
Improving Network Monitoring Through
Aggregation of HTTP/1.1 Dialogs in IPFIX

Felix Erlacher∗, Wolfgang Estgfaeller∗, and Falko Dressler†
∗Department of Computer Science, University of Innsbruck, Austria
†Department of Computer Science, Paderborn University, Germany

{erlacher,wolfgang.estgfaeller,dressler}@ccs-labs.org

Abstract—Network monitoring is the basis to analyze commu-
nications for preventing network attacks and misuse. Common
practice for today’s high throughput networks are flow-based net-
work monitoring techniques like IPFIX. However, these solutions
do not support the observation of HTTP/1.1 request/response
dialogs. At the same time, we observe an increasing trend to use
HTTP pipelining in the Internet as well as the use of HTTP as
a generic transport protocol. IPFIX-based network monitoring
and attack detection is no longer able to identify misbehavior
in the complex and often interlaced HTTP dialogs. This work
presents a new monitoring concept, which is able to aggregate
HTTP/1.1 dialog information into bidirectional IPFIX flows. It
is thereby laying the foundation for network security tools like
IDS to process the resulting flows faster and more efficiently. The
evaluation shows that the implemented parsing mechanism can
even deal with complex HTTP traffic and clearly outperforms
existing solutions.

I. INTRODUCTION

The observation and analysis of network communication is

indispensable for every operator. It provides valuable infor-

mation about the traffic and the overall state of the network

and helps to detect and prevent network attacks and misuse

[1]. To serve this purpose, most network monitoring tools

analyze traffic up to the transport layer and possibly apply

computational expensive Deep Packet Inspection (DPI) [2]

operations to the payload. Recent studies show, that the amount

of Hypertext Transfer Protocol (HTTP) in Internet traffic has

increased significantly in the last years, leading to HTTP being

the most dominant protocol, accounting for more than 50%
of the overall traffic volume [3], [4]. There are mainly two

reasons for this: first, HTTP was adopted by a variety of

applications to serve as a ‘transport protocol’ [5], and second

HTTP is used by these and other applications to transport

high-volume content.

As a consequence of this forced ‘push’ of HTTP from the

application layer down to the transport layer, it is required

to treat it similarly as other transport layer protocols (e.g.,

Transmission Control Protocol (TCP)) to further analyze the

carried HTTP payload. If for example, a firewall wants to

categorize web application traffic, it applies DPI methods to

search through the HTTP header and payload and possibly find

matching patterns. This is a resource intensive task. This work

simplifies this by providing HTTP elements in the form of

IPFIX flow Information Elements (IEs) which allow for quick

and easy analysis. For the case of encrypted HTTP (https) we

propose to use TLS interception proxies like most big firewall

manufactures do (e.g. Genuas GenuGate1).
Flow based monitoring strategies are the state of the art

solution to approach today’s high transmission speeds. The

Internet Protocol Flow Information Export (IPFIX) protocol

[6] is a widespread standard, that is used to aggregate packet

information of a flow (a sequence of packets sharing the

same properties) into a single structure (flow record) that

can be exported. But the IPFIX protocol does not foresee

the aggregation and export of HTTP information, and thus

is extended in this work to include it. Existing solutions,

which are able to add some HTTP information to IPFIX, show

various problems: performance issues (slow DPI solutions),

inability of aggregating payload, HTTP parsing problems and

unclear separation of the HTTP information in the exported

data. Another factor to consider is the dialog-based nature of

HTTP, which is particularly relevant for HTTP/1.1 (and later

protocol versions).
Within this work, a new approach of monitoring HTTP

is designed and implemented that provides a solution to the

above issues. A mechanism is introduced that enables the

aggregation of HTTP dialogs (request and response messages,

which belong to each other) into bidirectional flow (biflow)

records using the IPFIX protocol. Our approach has been

implemented in the network monitoring toolkit Vermont [7].

Throughout this paper, the term VermontHTTP is used to denote

the enhanced implementation of Vermont.
We believe that our work provides a foundation for other

network monitoring tools, allowing them to efficiently process

the resulting IPFIX flows containing HTTP information.
The contributions of this work are the following:

• We present a methodology for aggregating HTTP/1.1

dialogs into IPFIX flows and reducing the exported HTTP

dialogs to the first N bytes per direction;

• we performed an in-depth evaluation and functional com-

parison to related tools;

• we made our implementation freely available as Open

Source2 running on standard Linux systems.

II. RELATED WORK

In the scope of this work, we are mainly interested in the

analysis of HTTP traffic. A straightforward approach is to use

1https://www.genua.de/loesungen/high-resistance-firewall-genugate.html
2https://github.com/felixe/ccsVermont, branch: http-aggregation

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Felix Erlacher. Under license to IEEE.

DOI 10.1109/LCN.2016.88

543

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Felix Erlacher. Under license to IEEE.

DOI 10.1109/LCN.2016.88

543

2016 IEEE 41st Conference on Local Computer Networks

© 2016, Felix Erlacher. Under license to IEEE.

DOI 10.1109/LCN.2016.88

543



Regular Expressions (RegExes) to identify application layer

protocols out of the payload (e.g. L7-filter [8]). It is clear that

this approach is computational expensive [9] and, thus, not

suited for continuous monitoring in high speed networks.

There are several tools available that make it possible to

investigate HTTP. The packet analyzer Wireshark [10] for

example, includes an HTTP dissector. While it is perfectly

suited to analyze a particular network trace, it is not intended

for continuously monitoring and exporting network traffic at

all. The same is valid for the well known “network security

monitor” and highly adaptable tool Bro [11].

Usually, there is a semantic correlation between subse-

quent traffic flows in bidirectional communication (in HTTP

a request is followed by the corresponding response). This

has been exploited in the Dialog-based Payload Aggregation

(DPA) approach [12]: by collecting the first N (in this case

N = 2kB) bytes after every direction change the authors

were able to reduce the exported IPFIX traffic to 3.7% while

retaining 89% of all reported events by the Intrusion Detection

System (IDS) Snort.

To the best of our knowledge the only network monitoring

tools that have a similar scope and functionality than ours

are nProbe [13] and YAF [14]. Both support live capturing or

input from libpcap files, and offer the possibility to export

HTTP related attributes using IPFIX. For nProbe, the exported

IPFIX templates can be configured dynamically and support a

few HTTP IEs if the HTTP plug-in is used.

YAF has been build as a reference implementation for

IPFIX. The DPI plugin checks the payload against a list of

RegExes. Thus it is not aware of the structure of HTTP

messages and applies the search also on the HTTP body, which

is very expensive from a performance point of view and might

lead to false positives if the body carries a matching string.

While nProbe is not able to export biflows, YAF exports them

aggregating all messages of a TCP flow using one IPFIX flow,

thus, failing for advanced HTTP features like pipelining.

III. ARCHITECTURE

For the implementation of this work the monitoring toolkit

Vermont [7] has been extended. As input Vermont accepts raw

packets as well as IPFIX flows. Export of data is supported

through IPFIX, Packet Sampling (PSAMP), or Intrusion De-

tection Message Exchange Format (IDMEF). The functionality

of Vermont is divided among many different modules that

can run in parallel, each having its own functionality. One

of these modules is the PacketAggregator module which

aggregates packets to IPFIX flows. For this work we extended

this module by adding TCP reassembly functionalities and

HTTP protocol dissection capabilities. Figure 1 outlines the

work flow: Packets entering the PacketAggregator module are

passed to the TCP reassembly engine. Than the TCP payload

of the packets gets analyzed by the HTTP parser, which parses

HTTP dialogs in the passed sequence of bytes. Aggregation

of flow information happens in all modules by annotating

the flow accordingly: First, information gathered during TCP

reassembly is aggregated in the TCP reassembly engine.

Fig. 1. Basic workflow in the novel PacketAggregator module in VermontHTTP

Second, HTTP information and payload gets aggregated by

the HTTP parser and lastly, other standard flow information

fields are aggregated in the PacketAggregator.
For this work, we developed what we call a stateful on-the-

fly HTTP parser. Because of the unknown length of HTTP

messages, we are not buffering the entire HTTP message until

completion but work on the payload of single TCP segments.

The parser processes as much of the segment’s payload as

possible and, if necessary, buffers the rest combining it with

the next segment’s payload as soon as possible. The first

parsing step is to check the message type (request/response).

The second step is to extract the most important header field

information, and aggregate them into the respective IPFIX

flow using so called enterprise specific IEs. Depending on

the configuration, the parsing of the HTTP header can be

skipped and the parser will proceed with the next step. Now,

a configurable amount of the message body data is exported

into the respective IPFIX IE. When all the message body

has been processed, the HTTP parser can continue with the

next segment. If the message is finished and the type is

‘response’, it will be combined with the former request to

an HTTP dialog and exported into an IPFIX flow. Similar to

the aforementioned Dialog-based Payload Aggregation (DPA)

approach, VermontHTTP allows to export the first N bytes of

both directions of an HTTP dialog. We implemented also some

IEs to annotate issues encountered during parsing.

IV. EVALUATION

The evaluation of VermontHTTP concentrates mainly on

functionality and performance. All the traffic traces for the

tests where either previously captured and are published at

http://www.ccs-labs.org/~erlacher/resources/, or obtained from

public sources to make them reproducible. We focused on

having a complete collection of diverse traces striving to

have a representative set of realistic traffic scenarios but also

including possible rare cases.

1) Functional Validation: To test VermontHTTP for correct-

ness, we first manually assessed all traces and then compared

544544544



TABLE I
NUMBER OF HTTP MESSAGES (REQUESTS AND RESPONSES) DETECTED

BY THE DIFFERENT TOOLS, WRONG NUMBERS ARE INDICATED IN BOLD,
MD = MATCHED DIALOGS

Tool \ Trace riverbet-two cnn2012 pipelining anomalous

Correct
Value

Req.
Res.

94
94

146
146

81
81

3966
3966

Bro Req.
Res.

54
54

146
146

8
8

3966
3941

Wireshark Req.
Res.

94
96

146
149

85
81

3816
2907

nProbe Req.
Res.

94
94

145
145

20
19

3965
3875

YAF Req.
Res.

14
9

131
145

4
0

3966
4157

VermontHTTP Req.
Res.
MD

94
94
94

146
146
146

81
81
79

3966
3903
3102

the flow results to the state of the art tools Wireshark (version

1.12), Bro (2.2), nProbe (7.1), and YAF (2.7.1).

For Wireshark, we used the Conversations and the HTTP-
Load Distribution function. A small script in Bro’s own

Domain Specific Language (DSL) counts events generated

during traffic processing to compute the number of HTTP

messages. To ensure a better comparability we increased all

TCP timeout values of Bro from 5 s to 20 s (the value we

also used for VermontHTTP). Since nProbe creates two separate

flows when bi-directional export is turned on, the flows were

counted using the unique flow identifiers contained in the

output. To make YAF export HTTP information, application
label support and the enclosed HTTP plugin were turned on.

For the sake of brevity only an exemplary fraction of the

tested traffic traces is shown. But all other tests showed a

similar behavior.

Table I shows the detected number of HTTP messages.

The first two traces are freely available and taken from [10].

riverbed-two is a repeated visit to the www.riverbed.com site,

lacking typical DNS queries and making heavy use of the

browser’s cache. cnn2012 visits www.cnn.com and contains

TCP keepalive packets and retransmissions. The third trace

contains traffic where both server and client support and use

HTTP pipelining. The last trace contains anomalous requests

to test the parser’s robustness. One peculiarity is that all

dialogs have a valid structure but some headers contain odd

and unusual values. Some length related header fields contain

wrong values meaning that some messages can be interpreted

as not ending regularly.

The reasons for the different outcome are the following.

Only VermontHTTP and Wireshark wait for HTTP messages to

end before counting them. The other tools already increase the

HTTP message counter as soon as the start of a message is

detected. Bro’s HTTP analyzer only seems to work correctly

if the complete TCP handshake has been observed, this is the

main reason for the missed HTTP messages. On the other

hand, Bro has the least problems with the anomalous trace.

In Wireshark if HTTP messages can not be parsed com-

pletely they are not counted, but the description indicates

“Continuation or non-HTTP traffic”. If a trace contains retrans-

mitted TCP segments, Wireshark counts the corresponding

HTTP messages twice (or more). These is more a design

decisions then an errors. As the numbers reveal, Wireshark

seems to have quite some problems with the anomalous trace.

nProbe does not recognize HTTP requests if the URI is

very long. Also, two POST requests that were split over

two messages are not detected, the same applies to some

HTTP requests that were split over multiple TCP segments.

Again, nProbe too counts unfinished HTTP responses as full

messages. On traces with pipelined requests nProbe did not

export the right values, this suggest the lack of pipelining

support.

YAF’s wrong numbers are the consequence of its

DPI/RegEx approach: E.g., YAF uses a vague RegEx to

detect HTTP responses, because it only matches against the

three digit response code followed by text. This, for example,

matches also against the common message body “404 Not

Found”. YAF lists a value of 4157 messages (instead of 3966)

on the anomalous trace, meaning a lot of false positives were

exported. Here again, the suspicion is that, as above, the RegEx

approach is to blame.

VermontHTTP detects almost all messages correctly, and is

the only tool able to also annotate partial HTTP messages.

The only case when the message count differs (not shown) is

when an IPFIX flow timeout occurred, and thus one HTTP

message is counted twice. This only suggests to configure the

IPFIX flow timeout values according to the expected traffic.

When inspecting the exported IPFIX flows, the request and

response pairs where matched correctly for 99.7% and thus

exported as a dialog in one IPFIX flow. It only failed in the

rare cases where the parsing resulted in partial messages or

a timeout occurred. This underlines the necessity for a robust

and highly operational parsing engine. On the anomalous trace

VermontHTTP does very well. There are only minor issues

with the wrong message length information: In case of a

greater number than the actual size it counts these messages as

partial requests, expecting more data, which can be assumed

as correct behavior. As all the other tools do not seem to

maintain any HTTP message state over multiple segments,

VermontHTTP is also the only tool in this test handling HTTP

messages correctly if the header is bigger than the Maximum

Transmission Unit (MTU).

2) Performance Tests: We also carried out a number of per-

formance tests. The used test environment consists of two PCs

(Linux 3.13, i7-3920k CPU with 6 cores and 32GB RAM),

directly connected with a 10Gbit/s link (Intel 82599ES Net-

work Interface Controller (NIC)). All the tests are performed

by replaying a network trace at different speeds at host A

and using VermontHTTP at host B to capture the network

traffic. To be able to capture packets at high line rates, we

used the libzero PF_RING library in combination with

VermontHTTP. We used the same configuration of VermontHTTP
as before, and exported 2 kB of payload in each IPFIX flow. It

should be noted that more payload has only a marginal impact

on performance.

545545545



TABLE II
GENERAL PERFORMANCE STATISTICS OF VERMONTHTTP

Trace
ID

Pkt.
Rate
[k/s]

Through-
put
[Gbit/s]

Avg.
Pkt.
Size
[B]

Avg.
HTTP
Header
[B]

TCP
Conn.
[#]

Avg.
HTTP
Req.
[×103/s]

Avg.
HTTP
Buffer
[kB/s]

1 810 4,13 675 475 17762 29.78 1540
2 790 2,50 375 448 1167631 42.16 481
3 730 4,41 732 488 8501 32.03 1
4 700 6,65 1161 1880 63 14.89 27310

The traces used are all considerably bigger than the traces

used in the functionality tests (avg. number of packets here

is 12 Mio). We tried to create different traces covering

all possible traffic characteristics. To put the system under

maximum load all traces consisted solely of HTTP traffic, all

other traffic was filtered out. Again, only an exemplary fraction

of the tested traces is discussed here.

To cover typical Internet traffic, we created a trace by

capturing the traffic going through an HTTP proxy used by

a scientific work group for one week. We than removed

messages with a size bigger than 5MB resulting in trace

1. To create traces with more or less equal packet sizes

we used a crawler and limited the MTU. In trace 2 and

3 the MTU was limited to 1000B. The difference is the

number of TCP connections. For trace 4 the MTU was set

to 1500B, the peculiarity of this trace is that the crawler

requested Universal Resource Identifiers (URIs) for possibly

indefinitely deep directory structures ending up with extremely

long message headers. Apart from that only very few different

TCP connections occur in this trace.

Table II shows the experiment results. It is sorted by the

packet rate and depicts the performance data of VermontHTTP at

the highest rate possible without packet drops (or drop rates in

the per mill range). The CPU usage is with all traces between

90% and 94%. The first observation is that the overall high

packet rates and throughput are only affected negatively if the

trace contained a high number of HTTP requests per second

(trace 2, 3), or if the average HTTP header size is quite large

(trace 4). A high frequency of HTTP requests requires more

work by the HTTP parser, but also to open more buckets for

aggregation, which is a resource intensive task. A long header

implies more effort by the HTTP parser, as more bytes have to

be processed (and buffered) before aggregation. Most critical

is that headers are split over multiple TCP segments, which is

the case for trace 4. The impact on memory consumption is

negligible as it correlates directly with the number of packets

currently processed. The CPU performance is the bottleneck

and packets are dropped long before memory fills up.

V. CONCLUSION

This paper introduces a new mechanism of monitoring

HTTP/1.1 traffic. Our monitoring concept treats HTTP as

a transport protocol and provides the aggregation of HTTP

dialogs (request and response messages which belong to each

other) into bidirectional flow records, and makes export to

other network monitoring entities possible using the IPFIX

protocol. The implementation allows the aggregation and

export of HTTP header fields and the first N bytes of HTTP

(or TCP) payload of both messages of a dialog, into a set

of custom, so called enterprise specific IPFIX IEs. Network

analysis tools like IDSs can than process the resulting flows

faster and more efficiently and thus prevent network attacks

and misuse with a new quality.

The evaluation has shown that the detection rate of HTTP

messages of the introduced HTTP parser outperforms all

other network monitoring tools in the test. We showed that

VermontHTTP at its limits can deal with packet rates of

800 kpps and with line rates of 6Gbit/s of pure HTTP traffic.

The bottleneck of the implementation is the high CPU load

of the new PacketAggregator module induced by the HTTP

parser/aggregator and TCP reassembly engine, which were

incorporated into this module. A possible remedy to improve

the performance of VermontHTTP could be to implement the

TCP reassembly engine and HTTP parser in two separate

modules, allowing them to run as two single threads.

REFERENCES

[1] S. Lee, K. Levanti, and H. S. Kim, “Network monitoring: Present and
future,” Elsevier Computer Networks, vol. 65, pp. 84–98, 2014.

[2] R. Antonello, S. Fernandes, C. Kamienski, D. Sadok, J. Kelner, I. Gó-
Dor, G. Szabó, and T. Westholm, “Deep Packet Inspection Tools and
Techniques in Commodity Platforms: Challenges and Trends,” Journal
of Network and Computer Applications, vol. 35, no. 6, pp. 1863–1878,
2012.

[3] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Jaha-
nian, “Internet Inter-Domain Traffic,” in ACM SIGCOMM 2010. New
Delhi, India: ACM, Aug. 2010, pp. 75–86.

[4] B. Ager, N. Chatzis, A. Feldmann, N. Sarrar, S. Uhlig, and W. Willinger,
“Anatomy of a Large European IXP,” in ACM SIGCOMM 2012.
Helsinki, Finland: ACM, Aug. 2012, pp. 163–174.

[5] W. Li, A. Moore, and M. Canini, “Classifying HTTP Traffic in the New
Age,” in ACM SIGCOMM 2008, Seattle, WA, Aug. 2008.

[6] B. Trammell and E. Boschi, “An Introduction to IP Flow Information
Export (IPFIX),” IEEE Communications Magazine, vol. 49, no. 4, pp.
89–95, Apr. 2011.

[7] R. T. Lampert, C. Sommer, G. Münz, and F. Dressler, “Vermont -
A Versatile Monitoring Toolkit for IPFIX and PSAMP,” in IEEE/IST
MonAM 2006. Tübingen, Germany: IEEE, Sep. 2006, pp. 62–65.

[8] D. Guo, G. Liao, L. N. Bhuyan, B. Liu, and J. J. Ding, “A Scalable
Multithreaded L7-filter Design for Multi-core Servers,” in ACM/IEEE
ANCS 2008. San Jose, CA: ACM, Nov. 2008, pp. 60–68.

[9] K. Namjoshi and G. Narlikar, “Robust and Fast Pattern Matching for
Intrusion Detection,” in IEEE INFOCOM 2010. San Diego, CA: IEEE,
Mar. 2010.

[10] L. Chappell, Wireshark Network Analysis The Official Wireshark Net-
work Analyst Study Guide. Laura Chappell University, Mar. 2010.

[11] V. Paxson, “Bro: A System for Detecting Network Intruders in Real-
Time,” Elsevier Computer Networks, vol. 31, no. 23-24, pp. 2435–2463,
Dec. 1999.

[12] T. Limmer and F. Dressler, “Improving the Performance of Intrusion De-
tection using Dialog-based Payload Aggregation,” in IEEE INFOCOM
2011, GI Workshop. Shanghai, China: IEEE, Apr. 2011, pp. 833–838.

[13] L. Deri, “nProbe: an Open Source NetFlow Probe for Gigabit Networks,”
in TNC 2003, Zagreb, Croatia, May 2003.

[14] C. Inacio and B. Trammell, “YAF: Yet Another Flowmeter,” in USENIX
LISA 2010, San Jose, CA, Nov. 2010.

546546546


