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Abstract—Signature-based Network Intrusion Detection Sys-
tems (NIDS) are the state-of-the-art when it comes to precise
attack detection and intrusion prevention. However, they ex-
perience critical performance problems in modern high-speed
networks. At the same time, flow-based network monitoring has
been investigated for high data rates. In the last years, such
flow-monitoring went beyond collecting statistical information
about network connections and more recent techniques are able
to include selected samples of the payload of these flows. Most
recently, we extended this concept to HTTP flows. We now
go one step further and combine IPFIX-based flow monitoring
with NIDS. We developed IPFIX-based Signature-based Intrusion
Detection System (FIXIDS), a system that exploits the recently
introduced HTTP related flow Information Elements (IEs) to do
signature-based flow intrusion detection in high-speed networks
on commodity hardware. FIXIDS makes use of HTTP intrusion
signatures from the widely used Snort NIDS and applies them to
incoming IPFIX Flows. In the experimental evaluation, we are
able to show a performance gain of a factor of three compared
to Snort while maintaining the same detection ratio.

I. INTRODUCTION

Our modern Internet is facing an increasing number of
threats focusing on the most recent Internet technologies [1].
In this scope, Network Intrusion Detection Systems (NIDS)
have been an important tool for network operators already
since more than a decade to detect and defend against attacks
but also to enforce usage policies to avoid internal misuse [2].
According to established taxonomies (e.g., [3]), intrusion
detection systems can be categorized according to the used
detection method: Anomaly-based NIDS use behavior-based
techniques by defining a model of normal network behavior
and then detecting deviations to this model [4]. Knowledge-
based systems, on the other hand, use a precise definition of
the attack and match incoming traffic against this definition.
The most widespread variants of knowledge-based systems are
signature or rule-based NIDS. We concentrate on signature-
based systems such as Snort [5] or Bro [6], which allow a very
detailed description of attacks using Deep Packet Inspection
(DPI) methods. They, therefore, offer a very high detection
rate at the cost of comparably low performance and, thus, are
limited to lower packet throughput.

In signature-based NIDS, a detection engine applies a rule-
set to all received data. The majority of state-of-the-art Snort
rules contain patterns that are matched against the payload
of the received packets. These patterns range from selected

bytes to complex Regular Expressions (RegExes) matching
not only individual packets but payload in a flow of packets.
The performance of a signature-based NIDS mainly depends
on the number of rules [7]. Thus, in practical applications,
the rule-set needs to be adapted to the domain-specific use
case. Nevertheless, a high number of rules remain, and further
reducing the number of rules would elevate the risk of not
detecting possible intrusions.

A different approach to network intrusion detection is to
exploit Flow-based traffic data [8]–[10]. Here a Flow denotes
a set of elements containing aggregated information of a
number of packets sharing the same properties. Typically,
these properties are the same source/destination addresses,
the same source/destination ports, and the same protocol. We
capitalize the word Flow to emphasize the distinction from
other meanings of the word flow. Compared to the standard
DPI approach, the analysis on Flow-based traffic data requires
an additional step in which the data is aggregated into so-called
Flow records with the advantage of significantly reducing
the data to be analyzed. Flow monitoring has become quite
popular in a wide range of applications due to its ability
to work in high-speed networks. The Internet Protocol Flow
Information Export (IPFIX) protocol [11], [12] is the primary
standard, which is used to aggregate packet information into
Flow records for further post-processing. Flow records can be
adapted to the application scenario by choosing appropriate
IPFIX Information Element (IE) fields.

Given the fact that Hypertext Transfer Protocol (HTTP) has
become the dominant protocol in the Internet [13], [14], we re-
cently introduced IPFIX IEs to extend the concept of IP flows
to HTTP related information [15]. As a result, a single HTTP
dialog (request and response) can now be aggregated and
exported as one IPFIX record. Such a Flow record contains, in
addition to IP and statistical information, the most important
HTTP header information as well as a configurable amount
of the beginning of the HTTP payload. These HTTP related
IEs are by now registered and standardized with the Internet
Assigned Numbers Authority (IANA).1 Commercial network
appliance manufacturers have by now started to include HTTP
IEs into their set of exportable Flow fields. Examples are

1https://www.iana.org/assignments/ipfix/ipfix.xhtml978-1-5386-3416-5/18/$31.00 © 2018 IEEE



Citrix,2 Sonicwall,3 and Ntop.4 The format of the exported
HTTP data is basically the same, but they are not (yet) using
the standardized HTTP IEs but enterprise specific IEs.

In this paper, we go one step beyond and present a novel
way of Flow-based intrusion detection that we named IPFIX-
based Signature-based Intrusion Detection System (FIXIDS).
We use HTTP related Snort signatures and apply them to
IPFIX Flows containing HTTP information. To the best of
our knowledge, this is the first time that payload-based IEs
are directly exploited for signature-based intrusion detection.
By using Snort signatures, we ensure that community validated
signatures are available for the developed system. The usage
of Flow data guarantees high performance because less data
has to be analyzed when searching for signatures.

FIXIDS is not intended as a replacement for Snort. We aim
for high data rate scenarios where network traffic is collected
in form of IPFIX Flows, whereas Snort applies signatures to
all individual received packets. Here, FIXIDS analyzes HTTP
signatures substantially faster than Snort while showing the
same detection rate. Snort is used for the remaining signatures,
showing a significant speed-up because of a lower number of
rules.

In comparison to DPI, intrusion detection on Flows offers
an additional advantage as it allows to distribute the task
of fetching packets from the wire (and the aggregation into
Flow records) and the task of analyzing the Flows. Thus,
parallelization is inherently supported. This is not possible
with DPI-based intrusion detection where both tasks have to be
done in a tightly coupled fashion. One of the key contributions
is the idea to use readily available HTTP elements in IPFIX
Flows: Many modern network appliances already support the
export of Flow data. This is an inherent advantage over a
legacy Intrusion Detection System (IDS). Snort, in compari-
son, needs to preprocess and parse the HTTP part of the data
before analysis. So only very little effort is needed to add our
signature-based Flow intrusion detection appliance: FIXIDS
is able to run on commodity hardware easily supporting line
rates of 10 Gbit/sec.

In the evaluation, we confirm that by using aggregated Flow
data the performance of signature-based intrusion detection
can be raised significantly. Overall, our Flow-based solution
has also an important impact on privacy concerns in network
monitoring as much less data compared to DPI-based intrusion
detection is needed for analysis [16], [17].

II. RELATED WORK

In this section, we briefly outline the main performance
bottlenecks of intrusion detection as well as recent approaches
to improve their data throughput. In the first part, we cover
signature-based DPI intrusion detection and in the second part
we discuss Flow-based intrusion detection.

2https://www.citrix.com/products/netscaler-adc/netscaler-data-sheet.html
3https://www.sonicwall.com/en-us/products/firewalls/management-and-

reporting/global-management-system
4http://www.ntop.org/products/netflow/nbox/

The biggest performance bottleneck of signature-based
NIDS is the signature pattern matching process [7]. One
option is to move this operation to a Graphics Processing Unit
(GPU) [18]. It has been shown that the processing throughput
can be increased by a factor of two. Other approaches improve
this operation by parallelization [19]. For example, a Field
Programmable Gate Array (FPGA)-based network interface
has been used to distribute the incoming packets to multiple
parallel analysis threads [20]. Similarly, the distribution of
the traffic on multiple intrusion detection instances by using
a system that monitors the load of the single instances has
been proposed [9]. This approach should guarantee that no
instance is overloaded nor idle. Another concept is to reduce
the data that such a system has to analyze. Various methods
that intelligently filter network traffic while maintaining a high
detection rate have been explored [10], [21], [22].

Analysis on Flow data obviously implies an additional
processing step where network packets are aggregated into
Flow records. Also this stage has been subject of several
improvements such as to use dedicated hardware for packet
aggregation [23] or to exploit the hardware of modern high-
speed Network Interface Controllers (NICs) [24]. Overall,
Flow-based intrusion detection systems promise to have a bet-
ter throughput because they inherently handle a considerably
lower amount of data than DPI-based systems. Until now,
they primarily relied on packet-header information – typically
employing anomaly-based detection techniques. Thus, it is
only possible to detect a subset of all possible network
attacks [25]. Prominent examples are Distributed Denial of
Service (DDOS) attacks [26], scans, and Internet worms [27].

Because of the lack of payload-based IEs, there are only
very few examples of Flow-based NIDS that use knowledge-
based methods. For example, honey-pot logs provide attack
statistics that can be used to detect these attacks in IPFIX
Flow IEs [28]. More recently, a system called SSHCure has
been presented that detects SSH intrusions by identifying the
different phases of such an attack in the statistical properties
of Flows [29], [30]. Because they can only rely on header
information, all these systems offer rather static definitions of
attacks. To the best of our knowledge, there is no Flow-based
NIDS that supports user-definable signatures.

III. IPFIX-BASED SIGNATURE-BASED INTRUSION
DETECTION SYSTEM

In the following, we introduce and explain our novel Flow-
based NIDS. The goal is to be able to perform signature-
based intrusion detection at high-speed while still detecting
a high number of events. By using IPFIX Flows, we can keep
the amount of data to be analyzed relatively low while the
inclusion of HTTP IEs, in combination with a signature-based
detection method, allows us to very precisely detect specific
attacks.

A. Rules/Signatures

We decided to use the same rule syntax as Snort because
this allows us to use the same signatures without conversion.



TABLE I
SNORT CONTENT MODIFIERS AND THEIR CORRESPONDIG IPFIX IE

Content modifier HTTP IE IANA IE ID

http_method → httpRequestMethod 459
http_uri → httpRequestTarget 461
http_raw_uri → httpRequestTarget 461
http_stat_code → httpStatusCode 457
http_stat_msg → httpReasonPhrase 470

Flow
Source

Signatures

Events

IPFIX
Collector FIXIDS

Fig. 1. Configuration of FIXIDS in Vermont

Snort is the most widespread signature-based NIDS and has
the largest source of signatures. We do not support all options
that are possible within Snort signatures. This would not be
viable as many rule options rely on the whole packet payload
and in FIXIDS we only have the HTTP part at hand. Options
that are not supported are ignored during the parsing process.
Among other capabilities Snort searches for content patterns
in the payload of the bypassing traffic. To be able to narrow
the search space, Snort offers the option to apply so called
content modifiers to the pattern search. The idea is to restrict
the search of content patterns to certain payload fields. The
biggest part of the content modifiers in Snort allows to restrict
the pattern search to HTTP related fields. We exploit this by
using Snort rules with HTTP content modifiers and apply them
to the corresponding HTTP related IEs. Table I shows the
currently supported content modifiers and the corresponding
HTTP related IPFIX IE together with the IANA IE ID.

FIXIDS also accepts the nocase modifier which enables
case insensitive text search for the corresponding content
pattern. The content patterns can be text and binary data (as
hexadecimal numbers). Regular expressions are not supported
in the current version of FIXIDS. Of course, it is also possible
to include own hand-crafted rules which can be customized to
a certain application scenario.

B. Implementation

FIXIDS is implemented as part of the Open Source network
monitoring toolkit Vermont and is freely available5. Vermont
is written in C and C++ and its functionality is divided among
different modules, each having its own purpose. The FIXIDS
process is implemented in an own module, accepting as input
IPFIX Flows. A minimal working configuration is shown in
Figure 1. An external IPFIX exporter sends IPFIX Flows con-
taining HTTP IEs to Vermont (currently, TCP, SCTP, UDP, and
DTLS over UDP and SCTP are supported transport protocols).
In Vermont, the IPFIX Collector module receives the Flows
and hands them over to the FIXIDS module via a Flow buffer.

5https://github.com/felixe/ccsVermont

At startup, the FIXIDS module parses all signature and options
from the rules file given in the configuration. At run-time it
compares the IEs of every incoming Flow to the corresponding
signature patterns of every rule. To compare the string patterns
of a rule to the (utf encoded) content of the HTTP IEs,
FIXIDS uses the strstr() (and strcasestr() for case insensitive
search) C string-compare function. This function is written
in assembler and makes direct usage of CPU registers and
thus outperforms other C and C++ string-compare functions.
A rule might contain multiple patterns to compare (e.g., a
"GET" in the httpRequestMethod IE and multiple patterns in
the httpRequestTarget IE). If one of the matches fails, the
execution of the remaining pattern matches of the current rule
is aborted. If all patterns match, an alarm is triggered and
the event information is written to the alert file given in the
configuration.

The FIXIDS module can also be configured to pass the
analyzed IPFIX Flows to other modules in Vermont or to
export them to the next IPFIX collector. Vermont can also be
configured to read network packets from a NIC or a captured
network trace (pcap file) and aggregate the packets to IPFIX
Flows before handing these Flows to the FIXIDS module.

IV. EVALUATION

We divide the evaluation into two parts. For both parts
we rely on real-world traffic traces. The first part showcases
the functionality of FIXIDS and the second part validates its
network data throughput performance. As far as possible, we
provide configuration files and other resources to reproduce
the results on the author’s homepage.6

A. Experiment setup

To represent typical HTTP traffic, we use as base traffic a
trace that was created by capturing the traffic going through
an HTTP proxy used by a scientific work group for one week
(from now on called proxy trace). The proxy trace contains
only HTTP traffic and consists of 2.2 million packets with an
average packet size of 825 B.

We downloaded and used the most current Snort rules from
three sources:7

• All Snort rules (snapshot 2990) as provided to Snort.org
subscribers;

• the community rule-set from Snort.org; and
• all rules from the Emerging Threats rule-set.8

We only employ rules that make use of one of the HTTP
content modifiers from Table I. To make sure that rules are
applied only in the specific cases they are written for we
exclude all rules that contain options that are not supported
by FIXIDS. The resulting ruleset consists of 1514 rules.

Because of its widespread usage we choose the Snort NIDS
to generate a baseline both in functionality and performance
to compare against. We use Snort to produce the ground truth

6http://www.ccs-labs.org/∼erlacher/resources
7as of May 9th 2017
8http://doc.emergingthreats.net/bin/view/Main/AllRulesets



of events that are present in the test traces and compare the
results with the detected events of FIXIDS. In this work it is
not our goal to investigate if the events produced by Snort are
false-positives.

For the tests in this work we used Snort version 2.9.9.0 in
IDS mode, with the default snort.conf configuration file which
is shipped with the installation archive. The only relevant
changes made to the Snort configuration are the follow-
ing: We increased the queue sizes of the detection engine
(max_queue_events to 1000, max_queue to 1000, log to 1000,
and the max_queued_bytes for the stream5_tcp preprocessor
to 1.5 MB). This was necessary because if the number of
events per packet/message exceeds the queue size, they are not
reported anymore by Snort. The queue changes were necessary
to be able to realistically compare the outcome of the two
tested NIDS as FIXIDS reports always all events. To avoid
Snort skipping packets with checksum errors, we turned this
behavior off (-k none switch).

In the evaluation part, when talking about FIXIDS, we
refer to the Vermont configuration with the FIXIDS module
depicted in Figure 1. When using Vermont as an IPFIX Flow
exporter one has to configure the length of the HTTP Uri that
is going to be exported. An examination of the URI lengths in
the proxy trace showed the following results: average length
is 99.8 B, median length is 55 B, maximum length is 2913 B,
and the 85% percentile is 143 B. This matches with the results
of a similar investigation on HTTP header lengths done by
Google and presented in the spdy whitepaper9. According to
this results, we configured Vermont to export the first 150 B
of the HTTP URI. This also follows the findings in [15], [22]
that the most relevant data for intrusion detection is found at
the beginning of a Protocol Data Unit (PDU).

In order to show that the FIXIDS system also works with
third-party IPFIX exporters, we also conducted experiments
using Ntop’s network probe Nprobe (Version 8.1) [31]. It is
available as software or incorporated on dedicated hardware
under the name Nbox.10 With its HTTP plugin it also exports
HTTP related information in IPFIX Flows but uses proprietary
enterprise specific IEs. For our experiments, we thus had to
modify FIXIDS to also accept the enterprise specific HTTP
related IEs of Nprobe.

For all tests we used the following setup: For replaying the
network traces we used a workstation with an Intel i5-4440
CPU and 32 GB RAM running Linux 4.4.0. The receiving
workstation doing the IPFIX aggregation and exporting (and
in one experiment also the FIXIDS intrusion detection) has
the same hardware configuration. Both workstations were
interconnected using two Intel 82599 10 Gbit/sec NICs. As a
third workstation (where needed in our experiments), we used
an Intel i7-2600 CPU with 16 GB RAM running Linux 4.4.0
for the FIXIDS intrusion detection, connected to the IPFIX
exporting workstation with a 1 Gbit/sec link.

9http://dev.chromium.org/spdy/spdy-whitepaper
10http://www.ntop.org/products/netflow/nbox/

TABLE II
NUMBER OF EVENTS TRIGGERED BY SNORT AND BY FIXIDS USING THE

SAME NETWORK TRACE AND THE SAME RULES

Rule SID Snort FIXIDS

2001595 30 30
2101350 17 13
2018329 25 25
2017531 25 25
2014999 25 25
2014331 25 25
2013780 25 25
2013291 25 25
2010054 25 25
2010051 25 25
2009950 25 25
2008545 25 25
2007743 25 25
2000580 25 25
40079 25 25
40357 25 25
39190 25 25
37226 25 25
27244 25 25
24482 25 25
24225 25 25
16924 25 25

Total 547 543

B. Functional Evaluation

In the functional evaluation, we show that the methods and
algorithms implemented in FIXIDS work as expected. The
most important metric is the number of detected events.

To asses the general detection functionality we compare the
detected events from Snort and FIXIDS. For this experiment,
we added 20 Flows (each 25 times with different IP addresses)
that contain a pattern that triggers an event from a randomly
chosen rule from our set of 1514 rules (from now on called
random pattern traces). We than analyzed the produced pcap
file with Snort and with FIXIDS. Table II shows the results
of this experiment. The first two events (in italics) are the
ones that were already present in the proxy trace. FIXIDS
misses only four events out of 547, all triggered by the rule
with SID 2101350. This rule searches for a pattern followed
by a whitespace. Snort matches this whitespace also to the
binary sequence 0x7C while FIXIDS does not. This sequence
translates to the pipe character (’|’) and it is debatable if a
whitespace should match this character.

To assess the robustness of the detection functionality of
FIXIDS, we conducted the following experiment: We con-
figured Vermont to read packets from the NIC, aggregate
them to IPFIX and hand the Flows to the FIXIDS module
for intrusion detection. We replayed the standard proxy trace
and used a tcpreplay script to randomly replay the 20 random
pattern traces 25 times. This results again in 543 patterns to
be detected by FIXIDS in the network trace and contains a
variety of all possible patterns. We repeated this experiment
100 times, always with a different random distribution of the
500 random pattern traces, to evaluate if FIXIDS is able to
detect all attacks in all of the repetitions. FIXIDS always
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Fig. 2. Experiment setup with pfsend sending packets to Snort or FIXIDS
doing intrusion detection. In this case FIXIDS also aggregates packets to
IPFIX Flows before the intrusion analysis.
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Fig. 3. Comparison of Snort and Vermont FIXIDS performing packet
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proxy trace (plus 500 additional events) ×5 over the network at different
packet rates. Average over 10 runs (confidence interval (95%) is shown if
> ±2%).

(100 %) detected the full number of events. This makes us
confident that the detection functionality of FIXIDS is robust
and reliable.

C. FIXIDS Performance

In the next set of experiments, we evaluate the network
data throughput performance of FIXIDS and compare it to
Snort’s performance. To asses the network performance of
FIXIDS, we used again the proxy trace with the 25×20 = 500
additional random pattern traces. We then concatenated this
trace 5 times, always rewriting all IP addresses. In all tests
we replay this concatenated trace multiple times, gradually
increasing the data rate to assess the maximum throughput
rate without data loss, and the influence of data loss to the
detection rate. To replay the above network trace we use the
pfsend application from the PF_Ring11 program suite, because
it proved to be much more accurate in replaying traffic at a
certain rate than other similar programs. For all experiments
we use the 1514 Snort rules described in Section III-A for
Snort and FIXIDS.

In our first experiment, we evaluate the performance of
a monolithic intrusion detection system doing packet ag-
gregation and using the FIXIDS module for analysis on
one workstation. We used the two workstations described in
Section IV-A connected via a 10 Gbit/sec link. We replayed
the traffic at increasing rates from one workstation and did
intrusion detection on the incoming packets on the other

11http://www.ntop.org/products/packet-capture/pf_ring/
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Fig. 4. Experiment setup with Vermont reading the prepared pcap trace file
and sending the aggregated IPFIX Flows to FIXIDS.
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Fig. 5. FIXIDS receiving IPFIX Flows from a remote Vermont entity (over
PR-SCTP) reading the proxy trace (plus 500 additional events) ×5 over the
network. In comparison to Snort. Average over 10 runs (confidence interval
(95%) is shown if > ±2%).

workstation. First we used Snort on the receiving side to create
an intrusion detection benchmark to compare to. This is the
baseline Snort performance that we use in all of the following
graphs. Then we configured Vermont to fetch packets from the
NIC, aggregate them to IPFIX Flows, and hand these Flows
to the FIXIDS module for intrusion detection. The experiment
setup is sketched in Figure 2.

The following phenomenon holds for both intrusion de-
tection systems: If the analysis engine is overloaded it will
tailback packets, which finally results in packet drops at
the NIC. The averaged experiment results of 10 runs with
confidence intervals of 95 % are shown in Figure 3. For
readability reasons, in all of the following graphs, we only
show the confidence intervals if bigger than ±2%. This figure
shows the detected events of Snort (black lines) and FIXIDS
(orange lines) as well as the dropped packets (dashed lines)
of both systems over multiple experiment runs with increasing
rates (in packets per second). For better comparison with the
next experiments we also calculated and show the rate in
Gbit/sec.

Both systems can cope with 100 000 packets/sec
(0.7 Gbit/sec) with less than 1 % packet drop and thus
also detect almost all events. As soon as packets have to
be dropped also the detected events ratio decreases because
the dropped packets will inevitably contain events. With
lower rates the FIXIDS system drops more packets while
with higher rates it performs better than Snort. Keep in mind
that this is the only experiment where Vermont FIXIDS is
configured to aggregate the packets to IPFIX Flows before
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Fig. 6. Experiment setup with pfsend sending packets to Nprobe which
aggregates the packets and sends Flows to FIXIDS.
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Fig. 7. FIXIDS receiving IPFIX Flows from Nprobe receiving the proxy trace
(plus 500 additional events) ×5 over the network. In comparison to Snort.
Average over 10 runs (confidence interval (95%) is shown if > ±2%).

analysis on the same workstation.
To be able to assess the distribution of packet drops we

summed up the reported events of FIXIDS of all experiment
runs. When comparing the proportions of the sums of the
single rules it reflects exactly (max deviation of 0.5%) the
proportions shown in Table II. This means that the packet
drops are distributed equally over all events.

While DPI-based NIDS like Snort do its intrusion detection
in one monolithic analysis process, the advantage of Flow-
based intrusion detection systems is that the process of fetch-
ing packets from the wire and aggregating them to Flows
can be done separated from the intrusion detection process.
This is due to the fact that Flow records can be exported to a
Flow collector which than can perform the intrusion detection
process. As a matter of fact, most industrial-grade network
switches are able to export Flows. Thus, in most cases the
Flow-based NIDS does not have to aggregate packets to Flows.
In the following experiment we made a Vermont instance read
the network trace from a pcap file, aggregate it to IPFIX
Flows and export these Flows over the 10 Gbit/sec line to a
FIXIDS instance (FIXIDS configuration as in Figure 1). The
experiment setup is sketched in Figure 4.

The Vermont IPFIX exporter module supports the export
of IPFIX Flows over UDP, PR-SCTP, DTLS over UDP, and
DTLS over SCTP transport protocols. We conducted a series
of tests that showed that the Vermont IPFIX exporter module
in combination with Vermont’s IPFIX collector module had the
highest throughput rates when using PR-SCTP [32]. Thus, for
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Fig. 8. Experiment setup with pfsend sending packets to 6 Nprobe instances
which aggregate the packets and send Flows to 3 FIXIDS instances.
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all experiments with the Vermont IPFIX exporter involved we
used PR-SCTP as the transport protocol. We used an option
in the IPFIX exporter module of Vermont to configure the
different Flow rates. Figure 5 shows the averaged experiment
results of 10 runs with confidence intervals of 95 %.

In this constellation, the FIXIDS system can cope with
5000 Flows/sec without drops (orange line) while still detect-
ing all events (orange dashed line). When converted to Gbit/sec
this results in more than 1.4 Gbit/sec. This shows that without
the IPFIX aggregation module in the same Vermont instance
our NIDS performs much better and is 2 times faster than
Snort. The graph shows also that the Flow drop rate of FIXIDS
increases much slower with an increasing data rate than the
packet drop rate of Snort. For instance at 5 Gbit/sec FIXIDS
drops less then 20 % of the Flows, detecting more than 80 %
of the events while Snort drops about 70 % of the packets and
only detects about 30 % of the events. Also in this experiment
the dropped Flows are distributed equally over all events.

In the next experiment, we use the third-party network probe
and IPFIX collector Nprobe to assess how the FIXIDS NIDS
performs together with other network probes than Vermont.
Nprobe supports the export of IPFIX Flows over UDP, TCP,
and PR-SCTP. Preliminary tests showed that when receiving
Flows from Nprobe with the Vermont IPFIX collector used
in FIXIDS, the export over TCP outperformed the other
transport protocols, however, we did not further investigate this
behavior. In our experiment setup the performance of Nprobe



increased significantly, if we incremented its Flow hash size
(-w switch) to 10000 and decreased the Flow timeout values
(-t, -d, -l) to 1. The experiment setup is shown in Figure 6.

As Nprobe does not support to configure the Flow export
rate we had to use a dedicated replay workstation to be
able to control the data rate. We used pfsend to replay the
network trace over the 10 Gbit/sec link. On the receiving side
of this link Nprobe aggregated the incoming packets into Flow
records and sent the Flows over the 1 Gbit/sec link to FIXIDS
(configured as in Figure 1). If the test trace (size is 9 GB)
is aggregated to IPFIX Flows as needed for the experiments
it has a size of roughly 30 MB. This means that, even when
adding the transport layer headers and the occasional sending
of IPFIX template records, a 1 Gbit/sec link is more than
enough to transport the aggregated Flows of network data
coming from a 10 Gbit/sec link. It has to be noted that the
workstation that FIXIDS is running on in this experiment has
less memory and a slightly less modern and powerful CPU
than in the experiments before.

The orange lines in Figure 7 show the results compared to
the Snort performance (black). The data throughput perfor-
mance is about the same as Snort and, thus, worse than in
all experiments before. The reason is that Nprobe is sending
Flows in massive bursts (much larger than Vermont) and, thus,
at high packet rates, Flows have to be dropped by the Vermont
IPFIX collector of FIXIDS. But also the weaker workstation
might have a minor influence on the results. Again, also with
Nprobe the dropped Flows are distributed equally over all
events.

The orange lines of Figure 9 show the result of the next
experiment: We exploited Nprobe’s native support of the
PF_Ring driver family. It allows to hash the incoming packets
and distribute them to a configurable number of PF_Ring
capable application instances by using hardware features of
modern NICs. This guarantees that packets with the same IP
address are always assigned to the same application instance.
This is important because this way all packets belonging to
one Flow are processed by the same aggregation instance.
By using the zbalance_ipc application, that is shipped with
the PF_Ring driver suite, we distributed the incoming packets
to 6 Nprobe instances. This experiment setup is sketched in
Figure 8. Every Nprobe instance uses 2 CPU cores during
run-time, so this configuration makes sure that all cores on
our 12-core workstation are used. The 6 Nprobe instances
exported the IPFIX Flows over the 1 Gbit/sec link to 3 FIXIDS
instances running on the receiving workstation. Always two
Nprobe instances were connected to one FIXIDS instance.

The orange line in Figure 9 shows the dropped Flows and
the dashed orange line the detected events for FIXIDS. The
results shown are the sum of the three FIXIDS instances. In
this configuration the three FIXIDS instances process more
than 2.5 Gbit/sec (roughly 8000 Flows/sec) on one workstation.
This is more than 3 times the throughput of Snort. And again,
with increasing data rates the drop rate increases much slower
than Snort’s drop rate. This shows that the best data throughput
can be achieved when parallelizing the packet aggregation
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Fig. 10. Vermont FIXIDS performing intrusion detection on 100k IPFIX
Flows with different HTTP Uri lengths at different Flow rates.

process as well as the Flow-based intrusion detection of
FIXIDS.

D. URI Matching Bottleneck

The efficiency of the FIXIDS module is highly dependent
on the string compare function that tries to match the signature
pattern to the corresponding HTTP IE fields. To showcase
this we conducted the following experiment: The vast ma-
jority of the employed rules contains the content modifier
http_uri, resulting in most patterns being matched against the
HTTP URI found in the IE field httpRequestTarget. Thus,
we prepared a trace where we extracted an HTTP request
and the corresponding response from the proxy trace and
concatenated this trace 100 000 times, always changing the
IP address. When aggregated to IPFIX, this trace results in
100 000 IPFIX Flows with the same httpRequestTarget IE
field. We repeated this procedure to have 5 different traces
with 5 different httpRequestTarget IE field lengths. We then
performed an experiment where we used Vermont to read these
traces and export the resulting IPFIX Flows (via PR-SCTP) to
a FIXIDS system.

The results are shown in Figure 10. The single lines
represent the rate of dropped Flows during intrusion detection
on traces with different URI lengths. It shows that the longer
the URI length in the Flow is, the more Flows are dropped with
increasing data rates. Thus, the data throughput performance of
FIXIDS is highly dependent on the signature pattern matching
process.

V. CONCLUSION

In this paper, we presented IPFIX-based Signature-based
Intrusion Detection System (FIXIDS), a signature-based Flow
Network Intrusion Detection System (NIDS) for high-speed
networks that runs on commodity hardware. It tackles the
problem of comparably low network data throughput for
signature-based intrusion detection systems in high-speed net-
works. It is the first signature-based NIDS that completely
operates on Flow information using the novel HTTP Informa-
tion Elements (IEs). As input it takes HTTP signatures from
Snort rules and applies them to HTTP related IEs in IPFIX
Flows. By using Flows the amount of data to be analyzed is
much less compared to traditional DPI-based NIDS. It, thus,
promises a higher network throughput performance.



In a comprehensive experiment campaign we show that
FIXIDS detects all relevant events and can handle a much
higher data throughput than Snort with the same network data
and the same rule-set. We also show that FIXIDS is able to
analyze Flows from third-party network probes and, thus, can
be used in heterogeneous network monitoring environments.
Comparing the straightforward pattern matching algorithm of
FIXIDS with the sophisticated and complex algorithm of the
Snort NIDS it appears that there is an additional performance
gain to be expected when further improving the FIXIDS
pattern matching algorithm. It is planned to adapt FIXIDS to
accept also standard Flow features in rules. This way FIXIDS
could also be extended to use other signature or anomaly-based
intrusion detection techniques.
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