
A TLS Interception Proxy with
Real-Time Libpcap Export

Felix Erlacher∗, Simon Woertz∗ and Falko Dressler†
∗ Dept. of Computer Science, University of Innsbruck, Austria

† Dept. of Computer Science and Heinz Nixdorf Institute, Paderborn University, Germany
simon.woertz@student.uibk.ac.at, {erlacher,dressler}@ccs-labs.org

Abstract—The usage of HTTPS and thereby the Transport
Layer Security (TLS) protocol is constantly becoming more
ubiquitous. This renders classic Deep Packet Inspection (DPI)
approaches on the, now encrypted, application layer useless.
The concept of TLS interception proxies is to decrypt the
application layer data going through the proxy and to make
it available for further processing. The decrypted data varies
in form and content depending on the used proxy application.
Most currently available tools store this data in plain text format
consisting of the decrypted application layer data together with
additional metadata describing the connection. This is useful if
single connections have to be analyzed but generally fails for
network monitoring tools such as Intrusion Detection System
(IDS) due to missing lower layer network connection information.
We developed a TLS interception proxy that exports in real-time
not only the decrypted TLS application data records but also
lower layer information using the well known libpcap format.
This enables other network monitoring tools to further process
the exported data and apply DPI techniques as well as detection
rules that inspect the lower layers.

I. INTRODUCTION

The usage of TLS connections in both local networks
and the Internet is constantly increasing [1], [2]. This trend
has been particularly fostered by the ever increasing privacy
awareness as well as the strong need for data confidentiality.
Given the fact that modern computer hardware (including
mobile systems such as smartphones) is powerful enough
to encrypt data streams with no impact on the data rates,
many web services are changing their sites to default to TLS
encryption. While this is desirable for a user of such services, it
creates new challenges for network operators. All DPI methods
such as the Snort [3] or Bro [4] IDS, which were used to secure
campus networks, are now obsolete because they do not work
on TLS encrypted connections. This raises the need for novel
approaches that make it able to provide IDS security solutions
but also other network monitoring techniques also for TLS
encrypted traffic. Throughout this work we use the term TLS
to denote both SSL and TLS encrypted connections.

There are already tools available that allow to intercept TLS
encrypted traffic and several firewall manufacturers have a TLS
interception feature in their products. However, they all lack
two crucial features: First, it is not possible to forward the
decrypted traffic in real-time in an open format to network
monitoring tools like IDSs. Secondly, even though tools exist
that export in some text format, these tools still omit lower
layer network information.

In this work, we present a new tool chain filling exactly this
gap. The novelty of our approach is that our TLS interception
proxy exports the intercepted and decrypted application layer
payload together with the lower layer information in real-time
using the widely used libpcap format. This way, other network
monitoring tools such as the IDS Snort [3] or Vermont [5]
can be directly used without the need for tool specific mod-
ifications. Additionally, HTTP/1.1 flow monitoring concepts
like [6] can be extended to also being able to enable flow
monitoring on TLS encrypted sessions.

II. RELATED WORK

There are many appliances that have TLS interception proxy
capabilities, from web debugging tools (e.g., Fiddler1) that
export the data to text files, to complex firewall solutions like
Genua’s GenuGate2, which directly analyzes the decrypted
application data. They all have in common that none of them
exports the data in real-time in an open and generic format
including the lower layers. This makes it difficult for third
party applications to use the output. In the following, we
describe two widely used tools.
mitmproxy3 is an interception proxy for HTTP with a

console user interface written in Python. It is an interactive
software which allows to intercept and modify HTTP requests
and responses on the fly. It also allows the user to specify
filters to trigger actions (e.g., logging or modifying payload),
which are executed when the filter condition is met. The cap-
tured HTTP traffic can also be exported as serialized python
objects and replayed with mitmproxy again. mitmproxy is also
capable of acting as an intercepting TLS proxy. The decrypted
connection information (time stamps, cookies, HTTP headers,
decrypted payload, and other application layer info) can be ex-
ported into a text file. The tool comes bundled with a command
line version of the tool called mitmdump. mitmproxy focuses
on HTTP(S). While mitmproxy is also capable of intercepting
non-HTTP TLS connections, information is currently only
logged to the event log.

Wireshark4 is a widely used network analyzer and debugger.
Its main purpose is to analyze particular network traces

1https://www.telerik.com/fiddler
2https://www.genua.de/loesungen/high-resistance-firewall-genugate.html
3An interactive SSL-capable Intercepting HTTP Proxy for Penetration

Testers and Software Developers, https://mitmproxy.org
4https://wireshark.org



(a) End-to-end cryptographic service

Interception Proxy

downstream upstream

(b) Using a TLS proxy to split the cryptographic service

Fig. 1. TLS connection without and with a TLS interception proxy

by capturing and presenting network traffic from a network
interface or another libpcap input source. It can also be used to
decrypt traffic from captured network traces. This can be done
by setting the (Pre)-Master-Secret log file in the Wireshark
preferences to a file which contains the master secrets in
Network Security Services (NSS)5 Key Log Format.6 This file
contains the session secrets and can be provided directly by
the browser or by tools like the aforementioned mitmdump by
setting the KEYLOGFILE environment variable when running
the program. Wireshark is able to read this log file and to
dissect TLS and possible layers on top of that. The dissected
data can also be exported in various text formats. However, if
the chosen export format is libpcap the packets are exported
encrypted as they have been recorded “on the wire”. This
means that the decrypted payload is not part of libpcap packets
since the decryption happens after the packet is handed over
from the operating system to the TLS library.

III. TLS INTERCEPTION PROXY

TLS is a cryptographic protocol suite providing confiden-
tiality and data integrity between two communication par-
ties [7]. If implemented correctly, TLS makes it impossible
to read the application layer payload by an observer which
is able to intercept the traffic between the two TLS parties.
Nevertheless, there are use cases where network operators
want to inspect TLS traffic. A typical example is to avoid
malicious code entering the corporate network.

Thus, network operators came up with TLS interception
proxies that basically carry out legitimate man in the middle
attacks. Legitimate in this case means that the clients are
informed about the interception of their traffic and agree to
install the Certificate Authority (CA) certificate of the inter-
ception proxy. If this is fulfilled it has to be ensured that all the
traffic goes over the interception proxy. Figure 1 sketches this
scenario. In contrast to scenario (a), where a client connects
directly to a web server, in scenario (b) the traffic is routed
over the interception proxy. This proxy establishes one TLS
connection to the client and another TLS connection to the
web server. This way the proxy is able to read the application

5NSS is a set of cross-platform security libraries used by e.g., Firefox and
Chrome.

6https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/
Key Log Format

Thread
Session

On-the-fly cert gen
Master secret1

Session
On-the-fly cert gen

Master secret

Session
On-the-fly cert gen

Thread

PCAP
recording

TCP
reassembly

TLS Record
decryption

PCAP
export

SocketSocketSocket
SocketSocketSocket

master secret

Fig. 2. Overview of the architecture of our new TLS interception proxy.

layer payload in clear text. For the client the proxy behaves
as being the web server, this requires the proxy to generate on
the fly a valid certificate for the requested resource. Since the
client has installed the CA certificate of the proxy the client
will accept the generated certificate. The proxy acts as a TLS
client at one connection and as a TLS server at the other. The
incoming data at one connection is duplicated and forwarded
to the respective other.

The operation of the proxy between the client and the
server, which basically interrupts a connection, comes at a
cost. The client’s assumptions about the TLS connection are
no longer valid. One of these invalid assumptions can be the
cryptographic trust in the connection. The client assumes to
talk directly to the server and thus assumes to have knowledge
about the cryptographic methods that are used within this TLS
connection. This is not the case anymore as the interception
proxy might, as a first example, decide to use weaker cryp-
tographic protocols, or, as a second example, accept broken
certificates from the server. It has to be made sure by the
operators of the interception proxy that the standards expected
by the clients are fulfilled.

IV. ARCHITECTURE

From an abstract point of view, our interception proxy
listens to the configured interface, intercepts all TLS packets
going over it and forwards all other traffic without touching
it. The program consists mainly of two threads which are exe-
cuted concurrently. The incoming TLS packets are duplicated
and then fed to both threads. Figure 2 gives an overview of
this architecture. In a nutshell, the upper thread manages the
TLS connections in both directions and only cares about the
transport layer. Additionally it hands over the master secret
to the lower layer. The function of the lower layer is to
reassemble out-of-order packets, to decrypt the TLS encrypted
application layer payload, and to export all data.

In more detail, the upper layer first waits for an incoming
connection, intercepts it and then initiates an additional TLS
connection to the originally intended destination. In this work
we call the incoming connection “downstream” connection and
the outgoing one the “upstream” connection. To manage the
TLS connections via a socket interface, the boost.asio
library is used. In the upstream connection the interception
proxy acts as the client endpoint whereas in the downstream
connection it acts as the server endpoint. Therefore, the proxy
has to authenticate itself to the client in the downstream
connection. This is done by waiting until the original server
authenticates itself to the proxy and then reissuing a copy of



Fig. 3. Screenshot of Wireshark presenting a libpcap dump of our interception proxy. The SSL content is shown in clear text.

the received certificate. Meanwhile the downstream connection
is stalled. By reissuing (digitally signing) a certificate the
proxy operates as a CA.

Instead of just forwarding incoming packets (like a router
would do), the intercepting proxy has to maintain two con-
nections (sockets) for every incoming TLS connection. All
the data arriving at the upstream connection is forwarded to
the corresponding downstream connection and vice-versa. The
only exception to this is the certificate which has to be adapted
before it can be handed over. Due to this approach, the proxy
is in possession of all the necessary crypto material for all
connections it maintains.

The lower part shown in Figure 2 is responsible for
recording, reordering, dissecting, decrypting and exporting
incoming packets. The library libtins7 (a C++ wrapper
for libpcap) is used to record and reorder (if necessary)
incoming packets. Reordering is necessary since TLS is usu-
ally layered on top of TCP as a transport protocol. A network
packet sent over a large network can take different routes on
the way from the source to the destination. Therefore, packets
can arrive out-of-order and we have to reorder them.

The lower part shown in Figure 2 is also responsible of
recording the “client random” and “server random” infor-
mation, which are exchanged during the TLS Handshake.
Together with the “master secret”, which is stored during
the handshakes performed in the “upper” part, it is possible
to calculate all the necessary crypto material to decrypt the
received TLS records. “client random”, “server random”, and
the “master secret” are stored together and are identified by
their source and destination IP addresses and TCP ports. This
information is stored in a shared memory and is the only way
the two threads communicate with each other.

The final step is to combine decrypted TLS records with
the lower layers of the recorded packets. This is done by
exchanging the payload of a TCP packet which originally
contained an encrypted TLS record by the decrypted TLS
application data. The exchange of the payload and the export
of the packets into libpcap format files is done using libtins.

Exporting the decrypted payload atop of the original lower
layers has the downside that network monitoring tools (e.g.,
Wireshark) will complain when loading the exported libpcap
file because if a header contains checksums like Cyclic Re-
dundancy Check (CRC), they will obviously be wrong. This

7https://libtins.github.io/

is because the application payload now is decrypted and thus
can not match the CRC checksum of the encrypted payload.

Until now only the most used TLS cipher suites
have been implemented, but more will follow. The
source code of our interception proxy is available at
https://bitbucket.org/swoertz/master-project.

V. DEMONSTRATION SETUP

To demonstrate our TLS interception proxy we will use a
laptop with Internet access acting as proxy and a Raspberry
Pi as TLS client. The proxy (on the laptop) will export the
traffic in libpcap format to another network monitoring tool
that will display the encrypted TLS records.

Figure 3 shows a sample libpcap output of our interception
proxy. While Wireshark displays the packet content as being
SSL it can be seen that the payload is readable in clear text.

VI. CONCLUSION

In this demo we propose a TLS interception proxy that is
not only able to export the decrypted application layer of TLS
encrypted connections in real-time in the well known libpcap
format. The exported data also include lower network layer
information. This allows third party tools like IDS not only to
apply DPI methods on it but also analyze the lower layers.

REFERENCES

[1] S. Dyllan, H. Dahimene, P. Wright, and P. Xiao, “Analysis of HTTP
and HTTPS Usage on the University Internet Backbone Links,” Journal
of Industrial and Intelligent Information, vol. 2, no. 1, pp. 67–70, Mar.
2014.

[2] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,
M. Munaf‘o, K. Papagiannaki, and P. Steenkiste, “The Cost of the ”S”
in HTTPS,” in 10th ACM International on Conference on Emerging
Networking Experiments and Technologies (CoNEXT 2014). Sydney,
Australia: ACM, Dec. 2014, pp. 133–140.

[3] M. Roesch, “Snort: Lightweight Intrusion Detection for Networks,” in
13th USENIX Conference on System Administration (LISA 1999), Seattle,
WA, Nov. 1999, pp. 229–238.

[4] V. Paxson, “Bro: A System for Detecting Network Intruders in Real-
Time,” Elsevier Computer Networks, vol. 31, no. 23-24, pp. 2435–2463,
Dec. 1999.

[5] R. T. Lampert, C. Sommer, G. Münz, and F. Dressler, “Vermont -
A Versatile Monitoring Toolkit for IPFIX and PSAMP,” in IEEE/IST
Workshop on Monitoring, Attack Detection and Mitigation (MonAM
2006). Tübingen, Germany: IEEE, September 2006, pp. 62–65.

[6] F. Erlacher, W. Estgfaeller, and F. Dressler, “Improving Network Monitor-
ing Through Aggregation of HTTP/1.1 Dialogs in IPFIX,” in 41st IEEE
Conference on Local Computer Networks (LCN 2016). Dubai, UAE:
IEEE, November 2016.

[7] T. Dierks, “The Transport Layer Security (TLS) Protocol Version 1.2,”
IETF, Tech. Rep. 5246, Oct. 2015.


