopt of a regular hexagonal

deployment (optimal solution) for different network sizes |V |.
For the optimal solution, we set the node distance to d0

(see Equation 6). We performed simulations for both algorithm

variants. Again, we conduct multiple runs per network size and

the error bars indicate the stable co-domain. For the continuous

movement (case A) we observe an area defect of less than 4%.

The reason for the significant drop in the second case (using

stop criteria) is as follows: the belt width of the desired zone

Zi,d is set to ±22% of d0. All nodes start at nearly the same

location. After spreading out and reaching approximately 80%

of d0, the nodes can execute rule 2 in Table I and hence they

stop. If the belt width is reduced the ratio would also reach the

result of the continuous movement. However, an insufficient

belt width in combination with measurement or positioning

errors might prohibit a steady state solution. The benefit here is

that the individual nodes do not continuously move. Therefore,

they can shut down the motors frequently and conserve energy.

V. HARDWARE IMPLEMENTATIONS

We implemented our approach on two different hardware

platforms, ground swarm and aerial swarm, each with their

specific measurement and movement techniques.

A. Ground Swarm

The ground swarm consists of mobile two-wheel robots [22]

depicted in Figure 1(a). We use US based Time of Flight (ToF)

measurement hardware to determine the distance to neighboring

nodes. The hardware also estimates the angle of arrival (≤ 45◦;
distance dependent). No radio communication is required. The

robots do not know their absolute position, thus all decisions

are made relatively to the neighbors. A key goal of the battery

powered system is to stay operational for as long as possible.

Therefore, it is necessary to find a valid position as fast as

possible and to disable motors and driver-stages afterwards.

This is a classical field of application for the algorithm including

a stop criteria.

Measurement disturbances caused by measurement errors or

obstacles are not always a drawback. They sometimes can be

exploited to solve restricted situations. Consider the following

constructed example depicted in Figure 5. Five nodes have

been well distributed before. Let us assume that within this

area, some node does not find a valid solution anymore due to

spacing issues, e.g., rmin = 0.7m. In this case, the algorithm

is designed such that one of the outer nodes re-activates the

motors (as the inner node is approaching too close) to give room

for the deployment of the inner one. However, if an application

such as [4] prohibits this then in a noiseless environment,

the inner robot would continue driving until the battery is

depleted. The algorithm does not detect such a situation due

to its simplicity. Measurement disturbances may lead to an

incorrect computation of the force vector. Similarly, obstacles

occasionally detected on the current path of the robot may

206

100 200 300 400 500 600

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time in seconds

S
D

n = 50
n = 100
n = 200

(a) Deployment process (initially uniform distributed)

100 200 300 400 500 600

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time in seconds

S
D

n = 50
n = 100
n = 200

(b) Deployment process (initially not distributed)

20 40 60 80 100

0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

Network size |V |

A
R

Optimal solution

Continuous movement

Stop citeria

(c) Optimal vs. vector deployment

Fig. 4. Simulations

-1.5 -1.0 -0.5 0.0

-0
.5

0
.0

0
.5

1
.0

East in meter

N
o
rt

h
in

m
et

er

Fixed robots

Mobile robot

Virtual barrier

Start position

Stop position

Disturbance

Fig. 5. Exemplary run using fixed nodes

entail an alteration of the trajectories planed by the deployment

algorithm. Although not intended, these real-world effects can

help to overcome such restricted situations.

As depicted in Figure 5, the trajectory starts within a fully

covered area. Each fixed node is periodically emitting a US

pulse. The mobile node converts these pulses into distances and

angles. Subsequently, the node yields to the affecting forces

and moves to the center. However, we physically disturbed the

reception of these signals in approximately 5% of the cases.

Following the two positions denoted by a square in Figure 5,

the algorithm made significant false decisions. The upper one

brings the mobile robot close to the direct line between the two

lower fixed robots. This poses a virtual force barrier that the

robot cannot breach. However, close to this line (lower square)

the measurement accuracy of the angle makes it impossible to

decide whether the robot is above or below this line. Therefore,

it might happen (as depicted) that it accidentally breaches the

barrier and finds a suitable location outside. The experiment

duration was 4min.

In general, if an application restricts the movement after

the deployment, it is highly recommended to detect and to

solve such situations in a different way. E.g., by performing a

major random move every nth iteration or by choosing a more

complex approach. Otherwise it might take too long to solve

the issue by purely relying on measurement disturbances.

B. Aerial Swarm

Figure 1(b) shows a single aerial robot. Its core component is

a fully equipped “MikroKopter” which features a GPS position-

hold functionality out of the box. It can retain the copter in a

sphere with a radius of a few meters (strongly dependent of

GPS accuracy and wind speed). In contrast to the ground robot

experiments, the copters use GPS and radio communication to

learn their absolute positions as well as the positions of their

neighbors. Relative distances and angles are computed upon

this base. Hovering in the air drains as much energy as slow

movements. Thus, for the deployment algorithm of the flying

robots a continuous movement (case A of decision table I) can

be assumed.

Figure 6(a) depicts an initial exemplary experiment run. Four

copters are forming a network. All platforms had the same

altitude. Due to the small network size |V | = 4, the minimal

connectivity needed to be lowered to λ = 2. The remaining

parameters are defined as follows: rmin = 25m; rmax = 40m;
rc = 100m. Light air was present during the test run. The

black lines are indicating the trajectories over time. To show

the accuracy of a single system the robots N1, N2 and N4

were set to a fixed position. The initial setup is defined so

that it matches Figure 2(b). The inter-node distances were

approximately rmin. Within the first 30 s the mobile node N3

finds a valid position (d0 away from N1 and N2) and stayed

there. Figure 6(b) shows the distances of interest over time. It

can be seen that the distances to connected nodes are oscillating

around d0 = rmax+rmin

2 . As desired, no connection to node

N4 was generated (d3,4 > rmax). Numerical values indicate

that more than 50% of the measured positions had an error of

less than 1m.

Figure 6(c) depicts a second exemplary test run. The weather

was more gusty (up to approx. 25 km h−1 wind speed). This plot

shows the trajectory of the robots during position maintenance.

Robot N1 needed to be at a fixed position. Otherwise the whole

system starts to drift at wind speed. The others were operating

normal. It can be seen that two equilateral triangle (base

structure) are formed. The depicted duration of the experiment

is 2min. At the middle of the depicted time interval the robots

N2 and N3 could not hold against the wind force and drifted

207

-20 -10 0 10 20

-1
0

0
1
0

2
0

3
0

East in meter

N
o
rt

h
in

m
et

er

N1

N2

N3

N4

Start position

Stop position

Final connectivity

(a) Exemplary position jitter (one mobile)

0 200 400 600 800

2
0

3
0

4
0

5
0

Time in seconds

In
te

r-
n
o
d
e

d
is

ta
n
ce

in
m

et
er

d3,4
d3,1
d3,2
rmax

rmin

(b) Inter-node distances over time for exemplary run

-10 0 10 20 30

-1
0

0
1
0

2
0

3
0

East in meter

N
o
rt

h
in

m
et

er

N1

N2

N3

N4

W
in

d

Log Start

Log Stop

Final connectivity

(c) Exemplary position jitter (three mobile)

Fig. 6. Aerial swarm experiments

away (robot N3 is located at a lee side). However the network

stayed connected, adjusted and found the correct formation

after the gust again.

VI. CONCLUSIONS

We presented a simple self-deployment mechanism for

autonomous robot swarms based on a small set of decision

rules, vector addition, and scalar multiplication. This allows

for an implementation on simple embedded computing devices.

Though the rules are simple, they show to be effective in terms

of optimal node deployment. In this work, we emphasized on

nodes deployed in regular triangle tessellation pattern and we

showed by simulation that this pattern is closely resembled.

In the simulation study we have seen that the areal defect in

comparison to more complex solutions is negligible small. To

validate our concepts in realistic scenarios, we realized our

approach under real world conditions with different embedded

robot devices. In conclusion, it can be said that we managed

even the dynamic use case of coordinating flying quadcopters.

The proposed algorithmic architecture can easily be used in

similar scenarios. Most importantly, the algorithms perform

extremely satisfying on embedded ultra low resource devices,

which opens a variety of application scenarios.

REFERENCES

[1] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “A taxonomy for swarm
robots,” in IEEE/RSJ IROS, July 1993, pp. 441–447.

[2] R. O’Grady, R. Gro, A. Christensen, and M. Dorigo, “Self-assembly
strategies in a group of autonomous mobile robots,” Autonomous Robots,
vol. 28, no. 4, pp. 439–455, 2010.

[3] N. Bartolini, T. Calamoneri, E. G. Fusco, A. Massini, and S. Silvestri,
“Snap and spread: A self-deployment algorithm for mobile sensor
networks,” in IEEE DCOSS, Santorini Island, Greece, June 2008, pp.
451–456.

[4] J. Eckert, R. German, and F. Dressler, “ALF: An Autonomous Localiza-
tion Framework for Self-Localization in Indoor Environments,” in IEEE
DCOSS, Barcelona, Spain, June 2011, pp. 1–8.

[5] N. Heo and P. K. Varshney, “Energy-efficient deployment of intelligent
mobile sensor networks,” IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, vol. 35, no. 1, pp. 78–92,
2005.

[6] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243–255, 2004.

[7] G. Wang, G. Cao, and T. L. Porta, “Movement-assisted sensor deploy-
ment,” IEEE Transactions on Mobile Computing, vol. 5, no. 6, pp.
640–652, 2006.

[8] S. Yang, M. Li, and J. Wu, “Scan-based movement-assisted sensor
deployment methods in wireless sensor networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 18, no. 8, pp. 1108–1121, 2007.

[9] X. Li, H. Frey, N. Santoro, and I. Stojmenović, “Strictly localized sensor
self-deployment for optimal focused coverage,” IEEE Transactions on
Mobile Computing, 2011.

[10] M. Garetto, M. Gribaudo, C.-F. Chiasserini, and E. Leonardi, “A
distributed sensor relocatlon scheme for environmental control,” in IEEE
MASS, Pisa, Italy, October 2007.

[11] A. Howard, M. J. Mataric, and G. S. Sukhatme, “Mobile sensor network
deployment using potential fields: A distributed, scalable solution to the
area coverage problem,” in DARS, 2002, pp. 299–308.

[12] M. Ma and Y. Yang, “Adaptive triangular deployment algorithm for
unattended mobile sensor networks,” IEEE Transactions on Computers,
vol. 56, no. 7, pp. 946–847, 2007.

[13] G. Tan, S. A. Jarvis, and A.-M. Kermarrec, “Connectivity-guaranteed
and obstacle-adaptive deployment schemes for mobile sensor networks,”
in ICDCS, Washington, DC, 2008, pp. 429–437.

[14] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization in
distributed sensor networks,” ACM Transactions on Embedded Computing
Systems, vol. 3, pp. 61–91, 2004.

[15] J. McLurkin and J. Smith, “Distributed algorithms for dispersion in
indoor environments using a swarm of autonomous mobile robots,” in
DARS, 2007, pp. 399–408.

[16] S. Poduri and G. S. Sukhatme, “Constrained coverage for mobile sensor
networks,” in IEEE/RJE ICRA, New Orleans, LA, April 2004, pp. 165–
171.

[17] H. Zhang and J. Hou, “Maintaining sensing coverage and connectivity
in large sensor networks,” Ad Hoc & Sensor Wireless Networks, vol. 1,
no. 1-2, 2005.

[18] X. Bai, S. Kumar, D. Xuan, Z. Yun, and T. H. Lai, “Deploying wireless
sensors to achieve both coverage and connectivity,” in ACM MobiHoc,
Florence, Italy, May 2006, pp. 131–142.

[19] A. Howard, M. J. Mataric, and G. Sukhatme, “Relaxation on a Mesh: a
Formalism for Generalized Localization,” in IEEE/RSJ IROS, Maui, HI,
October 2001, pp. 1055–1060.

[20] A. Casteigts, J. Albert, S. Chaumette, A. Nayak, and I. Stojmenovic,
“Biconnecting a Network of Mobile Robots Using Virtual Angular Forces,”
in IEEE VTC, Ottawa, Canada, September 2010, pp. 1–5.

[21] A. Casteigts, The JBotSim Library, e-Print (arXiv:1001.1435), 2010,
http://arxiv.org/abs/1001.1435.

[22] J. Eckert, K. Koeker, P. Caliebe, F. Dressler, and R. German, “Self-
localization Capable Mobile Sensor Nodes,” in IEEE TePRA, Woburn,
MA, November 2009, pp. 224–229.

208

