
How to Test an IDS? GENESIDS: An Automated System for
Generating Attack Traffic

Felix Erlacher and Falko Dressler
[erlacher,dressler]@ccs-labs.org

Heinz Nixdorf Institute and Dept. of Computer Science
Paderborn University, Germany

ABSTRACT
Evaluating the attack coverage of signature-based Network Intru-
sion Detection System (NIDS) is a necessary but difficult task. Often,
live or recorded real-world traffic is used. However, firstly, real-
world network traffic is hard to come by at larger scale and the few
available traces usually do not contain application layer payload.
Secondly and more importantly, it contains only very few realistic
attacks. So, the question remains how to test a NIDS? We propose
GENESIDS, a system that automatically generates user definable
HTTP attacks and, thus, allows for straightforward creation of net-
work traces (or live traffic) where the number of different detectable
events is only confined by the given attack definitions. By using
an input format that follows the Snort syntax, the system can take
advantage of thousands of realistic attack definitions. Our system
can be used in combination with traffic generators to maintain
typical load patterns as background traffic. Our evaluation shows
that GENESIDS is able to reliably produce a very broad variation
of HTTP attacks. GENESIDS is available as Open Source software.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems;

1 INTRODUCTION
NIDS are the tool of choice when it comes to defend against the
increasing number of threats in the Internet [22]. Established tax-
onomies (e.g., [5]) categorize NIDS according to the applied detec-
tion method: Anomaly-based NIDS use behavior-based techniques
by defining a model of normal network behavior and then detecting
deviations to this model [2]. Knowledge-based systems use a precise
definition of attacks and match incoming traffic against this defini-
tion. The most widespread variants of knowledge-based systems
are signature or rule-based NIDS. While the methods proposed in
this paper can, to a certain extent, also be used for anomaly-based
systems, we focus on rule-based NIDS. NIDS are not limited to
detect network attacks only, but are also able to detect every other
activity that might be noteworthy to a network operator. We use
the term attack in this paper, but want to make clear that this term

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WTMC’18, August 20, 2018, Budapest, Hungary
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5910-8/18/08. . . $15.00
https://doi.org/10.1145/3229598.3229601

denotes all network activity and events that can be detected by
NIDS.

When developing a NIDS, it has to be validated that it works as
expected in all possible scenarios. There have been various publi-
cations that propose and summarize methods for evaluating NIDS
(e.g., [11, 14]). All of them agree that a vital evaluation step is to
test the attack coverage and the ability to identify attacks precisely.
This is the evaluation part that we are concentrating on.

One option is to use real traffic from a live network or one
of the publicly available network traces [9, 15]. Except for car-
rier grade networks to which very few researchers have access
to, network traces are the first choice for such tests. Among other
drawbacks [13], they typically do not contain application layer
payload. The biggest problem, however, is the following: Realistic
network traffic contains only a fraction of all possible attacks that
NIDS should be able to detect. Thus, most publications about novel
NIDS [4, 8], ours included, choose a subset of manually crafted
attacks and multiply and distribute them over a given network
trace, resulting in a so called mixed workload containing benign
and malicious traffic [5]. The problem, and this is frequently also re-
flected in review comments, is that manually generated traffic may
contain more attacks than real-world traffic, but it mostly contains
only few unique attacks. All in all, it covers only a small subset
of all possible real-world attacks. The resulting evaluations show
that these attacks are detected in various constellations and the
system possibly does not produce any false-positives, but it gives
no convincing evidence of the overall coverage of the system.

To overcome this issue, we proposeGENESIDS (Generating Events
for Signature-based Intrusion Detection Systems), a generator that
takes as input a set of user definable attack descriptions and then
statefully generates network packets for every attack in the set.
A NIDS should then be able to detect all or subsets of these at-
tacks depending on its usage scenario. Our system reduces the time
consuming task of manually crafting packets to a minimum by
relying on Snort rules as attack definitions. The set of Snort rules
guarantees a broad coverage of real-world attacks. Snort rules are
partitioned in different categories, which makes it easy to choose
the appropriate rules for the test scenario. Rare or unknown site
specific attacks can be manually added by writing a correspond-
ing rule. We ease a detailed evaluation by uniquely labeling every
created attack packet.

To generate a mixed traffic set with realistic traffic, we propose to
combine GENESIDS with a L4-L7 traffic generator. Cisco’s T-Rex,1
for example, can statefully generate traffic at up to 200Gbit/sec
based on real-world traffic templates. As all traffic is artificially
created, the configuration and the resulting traffic traces can now
1trex-tgn.cisco.com

https://doi.org/10.1145/3229598.3229601

be published and shared within the community. This increases
the repeatability of the evaluation results and allows for a better
comparison of different systems.

Our GENESIDS system is written in C++ and made publicly
available as Open Source under the GPL license2.

2 RELATEDWORK
We see now many tools that can generate traffic precisely following
given time or burst patterns at high data rates and with very reliable
timing [6]. They are build for load tests and other performance eval-
uations. Some are also able to produce meaningful application layer
payload. However, we are not aware of tools that can automatically
generate attacks in form of real-world malicious payload.

The vast majority of publications of novel NIDS uses publicly
available traffic traces [3, 10] for all evaluation experiments. How-
ever, all such traces are heavily debated regarding their accuracy,
timeliness, and completeness [21]. This is different for traffic data-
sets of contests or cyber-warfare exercises, where the goal is to
penetrate computer systems over a network [20]. They do con-
tain more attacks than real-world traffic traces, but the attacks are
not very diverse because of the relatively low number of attacked
systems and, thus, the overall sum of attacks is still not satisfying.

Another approach is to purposely create traffic data-sets [4, 7, 8].
These consist of completely handcrafted network packets or real-
world traffic traces mixed with custom data containing attacks.
This way it is possible to generate traces that contain the desired
category of attacks. But, again, as the attacks aremostly handcrafted
they are usually rather small in coverage and quite debatable in
their completeness. This can further be coupled with penetration
testing frameworks like Metasploit3 to generate malicious network
traffic for NIDS evaluation [16]. However, there is still the lack of a
sufficiently high number of different attacks.

To summarize the above: current traffic generators and available
traces do not contain a high enough number of unique attacks to
allow for a complete attack coverage evaluation for NIDS. GEN-
ESIDS does not only offer the possibility to manually craft malicious
HTTP requests, but, by accepting Snort rules, currently includes
more than 8000 unique HTTP attacks out-of-the-box. GENESIDS
does not solve the issue of realistic timings on commodity hard-
ware. This problem has been solved by various traffic generators
like the already mentioned moongen or T-Rex and we propose a
combination of both (see Figure 1)

We are aware that GENESIDS might also be used for so called
squealing attacks [17], where an attacker generates synthetic at-
tacks to overwhelm a system (and its operator) with alarms. But
since the advent of such attacks, NIDS have evolved from simple
stateless pattern checkers to sophisticated stateful systems that
incorporate multiple means to avoid such evasion techniques. Fur-
thermore, firewalls have evolved to be able to defend against attacks
like these.

3 GENESIDS
Our envisioned NIDS evaluation setup is sketched in Figure 1. A
stateful L4-L7 traffic generator takes as input two traffic templates.

2github.com/felixe/idsEventGenerator
3www.metasploit.com

Figure 1: Sketch of a NIDS evaluation experiment

One contains realistic benign traffic and the other template is build
using the malicious TCP flows that we generate using GENESIDS.
Depending on the application scenario, this traffic is mixed by the
traffic generator and fed to the device under test. In this work, we
focus on the generation of the malicious network traffic.

3.1 Overview
The goal of GENESIDS is to create malicious HTTP attack traffic
to be used for testing rule-based NIDS. The largest set of machine-
readable descriptions of HTTP attacks is contained in the different
rule-sets for the NIDS Snort. Signature-based NIDS like Snort use
Deep Packet Inspection (DPI) to detect attacks. Thus, a rule contains
byte or ASCII patterns to be found in the traffic payload, to define an
attack. For example, the well-known password cracker Brutus uses
its name in the HTTP header. The rule to detect such an attack (rule
sid: 26558), looks for the ASCII pattern “Mozilla/3.0 (Compatible)
;Brutus/AET” in the HTTP header. If GENESIDS is given this rule,
it will create an HTTP packet containing this pattern in the HTTP
header. If a NIDS receives this packet and this rule is part of its rule
set, it should trigger an alert for this rule.

Because of the flexibility of the supported syntax (see also Sec-
tion 3.3), the created traffic is not restricted to the available rules
but can be adapted to the specific test case.

3.2 Input and Connection Management
GENESIDS accepts as input a text file with rules in Snort-like syntax.
The first step is to parse the rule file. It will alert on rules that do
not correspond to the accepted input syntax or warn if possible
problems are detected. Afterwards it will go through the list of
parsed rules and generate an HTTP request containing all patterns
of the corresponding rule. This request is then sent to an HTTP
Server address given at startup. GENESIDS will wait for a response
(or the timeout) and then close the TCP connection and open a new
TCP connection for the next HTTP request.

The rule-syntax allows for custom creation of the following
HTTP fields: method, uniform resource identifier (uri), header
names and values, request cookies, and the client body. The corre-
sponding field content can be given as text or in form of a regular
expression in the Perl Compatible Regular Expression (PCRE) syn-
tax (detailed description in Section 3.3).

www.metasploit.com

We use the well known libcurl library to create legitimate
packets. To create an HTTP request that matches the given con-
tent pattern, we copy the pattern in the corresponding field of the
generated request, the only change made is the exchange of hex
patterns with their corresponding ASCII representation.

The generation of requests for rules containing PCRE patterns is
not so straightforward. Here, we have to come up with a string that
matches the given expressions. To generate a single string matching
a given PCRE, we use the Python command exrex.4 It allows for the
creation of random matching strings for a given PCRE. It only has
very few restriction on the given expression, e.g., it only supports
7-bit hex chars, it does not support some combination of quantifiers,
and it does not support positive look-ahead. Whenever possible,
we try to replace not supported quantifiers with equivalent ones.
Because someNIDSmight be sensitive to certain unusual characters,
we exchange some patterns that may lead to such characters to
equivalent patterns that can not lead to unusual characters. For
example, the pattern ”SELECT.*FROM“ is changed to ”SELECT[a-
z]FROM“ before handing it to the exrex command. GENESIDS
can still be used for robustness tests against unusual characters
by stating these characters explicitly in the PCRE or a content
pattern. GENESIDS issues a warning if a pattern possibly generates
irritating HTTP content, e.g., if a character in the HTTP uri is
reserved according to the standard [1].

GENESIDS uses a stateful approach: For every single HTTP
request a full fledged TCP connection is established. This is essential
because most NIDS ignore and do not analyze packets if they are
not part of a correct TCP connection. GENESIDS expects a response
before ending the TCP connection, so the recommended standard
procedure is to have an HTTP server running as a counterpart. For
obvious reasons, it is not advisable to use a public web server.

3.3 Rules
One of the largest detailed description of real-world attacks is the set
of available rules for the signature-based NIDS Snort [19]. Within
this set, we focus onHTTP, which is by far themost used application
layer protocol [18] and also covers most attacks to be detected by
NIDS.

To take advantage of the many readily available Snort rules, we
decided to closely follow the Snort rule syntax. GENESIDS accepts
rules in Snort syntax (as of Snort 2.9.11). As GENESIDS produces
HTTP requests, it accepts only HTTP related Snort rules with
supported fields. The only supported rule action is alert as these
are the only rules triggering an alert. The only supported protocol is
tcp. The exact syntax is defined in the Snort manual5. The accepted
fields and keywords are described below.

Snort rules consist of a rule header followed by the rule options.
The rule header starts with a rule action, followed by the protocol
and the source and destination addresses. HTTP responses are is-
sued by an HTTP server and, thus, not controlled by GENESIDS.
The rule options (enclosed in parenthesis) consist of a set of key-
words possibly followed by a value. If GENESIDS detects a keyword
which is unsupported and would alter the meaning of the rule it

4pypi.python.org/pypi/exrex
5snort.org/documents

issues a warning (e.g., for the depth keyword, which is used to
specify how far into a field Snort should search).

Mandatory keywords:
• msg: Following this keyword is the quoted event message
description that accompanies the triggered event.

At least one of the following keywords must be present:
• content: This keyword is followed by a quoted pattern to
look for in the HTTP part of the packet. As it is not limited to
HTTP in Snort, it must be followed by one of the supported
HTTP content-modifier keywords (see list below).

• uricontent: This keyword is followed by a quoted pattern
to look for in the HTTP uri.

• PCRE: This keyword is followed by a PCRE enclosed in two
slashes. As expressions are not limited to HTTP in Snort, it
must be followed by one of the supported HTTP modifiers
listed below.

Exactly one of the following HTTP related content-modifier key-
words has to restrict the pattern following the content: or pcre:
keyword to an HTTP part. If not the corresponding rule will not be
accepted by GENESIDS. In parenthesis is the equivalent modifier
for PCRE.

• http_method (M) - the preceding content or pattern will be
inserted as the HTTP method. As this is a mandatory field
in HTTP requests it defaults to “GET”.

• http[_raw]_uri (U, I) - the preceding content pattern
will be inserted in the HTTP uri. Default is “/”.

• http[_raw]_header (H, D) - the preceding content pattern
will be inserted as an own HTTP header field. GENESIDS
always generates a name-value pair, adding a dummy name
or value if missing in the pattern.

• http[_raw]_cookie (C, K) - the preceding content pattern
will be set as a cookie in the HTTP request.

• http_client_body (P) - the preceding content pattern will
be set in the HTTP request body.

The only Snort HTTP content-modifier keywords that are not
supported are http_stat_msg (Y) and http_stat_code (S) as
they are only used in HTTP responses. The keyword flow: is
followed by other keywords denoting, e.g., the direction of the
TCP flow of the packet. Again, this keyword is only used to check
if the rule is looking for an HTTP response. So if keywords like
flow:from_server or to_client are used, a warning is issued and
the rule is ignored.

The last two meaningful keywords for GENESIDS rules are sid:
and rev:. Both are mandatory. The sid: keyword is used to assign
a unique identifier and the rev: denotes the revision number of the
rule. They are both followed by a number. To ease the evaluation
of attack coverage experiments, GENESIDS adds the sid number of
the given rule as an additional HTTP header to the HTTP request
in the form of Rulesid:<sid number>. This enables an automated
test of which packet should have triggered which alert.

A minimal example rule could look like the following:
alert tcp any any -> any any (msg:"This is
an example rule"; content:"GET";
http_method; uricontent:"|2F|evil.jpg";
sid:1234567; rev:0;)

pypi.python.org/pypi/exrex
snort.org/documents

This rule contains two patterns. First the string ”GET“ is defined
to be found in the HTTP method field and, second, the hex byte
’2F’ followed by the string ”evil.jpg“ is to be found in the HTTP uri
field.

This rule generates a TCP flow with the following HTTP request
(textual representation). Note the conversion of the hex byte ’2F’
to the corresponding ASCII sign “/”:
GET /evil.jpg HTTP/1.1
Host: 10.0.0.1
Rulesid: 1234567

The TCP flow will also contain the response from the server but
is not depicted here. An equivalent rule could also be defined by
using the content: keyword followed by the http_uri content
modifier instead of the uricontent: keyword.

As already stated, patterns can also be expressed as a PCRE.
Example:
alert tcp any any -> any any (msg:"This is
an example rule"; content:"POST";
http_method; pcre:"/AttackBody-V[0-9].*/P";
sid:2345678; rev:0;)

Here the string ”POST“ has to be found in the HTTP method field
and the second pattern must match the PCRE ”AttackBody-V[0-
9].*“. This pattern matches strings starting with ”AttackBody-V“
followed by a single digit, followed by a random string. The ’P’
after the regular expression denotes that this pattern has to be
found in the HTTP body field. The resulting traffic generated by
GENESIDS could look like the following HTTP request (textual
representation):
POST / HTTP/1.1
Host: 10.0.0.1
Rulesid: 2345678
Content-Length: 14

AttackBody-V1x

Please note that we are generating one random string of a possibly
infinite set of matching strings for the PCRE. This implies that
the generated HTTP request might differ in another run. More
examples can be found on the author’s homepage6.

3.4 Limitations
As already mentioned, GENESIDS has been built to craft HTTP
requests according to the given rules. Thus, no rules other than
HTTP request related rules are accepted. Also, GENESIDS will only
produce legal HTTP requests.

GENESIDS also accepts hex encoded characters the same way
Snort does. But only the first 128 readable hex chars plus \n and \r
are allowed. PCRE expressions are limited to what the exrex com-
mand accepts. We will show in the evaluation that these limitation
only have a marginal impact on the acceptance of real-world rules.

The set of Snort-rules contains most of today’s relevant network
attacks. However, it does not contain rare or unknown attacks and
events.

6www.ccs-labs.org/~erlacher/resources/

Figure 2: Experimental setup for traffic generation

4 EVALUATION
In the following, we show that GENESIDS can generate a broad vari-
ety of possible attacks and that the generated attacks reliably trigger
the expected alerts in a NIDS. All the material used in the following
experiments is available online6 to allow for better comparison and
repeatability.

To be able to test against real attack definitions, we used Snort
rules (as of 22 January 2018) from the following sources:

• Snapshot 29111 provided to Snort.org subscribers;
• the community rule-set from Snort.org; and
• all rules from the Emerging Threats rule-set.7

This guarantees that a broad variety of up-to-date attacks are in-
cluded in our tests. From this rule-set, we use every rule that is
applicable to HTTP requests. We only exclude rules using some spe-
cial Snort features. The final rule-set for the experiments consists
of 8101 different rules.

The evaluation consists of two experiment steps. First, we gen-
erate traffic with GENESIDS using the above rule-set as input. We
capture this traffic with the network capturing tool tcpdump.8 Sec-
ondly, we use the captured traffic and analyze it with Snort9 as
the NIDS under test. The underlying assumption is that every rule
written for Snort should trigger the corresponding alert in Snort.

The traffic generation experiment depicted in Figure 2 is con-
ducted as follows. GENESIDS generates one HTTP-request per
rule from the rule-set and sends the generated HTTP requests to
an HTTP Server (Apache 2.4.10), which answers with the corre-
sponding HTTP responses. As the majority of the HTTP requests
contain an uri for a resource that is not available, the most common
response in our experiment is a ‘404, not found’.

We then analyze the captured network traffic with Snort: We run
Snort in IDSmode and configure it to take as input the captured pcap
file and the same rule-set used by GENESIDS in the first experiment
step. The only relevant changes made to the default configuration
file are the deactivation of the reputation preprocessor and the
logging of all alerts (Snort by default does not log more than 8
alerts per packet). To avoid Snort skipping packets with checksum
errors, we used the -k none switch to turn it off.

After analysis, the Snort alert file contains an entry for every
alert triggered. An entry, among other information, consists of
the sid of the rule triggering the alert, and the TCP port of the
connection belonging to the packet triggering the alert. As stated
before, GENESIDS uses one TCP connection per request. Thus, a
tuple composed of the TCP port number and the rule sid is unique as
long as no TCP source ports are used twice in the same experiment

7rules.emergingthreats.net/open/snort-2.9.0/emerging-all.rules
8tcpdump.org
9Snort version 2.9.11, build from source

www.ccs-labs.org/~erlacher/resources/
rules.emergingthreats.net/open/snort-2.9.0/emerging-all.rules
tcpdump.org

0 20 40 60 80 100

100

200

500

1000

2000

5000

10000

Experiment Run

A
tt

ac
k

s

Attacks Sent

Snort Uniq False Pos.

Snort False Neg.

Figure 3: Results of 100 experiment repetitions

run. This allows to assign anHTTP request generated by GENESIDS
to an alert triggered by Snort using the port-sid tuple.

For PCRE rules, we generate one random string that matches
this expression. Thus, the generated requests will differ between
different runs. To show that the numbers are stable over multiple
runs, and to make sure we detect most flaws, we repeated this
experiment 100 times.

The results are shown in Figure 3. In all runs, GENESIDS sends
out exactly 8101 HTTP requests, one for every rule in the given
rule file. It always used 8101 different TCP source ports. Comparing
the generated TCP port-sid tuples with the port-sid tuples of the
triggered alerts shows that on average more than 97% of these
tuples triggered the correct corresponding alert. This shows that
GENESIDS generates HTTP requests triggering the correct alert in
almost all cases.

On average Snort triggered 2847 false positive alerts. With false
positives we denote alerts triggered by a TCP flow with a port-
sid tuple that was not supposed to trigger that exact event. The
majority of these false positives was triggered by the same few
rules. On average the false positive alerts were triggered by 712
different unique rules. The fact that Snort triggers a high number
of false positives is not new and caused by so called overlapping
signatures [12]. In a normal environment, the used Snort rules
are chosen very carefully because a high number of rules has a
devastating negative impact on the packet throughput performance
and, as is shown above, increases the number of false positives.

On average only 223 HTTP flows (2.8 %) did not trigger the
corresponding event in at least one experiment (denoted as false
negatives). To make sure we investigate every false negative, we
picked all rules of all experiments that did not trigger an event.
Over all 100 experiment runs, there was a total of 363 unique rules
causing at least once a false negative. We manually inspected all
and divided them into two categories: rules that did not trigger an
event in any of the experiment runs (rules that caused only false
negatives) and rules that triggered the correct event in at least one
of the experiment runs (rules that also caused true positives). Rules
from the latter category all have a PCRE pattern that, for reasons
we will explain, generated at least once a pattern that did trigger the
correct alert. Rules from the first category however, must contain
an inherent issue that prevented the rule from triggering an alert.

We start with the first category of 179 false negatives that never
triggered the correct alert:

• 61 rules use a content pattern to filter out possibly matching
requests and only if this pattern matches a more detailed
PCRE applied to refine the search. The PCRE is enclosed by
^ and $, meaning the string generated should be the only
string in that field. However, GENESIDS adds, for example,
all uri patterns to one long uri and, thus, the ^ and $ symbols
do not match anymore and cause the rule to fail.

• 18 rules define multiple headers in one content or PCRE
pattern. This does not work because GENESIDS adds headers
according to the standard, which defines a \r\n in between
headers.

• 28 rules are explicitly searching for one or multiple \r\n
in a place. Again, GENESIDS/libcurl only support standard
compliant HTTP requests. For example, a rule explicitly
searching for the last field in the HTTP header with \r\n\r\n
at the end of the pattern will always fail because currently
the last header field is always the ”Rulesid:“ field. The same
holds if a rule is searching for a line break at the beginning
of the HTTP URI.

• 14 rules define explicitly \\ in a uri. In the standard configu-
ration, Snort replaces them by a single \.

• 6 rules search for a pattern explicitly at the beginning of the
client body. Because Snort only searches the client body if
the length is greater than 6, we fill the client body with 5
characters before adding other client body data from rules.

• 15 rules ask for the not supported word character \w in a
PCRE. Exrex simply ignores this pattern and, thus, produces
a wrong string.

• 6 rules use the word boundary anchor \b in a PCRE at a posi-
tion where it can not be applied. In all 6 cases, it positioned
at the beginning of an uri pattern where we add another uri
pattern first, without any non-word character in between.

• 5 of the rules use the reserved character # in a uri, which is
ignored by libcurl.

• 5 of the rules use the disallowed character + in a uri. libcurl
adds this character literally but Snort matches this character
only to a whitespace character.

• The remaining 21 rules have similar singular problems, which
we do not describe individually.

In the following, we explain the second category of false nega-
tives. These are the 184 rules that at least in one experiment run
triggered the correct alert, but failed in all other experiments. All
rules in this category contain at least one PCRE. The reason for the
failure is the random string generation to match this PCRE.

123 of these PCREs contain a character class starting with a
negation, e.g., [^\x2F], which stands for every character but a /.
In all the cases that did not trigger the correct event, these rules
produced a non-supported character.

46 of the remaining rules contain a PCREwith a single . character,
which, in the cases the rule did not trigger an alert, produced an
unsupported character. We want to emphasize that GENESIDS
already replaces the most common occurrences of [^ pattern and .
character combinations. The ones described above are the very few
instances, which are not covered by the replacements.

The remaining 15 rules contain PCRE patterns including alter-
nations (separated with the | character), and one of the alternating

patterns contained one of the problems described in first category
of false negatives.

Overall, we can conclude that GENESIDS exactly fulfills its high
expectations. It is able to automatically produce attack traffic that
can be used (and possibly merged with background traffic) to test
NIDS.

5 CONCLUSION
In this paper, we presented a novel system for generating attacks
for NIDS evaluation named GENESIDS. By using an input format
similar to Snort, one can not only generate self written attacks, but
take advantage of thousands of readily available attack definitions
maintained by a large community. More than 97% of the attacks
generated from 8101 different real-world rules triggered the desired
alert. This makes us confident that GENESIDS works in a very
precise and reliable way. We can also confirm that the limitations
stated above only affect very few rules. We showed that GENESIDS
can be used for attack coverage tests of signature-based NIDS. We
are, however, confident that this tool can also be used for tests of
anomaly-based NIDS or robustness tests. In future work we will
show how to generate mixed traffic using GENESIDS and an L4-L7
traffic generator.

REFERENCES
[1] Tim Berners-Lee, Roy Fielding, and Larry Masinter. 2005. Uniform Resource

Identifier (URI): Generic Syntax. RFC 3986. IETF.
[2] Monowar H Bhuyan, Dhruba Kumar Bhattacharyya, and Jugal K Kalita. 2014.

Network Anomaly Detection: Methods, Systems and Tools. IEEE Communications
Surveys & Tutorials 16, 1 (2014), 303–336. https://doi.org/10.1109/SURV.2014.
072114.00000

[3] Alexander Branitskiy and Igor Kotenko. 2015. Network Attack Detection based
on Combination of Neural, Immune and Neuro-Fuzzy Classifiers. In 18th Inter-
national Conference on Computational Science and Engineering (CSE 2015). IEEE,
Porto, Portugal, 152–159. https://doi.org/10.1109/CSE.2015.26

[4] Waleed Bul’ajoul, Anne James, and Mandeep Pannu. 2015. Improving Network
Intrusion Detection System Performance through Quality of Service Configura-
tion and Parallel Technology. Elsevier Journal of Computer and System Sciences
81, 6 (Sept. 2015), 981–999. https://doi.org/10.1016/j.jcss.2014.12.012

[5] Hervé Debar, Marc Dacier, and Andreas Wespi. 1999. Towards a Taxonomy
of Intrusion-Detection Systems. Elsevier Computer Networks 31, 8 (April 1999),
805–822. https://doi.org/10.1016/S1389-1286(98)00017-6

[6] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. 2015. Moongen: A Scriptable High-Speed Packet Generator. In
15th Internet Measurement Conference (IMC 2015). ACM, Tokyo, Japan, 275–287.
https://doi.org/10.1145/2815675.2815692

[7] Felix Erlacher and Falko Dressler. 2017. High Performance Intrusion Detection
Using HTTP-Based Payload Aggregation. In 42nd IEEE Conference on Local Com-
puter Networks (LCN 2017). IEEE, Singapore, 418–425. https://doi.org/10.1109/
LCN.2017.18

[8] Felix Erlacher and Falko Dressler. 2018. FIXIDS: A High-Speed Signature-based
Flow Intrusion Detection System. In IEEE/IFIP Network Operations and Manage-
ment Symposium (NOMS 2018). IEEE, Taipei, Taiwan.

[9] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda. 2010. Maw-
ilab: Combining Diverse Anomaly Detectors for Automated Anomaly Labeling
and Performance Benchmarking. In 6th International Conference on emerging
Networking Experiments and Technologies (CoNext 2010). ACM, Philadelphia, PA.
https://doi.org/10.1145/1921168.1921179

[10] Shi-Jinn Horng, Ming-Yang Su, Yuan-Hsin Chen, Tzong-Wann Kao, Rong-Jian
Chen, Jui-Lin Lai, and Citra Dwi Perkasa. 2011. A Novel Intrusion Detection
System Based on Hierarchical Clustering and Support Vector Machines. Elsevier
Expert Systems with Applications 38, 1 (Oct. 2011), 306–313. https://doi.org/10.
1016/j.eswa.2010.06.066

[11] Elizabeth B. Lennon. 2003. Testing Intrusion Detection Systems. Information
Technology Laboratory Bulletin Jul2003. National Institute of Standards and
Technology. 1–4 pages.

[12] Frederic Massicotte and Yvan Labiche. 2011. An Analysis of Signature Overlaps
in Intrusion Detection Systems. In 41st International Conference on Dependable
Systems & Networks (DSN 2011). IEEE, Hong Kong, China, 109–120. https:

//doi.org/10.1109/DSN.2011.5958211
[13] John McHugh. 2000. Testing Intrusion DetectionSystems: A Critique Of The

1998 And 1999 Darpa Intrusion Detection System Evaluations As Performed
By Lincoln Laboratory. ACM Transactions on Information and System Security
(TISSEC) 3, 4 (Nov. 2000), 262–294. https://doi.org/10.1145/382912.382923

[14] Aleksandar Milenkoski, Marco Vieira, Samuel Kounev, Alberto Avritzer, and
Bryan D Payne. 2015. Evaluating Computer Intrusion Detection Systems: A
Survey of Common Practices. Comput. Surveys 48, 1 (Sept. 2015), 12. https:
//doi.org/10.1287/deca.1030.0001

[15] Nour Moustafa and Jill Slay. 2016. The Evaluation of Network Anomaly Detection
Systems: Statistical Analysis of the UNSW-NB15 Data Set and the Comparison
with the KDD99 Data Set. ACM Information Security Journal: A Global Perspective
25, 1-3 (Jan. 2016), 18–31. https://doi.org/10.1080/19393555.2015.1125974

[16] Khalid Nasr, Anas Abou-El Kalam, and Christian Fraboul. 2012. Performance
Analysis of Wireless Intrusion Detection Systems. In 5th International Conference
on Internet and Distributed Computing Systems (IDCS 2012). Springer, Fujian,
China, 238–252. https://doi.org/10.1007/978-3-642-34883-9_19

[17] Samuel Patton, William Yurcik, and David Doss. 2001. An Achilles’ Heel in
Signature-Based IDS: Squealing False Positives in SNORT. In 4th International
Symposium on Recent Advances in Intrusion Detection (RAID 2001). Springer, Davis,
CA.

[18] Philipp Richter, Nikolaos Chatzis, Georgios Smaragdakis, Anja Feldmann, and
Walter Willinger. 2015. Distilling the Internet’s Application Mix from Packet-
Sampled Traffic. In Passive and Active Measurement Conference (PAM 2015).
Springer, New York City, NY. https://doi.org/10.1007/978-3-319-15509-8_14

[19] Martin Roesch. 1999. Snort: Lightweight Intrusion Detection for Networks.
In 13th USENIX Conference on System Administration (LISA 1999). Seattle, WA,
229–238.

[20] Benjamin Sangster, TJ O’Connor, Thomas Cook, Robert Fanelli, Erik Dean,
Christopher Morrell, and Gregory J Conti. 2009. Toward Instrumenting Net-
work Warfare Competitions to Generate Labeled Datasets. In 2nd workshop
on Cybersecurity and Test (CSET 2009). Usenix, Montreal, Canada. https:
//doi.org/10.1.1.159.7948

[21] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. 2018. To-
ward Generating a New Intrusion Detection Dataset and Intrusion Traffic
Characterization. In 4th International Conference on Information Systems Secu-
rity and Privacy (ICISSP 2018). INSTICC, Funchal, Portugal, 108–116. https:
//doi.org/10.5220/0006639801080116

[22] Benjamin Stritter, Felix Freiling, Hartmut König, Rene Rietz, Steffen Ullrich,
Alexander von Gernler, Felix Erlacher, and Falko Dressler. 2016. Cleaning up
Web 2.0’s Security Mess - at Least Partly. IEEE Security & Privacy 14, 2 (March
2016), 48–57. https://doi.org/10.1109/MSP.2016.31

https://doi.org/10.1109/SURV.2014.072114.00000
https://doi.org/10.1109/SURV.2014.072114.00000
https://doi.org/10.1109/CSE.2015.26
https://doi.org/10.1016/j.jcss.2014.12.012
https://doi.org/10.1016/S1389-1286(98)00017-6
https://doi.org/10.1145/2815675.2815692
https://doi.org/10.1109/LCN.2017.18
https://doi.org/10.1109/LCN.2017.18
https://doi.org/10.1145/1921168.1921179
https://doi.org/10.1016/j.eswa.2010.06.066
https://doi.org/10.1016/j.eswa.2010.06.066
https://doi.org/10.1109/DSN.2011.5958211
https://doi.org/10.1109/DSN.2011.5958211
https://doi.org/10.1145/382912.382923
https://doi.org/10.1287/deca.1030.0001
https://doi.org/10.1287/deca.1030.0001
https://doi.org/10.1080/19393555.2015.1125974
https://doi.org/10.1007/978-3-642-34883-9_19
https://doi.org/10.1007/978-3-319-15509-8_14
https://doi.org/10.1.1.159.7948
https://doi.org/10.1.1.159.7948
https://doi.org/10.5220/0006639801080116
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1109/MSP.2016.31

	Abstract
	1 Introduction
	2 Related Work
	3 GENESIDS
	3.1 Overview
	3.2 Input and Connection Management
	3.3 Rules
	3.4 Limitations

	4 Evaluation
	5 Conclusion
	References

