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Abstract—Signature-based Network Intrusion Detection Sys-
tems (NIDS) are an integral part of modern network security
solutions. They help to detect and prevent network attacks and
intrusions. However, they show critical performance problems in
today’s high speed networks. Filters have been proposed to reduce
the amount of traffic to be analyzed by a NIDS, yet, such filters
need to be very carefully designed in order not to miss relevant
data. We address this problem by proposing a novel concept
for filtering taking into account the pipelining architecture of
modern web traffic. Our concept, which we named HTTP-based
Payload Aggregation (HPA), is able to retain the first N bytes
of the basic Protocol Data Unit (PDU) of an application layer
protocol and discard the rest, arguing that the retained payload
portion contains almost all relevant data for intrusion detection.
We demonstrate the feasibility of our approach focusing on
HTTP traffic as the most prominent protocol in many Internet
applications. The idea is, thus, to capture the first N bytes of
every pipelined session and forward this data to a NIDS. In our
evaluation, we show that for the used traces we still detect more
than 97% of the events with only 2.5% of the network traffic to
be analyzed. We achieve an increase in packet throughput of up
to 44 in our experiments.

I. INTRODUCTION

Network Intrusion Detection Systems (NIDS) are an impor-

tant tool for network operators to detect and defend against

attacks but also to enforce usage policies to avoid internal

misuse [1]. We can distinguish between anomaly-based sys-

tems that build a traffic model of ‘normal’ network traffic and

then detect deviations of this model [2], and signature-based

or rule-based systems that operate on a pre-defined rule set

of known attacks and incidents [3], [4]. We concentrate on

signature-based systems such as Snort [3] or Bro [4], which

allow a very detailed description of attacks using also Deep

Packet Inspection (DPI) methods and, therefore, offer a very

high detection rate at the cost of comparably low performance

and, thus, are limited to lower packet throughput.

The main steps of a signature-based NIDS are the following:

First, the incoming traffic goes through a predefined set of

preprocessors. Here, if necessary, packets are reassembled

(fragmentation, TCP reassembly) and checked for validity

(e.g., TCP checksum). Afterwards, a detection engine applies

a ruleset to the received data. The majority of state-of-the-

art Snort rules contain patterns that are matched against

the payload. These patterns range from selected bytes to a

concatenation of Regular Expressions (RegExes). To narrow

down the number of packets that a pattern has to be matched

to, a rule contains also source, target, direction, or protocol

filters that are applied first. The performance of a NIDS

mainly depends on the number of rules [5]. Thus, in practical

applications, the ruleset is customized for the domain-specific

use case. Nevertheless, a high number of rules remain, and

further reducing the number of rules would elevate the risk of

not detecting a possible intrusion. Various approaches tried to

speed up NIDS, e.g., by parallelizing the operation [6]–[8] or

simply by reducing the input data to be analyzed [9]–[11].

We focus on the latter approach to reduce the amount of data

by filtering the network traffic that the NIDS has to analyze.

In particular, we aim at filtering the payload of the HTTP

protocol, which became the basis for the majority of current

Internet applications. Recent studies show, that the amount

of Hypertext Transfer Protocol (HTTP) in Internet traffic has

increased significantly, accounting for more than 50% of the

overall traffic volume [12], [13]. This is also reflected in the

high number of HTTP related rules for the popular NIDS

Snort. To speed up web applications and minimize delay,

HTTP has evolved from a simple request/response protocol

to a pipelined operation. This is especially relevant as the new

HTTP/2 protocol shows that future application protocols will

be much more interleaved [14], [15]. Filtering solutions such

as Time Machine [9] or Dialog-based Payload Aggregation

(DPA) [11] cannot cope with this change as they are based

on a per flow operation, a flow being defined as a single

TCP connection. Pipelined HTTP, however, sends multiple

request/response messages over the same TCP connection.

In this paper, we propose HTTP-based Payload Aggregation

(HPA), a filtering technique that is able to deeply investigate

the full HTTP protocol including pipelining in order to cor-

rectly identify HTTP request-response pairs, which are then

fed to a NIDS. In order to substantially reduce the network

traffic, HPA follows the Time Machine / DPA concept to only

forward the first N bytes of every HTTP message. Empirical

evidence shows that this part of the payload is most relevant

for attacks while the remainder of the payload is mostly

irrelevant. In order to also support encrypted HTTP traffic,

TLS interception proxies can be used [16], which is standard

for most commercial firewall systems.

Our main contributions can be summarized as follows:

• We present HPA, a novel filtering technique for speeding

up signature-based NIDS;
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• our concept fully integrates with HTTP pipelining as

proposed for HTTP/1.1 and HTTP/2;

• we fully evaluate our approach using a typical ruleset for

Snort and show that it clearly outperforms both Snort

as well as Snort in combination with previous filter

techniques.

II. RELATED WORK

Several efforts have been made to facilitate and speed up

signature-based NIDS. The biggest performance bottleneck in

these systems is the pattern matching [5]. As RegExes are

an integral part of such systems, there have been approaches

to speed up RegEx matching with specialized hardware [17].

Yet, the majority of NIDS are deployed using off-the-shelve

hardware and the possible speed-up is rather limited.

Other approaches focus on using multiple instances of

NIDS in parallel. For example, the possibility of modern

switches to distribute incoming traffic according to Quality

of Service (QoS) criteria on multiple outbound interfaces has

been explored [18]. Multiple NIDS instances listening to these

interfaces work on a fraction of the incoming traffic. The main

problem remaining is the interdependency of network flows,

which requires massive maintenance between these instances.

Most promising are results from solutions that reduce the

traffic data that has to be processed by a NIDS. Random sam-

pling has been explored in the context of the packet sampling

IETF group [19]. It helps reducing the load but, unfortunately,

also significantly reduces the detection quality. As a result,

methods for intelligent filtering have been proposed, which try

to exploit the heavy-tailed nature of Internet traffic [9]–[11],

[20], [21]. They all have in common that they use the first N

bytes of a TCP connection, arguing that it contains the majority

of attack signatures. After all, such filtering approaches can

also be used in combination with hardware based RegEx

matching or parallel NIDS operation.

A very generic approach is to use the first 500 kB of every

flow [21]. It has been shown that 99% of the threats are located

in this portion of the network traffic. This is very similar to

early filtering algorithms such as Time Machine [9] or Front

Payload Aggregation (FPA) [10]. TCP sequence numbers were

used to aggregate the first N bytes of payload in both TCP flow

directions. While this works well for rather simple protocols

like SMTP, it fails for protocols that use one connection in an

interleaved way for control commands and transfer of data.

A first step towards handling more complex application

protocol behavior focusing on HTTP/1.0 has been addressed

in [11]. The presented DPA approach collects the first N

bytes after every TCP direction change, i.e., keeping track of

multiple HTTP request / response pairs in the same transport

layer connection. This helps increasing the detection rate:

results show that DPA can filter about 96% of the data

while retaining 89% of the events reported by Snort. The

main weakness of this approach is that DPA cannot deal with

modern pipelining features in HTTP/1.1 or HTTP/2 [14], [15].

We advance the concept of filtering in this paper by also

considering pipelining as a core feature of modern Internet

protocols. Because HTTP is the most widespread application

layer protocol, we apply our concept first to HTTP, calling

it HPA. Throughout this paper we apply the taxonomy and

methods suggested in [22].

III. HPA: HTTP-BASED PAYLOAD AGGREGATION

In this section, we introduce and explain our new filtering

approach HPA. The goal is to greatly reduce the data that has

to be analyzed by a NIDS while retaining all security relevant

events. As motivated in Section II, we focus on HTTP as a

means of transport for modern Internet applications. Following

the findings in [9]–[11], the underlying assumption is that the

most relevant data for successful intrusion detection is stored

close to the start of an application layer Protocol Data Unit

(PDU). This is mainly because important information is stored

in the (application layer) protocol header, but also the protocol

payload contains important information in its initial portion.

A. Rule Analysis

An analysis of the current rulesets for the NIDS Snort

underlines that most relevant information can be found at the

beginning of an HTTP message. We downloaded the most

current rules from three sources (versions of 2017-01-15):

• All Snort rules (snapshot 2990) as provided to Snort.org

subscribers;

• the community ruleset from Snort.org; and

• all rules from the Emerging Threats ruleset1.

We then filtered all rules so that only active (uncommented)

rules remained that were related to HTTP:

• 67% (18363) of all active rules (27375) are related to

HTTP (using http_* content restrictors2, using the “ser-

vice http” metadata tag or using the $HTTP_SERVER or

$HTTP_PORTS variable);

• 66% (12141) of these rules use one of the http_* content

restrictors; among these

• 94% (11468) of the rules apply the pattern to a field in

the HTTP header and thus the beginning of the HTTP

message.

Overall, about 62% of the HTTP rules (42% of all rules) apply

a content search to the beginning of the HTTP message.

B. Concept

Because we are interested in the protocol details and, thus,

the structure and content of the PDUs of the application

protocol, simply following the transport protocol and using

its sequence numbers is not longer sufficient. In the case of

HTTP, for example, pipelined messages can not be detected by

simply looking at sequence numbers or TCP direction changes.

Thus, a stateful protocol parser is necessary that can keep

track of all incoming flows and export flows when they are in

an exportable state. This parser needs further to be robust to

cope with packet loss and, in the case of HTTP, to be able to

1http://doc.emergingthreats.net/bin/view/Main/AllRulesets
2Content restrictors in Snort rules reduce the pattern search in the content

(payload) to only the portion defined in the restrictor
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(a) Original HTTP connection

(b) Filtering using FPA

(c) Filtering using DPA

(d) Filtering using HPA

Fig. 1. Example HTTP connection annotated with the different filtering
techniques FPA, DPA, and HPA

handle non-standard implementations by current web servers

and browsers. After collecting all HTTP messages, this data

needs to be exported in the form of packets for a seamless

integration with NIDS such as Snort. Snort is assuming it is

receiving the packets from the wire, so some steps like TCP

reassembly and HTTP parsing will be done twice, once in

the HPA framework and once in Snort. This can, of course,

be improved for practical use but is sufficient to evaluate the

conceptual approach of HPA.

Figures 1a to 1d show a comparison of the ability to select

data from an original HTTP connection using Time Machine /

FPA, DPA, and our new approach HPA. The baseline HTTP

connection contains two pipelined GET requests and the cor-

Vermont ( ltering con guration)

Packet
Source

TCP
Reassembly

HTTP
Parser and Filter

Packet 
Exporter

Fig. 2. Architecture of the Vermont monitoring toolkit with HPA integration

responding responses following each other (cf. Figure 1a). The

Time Machine / FPA solution simply retains the first N bytes

of every direction of the underlying TCP connection, thus, it

misses all but the first two HTTP messages (cf. Figure 1b).

DPA is able to go one step further and retains the first N bytes

after every direction change (cf. Figure 1c). As can be seen, it

can not deal with pipelined HTTP messages that follow each

other without a direction change in between.

Figure 1d shows our new HPA filtering algorithm. Because

of its HTTP capabilities it goes beyond the capabilities of

DPA and can export the first N bytes of every single HTTP

message. In our case, it detects the pipelined GET requests

as well as the corresponding responses and exports them as

single messages, thus, allowing a NIDS to analyze the first N

bytes of all HTTP messages.

C. Implementation

For implementing our new algorithm, we use the network

monitoring toolkit Vermont [23]. This is a rather straightfor-

ward process due to its open and modular architecture. We

also make our system publicly available as Open Source.3

The underlying basis for HPA is the HTTP parser for

Vermont to aggregate HTTP related Information Elements

(IEs) into IPFIX flows [24], [25]. We use the capability of

the HTTP parser to filter out only the first N bytes of every

HTTP message (request and response) and then export these

bytes as one packet per message to the NIDS Snort.

The relevant modules of Vermont are shown in Figure 2.

First, the packets are collected from a TAP interface on the

wire (or from a stored pcap trace). Next, the TCP stream is

reassembled; this is necessary because the HTTP parser relies

on receiving an ordered stream of TCP segments.

Now, the HTTP parser walks through the payload and

‘on-the-fly’ collects data related to open HTTP connections.

Instead of waiting for an entire HTTP message to complete,

our parser operates on the payload of multiple open HTTP

messages. While analyzing the payload of new TCP segments,

it undergoes a series of state changes. For example, if a

packet contains only the HTTP request method and Universal

Resource Identifier (URI), instead of waiting until the next

portion arrives, the state for this HTTP message can be saved

and parsing can be continued at some point in the future. If

remaining packets got lost, the parsed message so far can be

exported after a configurable timeout. This way the parser

saves memory and can easily process a large number of

multiple HTTP messages concurrently. Only the first N bytes

of every HTTP message are aggregated; the size of N can be

configured to the needs of the scenario.

3https://github.com/felixe/ccsVermont, branch: http-aggregation
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Fig. 3. Configuration of Vermont / HPA filtering network traffic for subse-
quent analysis using the NIDS Snort

In the last step, the HTTP messages are exported as a single

packet per HTTP message to a connected NIDS.

IV. EVALUATION

To evaluate the effectiveness of our HPA approach, we use

real-world traffic traces and process these using the NIDS

Snort. We choose Snort because it is the most widespread

signature-based NIDS and has the largest source of signatures.

The configuration files and other resources used for the eval-

uation part of this work are available online4. We first show

that, while filtering out most of the network traffic, the attack

detection accuracy of Snort is only influenced marginally by

HPA; it can still detect almost all events. We further compare

our approach to FPA and DPA, both of which have been

integrated with Vermont as well. Finally, we evaluate the

processing capacity of our approach with Snort in comparison

to FPA and DPA.

A. Traces and Configuration for Functional Evaluation

Our first objective is to assess the attack detection accuracy

of HPA. For this, we need to show that the events reported by

Snort are not negatively influenced by our filtering method.

The main configuration is depicted in Figure 3.

To represent typical HTTP traffic, we use a trace that

was created by capturing the traffic going through an HTTP

proxy used by a scientific work group for one week (from

now on called proxy trace). We additionally inserted HTTP

traffic containing five well known attacks into this trace. The

related patterns of the rules triggering these attacks are rather

complex. Four of these patterns are located in an HTTP

response and one is in an HTTP request. All five were

registered as Common Vulnerability and Exposures in 2016

and have a relatively high Common Vulnerability Scoring

System score. We inserted two versions of each attack: The

first version only contains one HTTP request and one response,

whereas the second is a pipelined version of the attack. All

five attacks were inserted 22 times (21 pipelined version, 1

with only one request and response) per attack, resulting in

110 attacks in total. For the pipelined version of the four

handcrafted attacks located in a response, we requested a file

with a size of 1024B before the malicious response, resulting

in two pipelined responses with the 1024B response starting

first. For the pipelined version of the handcrafted attack located

in a request we pipelined an HTTP request with a header of

520B before the request with the attack. In total the trace

contains more than 2.2 million packets divided among 2996

unique IP Flows (IP source/destination pairs). The average

4http://www.ccs-labs.org/~erlacher/resources/

packet size is 825B. According to the taxonomy in [22], this

constitutes a typical real-world mixed workload trace.

For all tests, we used Snort version 2.9.9.0 in IDS mode

with the default snort.conf configuration file, which is shipped

with the installation archive. The only changes made to the

Snort configuration are the increase of queue sizes of detection

engine (max_queue_events to 1000, max_queue to 1000, log to

1000) and the max_queued_bytes for the stream5_tcp prepro-

cessor to 1.5MB. If the number of events per packet/message

exceeds the queue size, they are not reported anymore by

Snort. As the size of the packets/messages changes between

the tested filtering methods, the queue changes were necessary

to be able to realistically compare the outcome of the different

tests. To avoid Snort skipping packets with checksum errors,

we turned this behavior off. As signature databases, we relied

on the three rulesets described in Section III-A. Again, we

only used the 18363 active rules related to HTTP.

B. Functional Evaluation

For a first experiment, we fed the network trace from a file

instead of reading via a Network Interface Controller (NIC)

in order to evaluate the functional approach. Table I shows

the number of events that have been triggered by Snort. The

first column shows the rule SID, which triggered the event

of the corresponding line. Rule SIDs are used to uniquely

identify Snort signatures. The second column shows the results

if the proxy trace is processed directly using Snort without any

filtering. All other columns show the number of events, if the

trace is read by Vermont and filtered with FPA, DPA, or our

novel HPA technique. The top row shows the numbers of bytes

N that have been retained per filtering method.

Overall, HPA detects most events even when configured for

a comparably small N of 500B. It also outperforms DPA with

a larger N. This is particularly dominant when looking at rule

SID 2013504. Our data streams contain up to 10 pipelined

requests, so that FPA and even DPA miss some of the patterns.

This is not the case for HPA. In fact, looking at the amount of

data to be processed by Snort, HPA shows a better detection

rate even though producing less data (47MB vs. 170MB for

DPA vs. 1878MB for unfiltered traffic). For the entire trace,

our new filtering algorithm HPA detects 97.4% of the events

when analyzing only 2.5% of the payload. This shows that

for HTTP with HPA much less payload has to be exported to

detect the same number of results than with legacy filtering

methods. Because the filtered traffic only contains the first N

bytes of traffic this is in line with the heavy-tailed nature of

Internet traffic in general and HTTP traffic in particular.

We further see that HPA triggered even more events for

the first rule compared to Snort reading the unfiltered trace.

Investigating the specific streams reveals that Snort does not

analyze TCP streams if they are terminated with a TCP RST.

When exporting data, we omit all TCP control flags and, thus,

have Snort analyze the full packet stream. If the RST packets

are removed from the network trace and then fed to Snort also

Snort shows the same number.
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TABLE I
NUMBER OF SNORT EVENTS WITH AND WITHOUT FILTERING USING THE PROXY TRACE

N=2000B N=1000B N=500B

Rule SID Events
without
filtering

HPA DPA FPA HPA DPA FPA HPA DPA FPA

2013504 2035 2106 2041 937 2106 1497 519 2106 1022 272
40360 272 272 272 272 272 272 272 272 272 272
2012810 154 154 154 154 154 154 154 154 154 154
2015561 134 1 1 1 0 0 0 0 0 0
2101201 44 44 44 44 44 44 44 44 44 44
2001595 30 30 30 30 30 30 30 30 30 30
2014170 27 27 27 27 27 27 27 27 27 27
2101350 17 17 17 17 17 17 17 17 17 17
2013031 10 10 10 10 10 10 10 10 10 10
2018959 3 3 3 3 3 3 3 0 0 0
2016846 3 3 3 3 3 3 3 3 3 3
2012708 3 3 3 3 3 3 3 3 3 3
2011037 3 3 3 3 3 3 3 2 2 2
40158 1 0 0 0 0 0 0 0 0 0
2015707 1 0 0 0 0 0 0 0 0 0
2011507 1 0 0 0 0 0 0 0 0 0

Analyzed
data in kB

1878836 172601 170287 163725 89218 88027 84627 47527 46889 45084

in % 100 9.9 9.1 8.7 4.7 4.6 4.5 2.5 2.5 2.4

TABLE II
NUMBER OF SNORT EVENTS FOR HANDCRAFTED ATTACKS, WITH AND WITHOUT FILTERING USING THE PROXY TRACE

N=2000B N=1000B N=500B

Rule SID Events
without
filtering

HPA DPA FPA HPA DPA FPA HPA DPA FPA

40886 22 22 22 22 22 1 1 22 1 1
40778 22 22 22 22 22 1 1 22 1 1
37135 22 22 22 22 22 1 1 22 1 1
2023568 22 22 22 22 22 1 1 22 1 1
2022848 22 22 22 22 22 22 22 22 1 1

A drawback of the selection of N can be seen for rule SID

2015561. Only Snort reading unfiltered traffic detects 134,

as soon as traffic is filtered only 1 event is triggered. These

events are found in only 5 TCP streams, and in only one

of those TCP streams the pattern is located after 1050B and

thus in the retained portion of the filtered traffic. In the other

4 streams this pattern only appears after 9000B or more. The

same drawback applies to a smaller degree also to rule SID

2018959 and the last four rule SIDs in Table I.

Table II shows the results for our handcrafted events, which

were not shown in the previous table. As explained before

these attacks were injected two times. First, one event is

inserted as single request/response and, secondly, 21 events

are inserted as pipelined HTTP messages. The event patterns

in the pipelined versions of the attack can only be found if

more than 1500B (HTTP header + 1024B message payload)

are retained by FPA or DPA. HPA finds all events in the

pipelined messages. As every HTTP message is presented to

Snort as a single packet, all of these pipelined attacks can be

found even if only the first 500B of every HTTP message

are retained. This shows that HPA is particularly suited for

interleaved messages such as in HTTP pipelining.

C. Configuration for Performance Tests

Obviously, the additional filtering must be significantly

faster than a full analysis of the network traffic by an NIDS.

We assessed the overall system performance using a real-

istic scenario by replaying the previously used proxy trace

between two workstations (Linux 3.2.0, i5-4440 CPU, 32GB
RAM), which are directly connected over a 10Gbit/s Ethernet
network (Intel 82599 NICs). The goal was to measure the

workload processing capacity (in our case packet throughput)

and to assess the influence of our filtering system. We adapted

the proxy trace used above for the performance tests by

repeating the trace 15 times. We changed the IP addresses

after every repetition using the tool tcprewrite. Because
of the deterministic way that tcprewrite changes IP addresses,

TCP sessions between two hosts are maintained. The result is

a trace with 33 million packets and 28GB of data. To replay

the network trace, we used the program pfsend from the

PF_Ring program suite [26], which is more accurate than
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the well-known tcpreplay. The main difference to the

functional tests is that we are now capturing the traffic directly

from the NIC (using the PF_Ring library [26]) instead of

a local trace file. This means that if one of the filtering or

analyzing stages cannot cope with the packet rate, it will

tailback packets resulting in the previous stages to be blocked

and finally packets to be dropped at the NIC.

To cope with packet bursts, we introduced buffers between

the single stages. In Vermont, we defined a queue between

the packet capturing engine and the TCP reassembly engine

of 300 000 packets and between the HTTP parser and the

packet exporter a queue of 300 000 flows. The FIFO buffer

between Vermont and Snort is 128MB, which, at a packet

size of 2000B (assuming N to be set to 2000B) corresponds
to roughly 65 000 packets.

Because Snort is a single threaded application, we set

its CPU affinity to one dedicated CPU core and configured

Vermont to use the other cores. This avoids context switches

and, thus, improves the performance of Snort [27].

While replaying we continuously increased the speed from

0.05Gbit/s (7500 pps) to 6.2Gbit/s (917 000 pps) when

testing Snort without filtering, and from 1.2Gbit/s (178 000
pps) to 10.0Gbit/s (1.5 million pps) for the combination

of Vermont filtering the traffic and Snort doing intrusion

detection. We repeated the experiment 10 times for every

measurement point.

D. Network Performance

Figure 4 shows the averaged results of the 10 runs. The

graphs compare the packet drop rates and detected events of

Snort (reading unfiltered traffic) to the use of FPA, DPA, and

our new filtering method HPA. The three subfigures show the

results for three different sizes of N. The data for Snort is the

same in all three graphs and thus not influenced by the size of

N. The black lines show the number of dropped packets and

the orange/grey lines show the number of detected events.

If packets get dropped, events that relate to rule matches

in these packets cannot be reported by Snort. Snort starts to

drop packets because of system overload at about 15 000 pps.

At this rate, the percentage of detected events drops. Already

at a rate of 230 000 pps the detection rate drops below 10%.

This throughput is higher than reported by other studies [27],

[28], which could be due to a slightly more modern computer

system as well as thanks to the PF_Ring NIC device driver.

When filtering the traffic and for zero packet drop, the

magnitude of detected events is in line with the outcome

for the functional tests shown in Table I and Table II: HPA

detects most events, closely followed by DPA in case of

N=2000B. For the same N, FPA only reports about 60% of

the events. With a decreasing N, FPA and DPA show a worse

performance. Instead, our novel HPA approach is able to still

detect almost 100% of the events, even for N=500B.
When comparing the peak performance of the filtering algo-

rithms to Snort, it can be seen that while Snort on unfiltered

traffic has to drop packets at 15 000 pps, this performance

increases with the use of filtering techniques to about 180 000
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Fig. 4. Detected events and dropped packets with different replay speeds,
compared to Snort reading unfiltered traffic. Mean of 10 runs with confidence
intervals (95%).

pps (this corresponds to about 1.2Gbit/s) for N=2000B and

even 670 000 pps (4.4Gbit/s) for N=500B for our new HPA

technique. This corresponds to a speedup of more than a

factor of 12 for N=2000B and 44 for N=500B. FPA and

DPA perform similarly good, being able to achieve higher data

rates at the cost of more missed events. Similarly to the Snort-

only experiment, we observe higher data rates compared to the

data documented in the original papers for FPA and DPA [10],

[11]. This is again due to a slightly more modern computer

system as well as thanks to the use of the new PF_Ring packet

capturing library.
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Fig. 5. Speed of Vermont filtering the traffic and exporting packets to a RAM
disk instead of to a NIDS. Mean of 10 runs with confidence intervals (95%).

Generally HPA needs more CPU and memory resources

compared to FPA and DPA because of its more powerful

HTTP filtering engine. This does not necessarily mean that

it has to drop packets earlier: An artifact can be observed

for the N=2000B and N=1000B cases. Here, FPA and DPA

start earlier to drop packets. This is due to the internal TCP

reassembly strategy used by FPA and DPA. If packets are

lost, these approaches fill the empty spots with binary zero

and forward the result to Snort. Snort now has to analyze

these zeroed out parts of the message, which costs additional

CPU resources. HPA, instead, uses a stateful TCP reassembly

engine and a stateful HTTP parser and, thus, does not show

this behavior.

Another interesting observation from the results in Figure 4

is that while the rate of dropped packets increases pretty fast,

the detected events ratio does not decrease at the same speed.

The explanation is that packet drops are more or less uniformly

distributed. The payload patterns that trigger events, however,

can be found mostly in the beginning of HTTP messages.

Thus, the probability of an event packet being dropped is lower

than the overall packet drop probability.

As can be expected from the functional evaluation in

Section IV-B, the performance gain of HPA compared to

FPA and DPA becomes more prominent for smaller N. HPA

achieves the same detection quality for small N, where FPA

and DPA require large N to achieve a similar event detection

rate. Thus, the performance of HPA at N=500B should in fact

be compared to FPA and DPA at N=2000B. Hence, we can

report a performance improvement of HPA of a factor of more

than 3 compared to DPA.

Finally, Figure 5 shows the performance of the filtering

techniques FPA, DPA, and HPA without the connected Snort

NIDS. We performed the same experiments again, but did not

export the data to Snort but wrote it to /dev/null. Again, the

results are the average of 10 runs for every measurement point.

The results show a higher throughput compared to Figure 4,

which shows further evidence that packets were tailbacked by

Snort and that with a faster NIDS an even higher overall packet

throughput would be possible. This holds for all configured

values of N. Also, it can be seen that HPA has a slightly

reduced performance compared to FPA and DPA. This is due

to the additional complexity for TCP and HTTP reassembly.

But, as shown in Figure 4, in the case where HPA starts to

drop packets earlier than FPA and DPA it retains substantially

more events.

V. CONCLUSION

In this work, we presented a novel approach, HTTP-based

Payload Aggregation (HPA), to speed-up signature-based Net-

work Intrusion Detection Systems (NIDS). Following earlier

work such as Time Machine, Front Payload Aggregation

(FPA), and Dialog-based Payload Aggregation (DPA), we ex-

ploit the fact that attack patterns are usually located close to the

beginning of an application layer PDU. We extend this idea by

proposing a novel concept for filtering taking into account the

pipelining architecture of modern web traffic. We demonstrate

the capabilities of our approach focusing on HTTP traffic.

HPA is able to reassemble pipelined HTTP/1.1 or HTTP/2

traffic in order to identify request/response messages. Now,

the idea is to capture the first N byte of every HTTP message,

which is then processed by a NIDS. We assessed the quality

of our concept using real-world traffic traces analyzed using

the popular NIDS Snort and compared it to state of the art

solutions FPA and DPA as well as to Snort analyzing all the

network traffic. We not only show that HPA can retain almost

all events generated with Snort while filtering out most of the

traffic, but that filtering and analyzing of the resulting traffic

is substantially faster compared to Snort analyzing unfiltered

traffic. Overall, we show that for the used traces we still detect

more than 97% of the events with only 2.5% of the network

traffic to be analyzed.
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