
 

Design and Analysis of a Controller from System Design Idea 

to AUTOSAR Architecture with Basic Software Modules 
 

 

Emad Farshizadeh, Hermann Briese, Steffen Beringer, Dominik Holler, Hamza Raja, 
Lars Stockmann 

Abstract 

The development of electronic control units (ECUs) in the automotive industry is be-
coming increasingly complex. The integration of new controllers is a time-consuming 
process which is characterized by round trips between control engineers and system 
architects, especially in the domain of electric mobility. To reduce the number of iter-
ations and therefore time-to-market, we propose that it is beneficial for control engi-
neers to consider aspects of the later software early in the design process. We pre-
sent a methodology that supports this approach by simulation on different levels of 
abstraction. It allows control engineers to address basic software such as diagnostics 
in the design phase. We apply this methodology to a recuperation-ready electrohy-
draulic brake controller and compare the simulation results. 

1.  Introduction 

Due to dwindling fuel resources and the need to reduce emissions, today’s automo-
tive industry is on the move from traditionally combustion engine-powered cars to-
wards alternative drive technologies. 

Nevertheless, the number of purely electrically powered cars is still low. The reasons 
for this are manifold. One reason is that new controllers have to be developed, e.g., 
for energy management, engine and brake control. The engine controller must be 
designed, adapted and optimized for each specific electric motor to make driving 
more energy-efficient. To optimize energy efficiency when braking, the brake control-
ler has to allow recuperation and thus has dependencies on both the brake and the 
engine. These kinds of controllers have then to be integrated into existing environ-
ments, which usually takes a lot of time due to the high safety requirements in the 
automotive industry. To face this complexity, model based development and code 
generation are increasingly being preferred over handcoding. The other reason is 
that in addition to developing the control functionality itself, integrating it into stand-
ardized architectures and systems, e.g., complying with AUTOSAR

1
, is also a chal-

lenging task. Basic software (e.g., the operating system, diagnostics, and drivers) as 
well as communication middleware have to be configured and generated, which is 
traditionally not done in the domain of control engineering but by software develop-
ers. A round trip between these two domains is evolving, as the control engineers 
must adapt their models to the new requirements. Despite the distributed nature of 

                                            
1
 www.autosar.org 



 

the development process, integrity and traceability must be guaranteed from begin-
ning to end. 

This makes the development of new complex controllers a long and costly process. 
New concepts and methodologies must therefore be investigated and applied to ac-
celerate the development of complex electronic control units (ECUs) and boost tech-
nological and economic progress in electric vehicle engineering. One concept is to 
bring both domains closer together by considering aspects from later phases of the 
development process, such as diagnostics, as early as possible as part of the basic 
software. 

This is one idea behind the research project “Simulationsgestützter Entwurf für El-
ektrofahrzeuge” (Simulation-Based Development for Electric Vehicles). The project 
partners that represent the different domains participating in the distributed devel-
opment of ECU software are DMecS GmbH & Co. KG, the LEA institute, the C-Lab 
(University of Paderborn) and dSPACE GmbH. In the project, new controller and en-
vironment models for electric vehicles are developed and tested. After the functional 
design the controllers are integrated into an AUTOSAR software architecture. This 
aspect is important, because AUTOSAR has become the de facto standard in the 
automotive sector, and the demand for AUTOSAR-compliant software is continuous-
ly growing. One main benefit of the AUTOSAR-methodology is that it supports the 
distributed development of ECU functionality by different suppliers. To easily inte-
grate new software into existing software architectures, seamless tool support is es-
sential. The tool chain used in the project has been further enhanced and adapted to 
the domain of electric vehicles to support the rapid development of the control soft-
ware. 

This paper describes a part of the project where controller software for a recupera-
tion-ready electrohydraulic brake system is developed and integrated into an 
AUTOSAR architecture, including basic software modules. It is one in a series of pa-
pers. While the previous publication [1] mainly focuses on the functionality of the 
electrohydraulic brake system, the overall development process, and the integration 
of an ECU State Manager module, we now go a step further and address the integra-
tion of production-level basic software. We therefore extended the tool chain by add-
ing EB tresos

®
 tools from Elektrobit

2
 for the configuration and generation of basic 

software modules. We exemplify our approach by integrating a diagnostic event 
manager (DEM) to trace erroneous brake system values. We show how control en-
gineers can provide communication with the DEM as early as possible so that it can 
easily be integrated into the AUTOSAR system later. 

2.  Electrohydraulic Brake System 

This chapter introduces the electrohydraulic 
brake system (EHBS), which provides braking 
assistance by a controlled motor. Figure 1 
shows the main setup. The brake pedal force 
applied by the driver is transmitted through the 
pedal gear and an elastic push rod to the prima-

                                            
2
 http://automotive.elektrobit.com/ 

Figure 1: EHBS overview 



 

ry pistons of the master brake cylinder. This force is assisted by the electric power 
brake booster (EHBS actuator), which consists of a current-controlled motor and a 
transmission that converts the motor torque to a force on the piston. The resultant 
displacement of the pistons in the master brake cylinder generates a pressure build-
up which provides the braking torques at the wheel brakes. By using the pressure in 
the master brake cylinder as a controlled variable for superimposed control of the 
EHBS actuator, a highly dynamic pressure build-up is achieved. In the next section 
the plant model for the pressure controller design is introduced. After that, a symmet-
rical optimum design of a PID controller with active damping for EHBS is presented. 

2.1 EHBS Plant Model 

The physical substitute model of 
the plant, which is used for the 
model-based design of the EHBS 
controller, is presented in figure 
2. This model contains the rele-
vant parameters and the degrees 
of freedom sped and spist as well 
as the external forces Fdr and 
Ffr,red and torque Tepb that con-
tribute to the system. Here the 
parameters mred, bred and Ffr,red 
represent the inertia, damping and friction of the motor and piston. The hydraulic ca-
pacity Cred represents the capacities of the master brake cylinder chambers, the lines 
to the wheel brake cylinders and the wheel brake cylinder chambers. The corre-
sponding mathematical model of the EHBS plant is given by the equations 

)ss(b)ss(csbiFsm pistpedsenpistpedsenpedpedpeddrpedped
  ,        (1) 

chapistpistcha

pistchapistredpistpedsenpistpedsengearepbpistred

pAsb

scsb)ss(b)ss(ciTsm








,   (2) 

cha
red

pist
red

pist
cha q

C

1
s

C

A
p   ,                     (3) 

where the controlled motor torque Tepb is generated from the reference input Tepb,req 
with the equation 

req,epb
epb

epb
epb

epb T
1

T
1

T





                     (4) 

2.2 EHBS Controller 

The plant model shown in the previous subsection forms the basis for designing the 
pressure controller. The aims of the controller are to ensure steady-state accuracy as 
well as a fast and well-damped transient response to the reference pressure, and to 
reject unknown disturbances. A PID controller with the transfer function 

Figure 2: Physical substitute model of the plant  

 

Ffr,red 

bred 

iped 

Tepb 

igear 

csen, bsen 

 

Fdr 

qcha 

Cred 

mred 

bped 

pcha 

Apist 

sped, sped 

mped 

spist, spist 

ccha, bcha 

 



 

)1sT(sT

)1sT(
K)s(G

rn

2
n

pPID



                       (5) 

is used for this and its parame-
ters are determined by applying 
the symmetrical optimum meth-
od. Due to the fast resonant 
mode caused by the compliant 
coupling of the brake pedal and 
piston, the plant model of EHBS 
deviates from ideal plant for 
symmetrical optimum design. 
Hence, the resonant mode is 
damped by the feedback of the 
derivative of the pressure. The 
rough structure of the control 
loop with active damping is given 
in figure 3, where the derivative 
of the pressure is calculated by 
a real differentiator. 

The driver’s desired braking value is detected by 
measuring the brake pedal force Fsen at the elastic 
push rod. The reference signal pcha,ref for the 
EHBS controller is generated as a function of the 
brake pedal force and mimics a conventional 
brake system with pneumatic brake booster. The 
structure of the control loop with reference variable 
is given in figure 4. 

2.3 Recuperation Controller 

To recover the kinetic energy of the electric vehi-
cle, the drive motor needs to operate as a genera-
tor and the EHBS has to prevent pressure being 
generated at the wheel brakes, which would pro-
vide braking torque in addition to the motor torque. 
Thus, a recuperation controller is 
required that generates the refer-
ence signals for the drive motor 
Tdr,ref and for the EHBS pcha,ref ac-
cording to acceleration pedal dis-
placement xacc and brake pedal 
force Fsen. Figure 5 shows the 
structure of the recuperation con-
troller. 

The look-up table shown in the 
previous subsection is now imple-

Figure 5: Structure of recupe- 
ration controller 

  

Trec 

xacc 
kacc 

kp2T 

Tdr,ref 

pcha,ref pdes Fsen 

- 

kT2p 

- 

0 5 10 15 20 25
0

50

100

150

t / sec

p
 /

 b
a
r

Figure 6:  Simulated reference (gray, —) and 

controlled (black, ) pressure 

Figure 3: Structure of control loop 

  
Tepb,req 

- 
pcha,ref 

GPID(s) Plant 

GDT1(s) 

pcha 

kfbp 

Figure 4: Structure of control loop with reference 
variable 

  
Fsen Tepb,req pcha,ref 

GR(s) Plant 



 

mented in the recuperation control-
ler and provides the desired brak-
ing pressure pdes. If the accelera-
tion and brake pedals are applied 
simultaneously, the reference sig-
nal Tdr,ref for the drive motor is 
computed from the difference be-
tween the desired drive and brake 
torques. The reference signal 
pcha,ref for the EHBS is computed 
from the difference between the 
desired braking pressure and a 
pressure which is proportional to 
the recuperation torque Trec.  

2.4 Simulation Results 

To analyze the performance of the 
resulting control systems, the 
EHBS with recuperation controller 
has been implemented in 
MATLAB

®
/SIMULINK

®
 using the 

dSPACE Automotive Simulation 
Models (ASMs). The ASM library 
contains ready-to-use models like 
a multi-body system, a virtual driv-
er and a road. We refer to the 
combination of the EHBS plant 
model and the ASM as the “Envi-
ronment model”, which can be 
used in conjunction with the con-
trollers to conduct realistic testing. 
The time histories presented in the 
following figures were obtained by 
simulating a simple driving maneu-
ver with the augmented ASM, 
where the driver controls the vehi-
cle velocity by actuating the accel-
eration and brake pedal. Figure 6 
shows the reference and the con-
trolled variable of the EHBS. The 
control yields a very good refer-
ence and disturbance behavior, as 
indicated by fast and well- damped 
settling and the steady-state accu-
racy of the pressure control error. 

Furthermore, the vehicle velocity 
and the battery state of charge as 
well as the braking torques as 

0 5 10 15 20 25
0

1000

2000

3000

4000

t / sec

T
 /

 N
m

Figure 8: Simulated desired (gray, —), re-
cuperated (black, --), friction brake based 

(black, -) and total braking (black, ) torques 

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

t / sec

fa
lt

y
 s

ta
te

 /
 -

Figure 9: Simulated critical system variables 
of controller variable (black, —), control error 

(black, ) and current gradient (gray, --) 

 

0 5 10 15 20 25
79.85

79.9

79.95

80

80.05

t / sec

x
_

b
a
t 

/ 
%

0 5 10 15 20 25
0

20

40

60

80

100

120

t / sec

v
_

v
e
h

 /
 k

m
/h

Figure 7: Simulated vehicle velocity and bat-
tery state of charge 

 



 

shown in figure 7 and figure 8 confirm that recuperation takes place. The driver ac-
celerates the vehicle for about 10 sec on a straight road, during which the battery 
state of charge decreases. After the vehicle velocity reaches 100 km/h, the driver 
starts braking to keep the velocity constant while driving downhill. This increases the 
battery state of charge. Before turning into a curve, the driver brakes harder to re-
duce the velocity to 50 km/h. Due to the hard braking the wheels lock for about 3 sec 
and no energy recovery takes place. On reaching the desired velocity, the driver re-
leases the brake pedal almost entirely, the wheels unlock and the battery state of 
charge increases again. At the beginning of the braking maneuver, the desired brak-
ing torque is generated only via the recuperating drive motor. If the maximum recu-
peration torque is reached, the friction brakes generate an additional torque, so that 
the total braking torque, which is the sum of the recuperated torque and the friction 
brake-based torque, is equal to the desired braking torque. 

2.5 Monitoring EHBS Behavior 

One of the important tasks in the development of safety-critical vehicle components 
is a safety environment and the associated diagnostic functionalities for tracing criti-
cal system variables that might lead to erroneous system behavior if they deviate. 

Following the principle described here, a simple diagnostic functionality was devel-
oped for the EHBS and implemented in ASM. The diagnostic monitor has the task to 
continuously detect the controller variable and the control error to ensure the proper 
functioning of the EHBS and the current gradient of the EHBS actuator for a stable 
vehicle onboard power system. Figure 9 shows the time histories of the diagnostics 
manager for the driving maneuver described in section 2.4. Due to the hard braking 
at about 14 sec, the monitoring of control error and the current gradient becomes 
momentarily active because the relevant thresholds are exceeded. 

The processing and handling of the information collected from the diagnostic moni-
tors now depends on the overall system implementation from the perspective of an 
ECU. 

3.  Developing the AUTOSAR ECU Software including DEM 

The previous section shows how the control algorithms are developed in the control 
engineering domain with the domain-specific tool MATLAB/Simulink. These algo-
rithms impose a high level of abstraction compared to the final ECU software. A sim-
ulation on this level cannot reveal errors caused by conversion to production code, 
e.g., fixed-point arithmetic-related defects like quantization errors or overflows. Fur-
thermore, the correct behavior of the controller together with basic software parts like 
a DEM cannot be verified. The DEM receives erroneous controller states and there-
fore plays an important role in a robust ECU software design. Traditionally, control 
engineers did not need to worry about this functionality, which is regarded as the re-
sponsibility of the system architect, who integrates the controller software. However, 
to prevent errors and thus iterations in a later development step, control engineers 
and system architects alike should consider these aspects of the basic software early 
in the process. 



 

The following subsections first present the dedicated methodology and tool chain 
that is used to get to the AUTOSAR ECU software, which also includes the neces-
sary interfaces for the DEM. After that the model-based transition from the EHBS 
and recuperation controller in Simulink to a virtual ECU (V-ECU) is described. A V-
ECU is the software that emulates a real ECU in a simulation scenario. It comprises 
components from the application and the basic software, and provides functionalities 
comparable to those of a real ECU. 

3.1 Methodology and 

Tool Chain 

This section gives an over-
view of the methodology 
and tool chain for testing 
controller software, includ-
ing the diagnostics-related 
basic software that is rele-
vant for function develop-
ment.  

The tool chain and basic 
methodology are shown in 
figure 10. In step 1, the 
behavior of the controller 
and the environment are 
modeled in Simulink (de-
picted at top left). Note that 
this environment model can 
be used throughout the 
whole development pro-
cess, including later hard-
ware-in-the-loop (HIL) sim-
ulation scenarios, without 
any modification. In this 
step the control engineer 
uses model-in-the-loop 
(MIL) simulation, which was 
already described for the 
EHBS system in section 
2.4. 

In parallel to the behavioral modeling, an AUTOSAR system [3] is designed using 
dSPACE SystemDesk

®
 (step 2). Here, the developer takes the role of the system 

architect and creates the architecture that includes the software components with 
ports, interfaces, and the configuration of the runnable entities. Each runnable con-
tains the implementation of a particular functionality. Later, the runnables will contain 
or point to the generated code files from TargetLink

®
. However, at this point, there 

are no code files attached yet. In addition to the runnables that link to the actual con-
troller functionality, the monitoring functionality has to be considered. Each monitor-
ing function requires a dedicated monitor runnable and a set of communication ports, 

Figure 10: Methodology and tool chain 

System desc.

DEM Interf.

DEM Impl.

Behavioral Model

SWC Frame

SWC Code

Virtual ECU

Environment

Data Exchange

Measurement, Calibration

1 6 5

8

2 7 3 4



 

which are later connected to the DEM service component. The necessary interface 
descriptions for these ports are supplied as a template by EB tresos AutoCore (step 
3 in figure 10). After adding the runnables and the ports, the developer creates a sys-
tem and maps the application software components onto an ECU instance. 

In step 4, the system description containing the software architecture must be ex-
ported from SystemDesk into EB tresos Studio, which is Elektrobit’s configuration 
tool for their AUTOSAR basic software. Here, the DEM is configured to match the 
desired number of monitor runnables. EB tresos Studio is used to generate the DEM 
service component, which allows client-server communication with the application 
software components via the run-time environment (RTE). 

The system is then exported from EB tresos Studio back into SystemDesk. The ac-
tual implementation for the DEM is generated by the EB tresos Studio code genera-
tor. Note that a full-fledged configuration of the DEM is not needed at this point. An 
implementation that resolves the symbols that are needed for linking the code to-
gether is sufficient. The complete implementation, which interacts with other basic 
software like the Diagnostic Log and Trace (DLT), is not required in this early phase 
of development. 

The next task is to obtain the production code and link it to the runnable entities. This 
can be achieved through a round trip between SystemDesk and TargetLink (depicted 
in the upper part of figure 10). First, the software architecture as an AUTOSAR de-
scription is exported and imported into TargetLink. TargetLink in turn generates a 
subsystem hierarchy containing a subsystem for each runnable entity (step 5). These 
subsystems form the containers for the implementation model. Their ports resemble 
the external interface according to the AUTOSAR communication parts (ports, inter-
faces, data elements), including those for the monitoring functions. This ensures that 
the runnable structure and the interface of the implementation model strictly adhere 
to those of the software architecture. Inside these subsystems the control engineer 
integrates the implementation model (step 6). In the project we use an automatism to 
transform the Simulink model from step 1 into the implementation (TargetLink) mod-
el. For details of this automatism, see [1]. From this model TargetLink generates the 
production code and automatically associates it with the corresponding runnable en-
tities. The control engineer can now test the generated code for each component 
using software-in-the-loop (SIL) simulation in Simulink together with the environment 
model by comparing the results with those from the earlier MIL simulation.  

The implementation for the functionality and monitoring, plus the AUTOSAR descrip-
tion, which now references this implementation, are exported and then imported back 
into SystemDesk. In SystemDesk the developer creates an ECU configuration (step 
7 in figure 10). This defines the RTE connections between basic software and appli-
cation software. An overview of the system is given in figure 11. It shows the relevant 
artifacts in the AUTOSAR layered architecture. Note that besides the DEM, other 
services, like the ECU state manager (EcuM), are in fact mandatory for any later 
simulation. However, they can be generated automatically by SystemDesk and do 
not require further attention here. Furthermore, a configuration of the operating sys-
tem (OS) can also be generated automatically with SystemDesk, provided that the 
runnables have been configured with the necessary events in step 1. This includes 
the mapping of runnables to tasks as well as the configuration of timers and alarms, 
so that the correct scheduling of the tasks that execute the runnables is ensured. 



 

Figure 11: The interaction between DEM and application software 

The developer also connects the as yet unconnected ports of the application soft-
ware to the virtual I/O, which represents the interface to the environment model. 

Next the RTE and the implementation for the automatically generated services men-
tioned earlier can be generated by SystemDesk. Together with the production code 
from TargetLink and the DEM implementation from EB tresos AutoCore, this forms 
the implementation for the V-ECU. This V-ECU can now be simulated using the 
VEOS

®
 simulation platform (step 8 in figure 10) with the environment model used in 

steps 1 and 5 in figure 10. 

The advantages of simulating a V-ECU compared to MIL simulation in Simulink 
(step 1) or SIL simulation in TargetLink (step 5) are as follows: 

 Simulation of an RTE, including the respective events 

 Interaction with basic software via client-server interfaces – here, especially the 
communication between monitor runnables and the DEM can be tested before 
the basic software is completely implemented (frontloading of tests). 

 Requirements regarding the scheduling of the control functions can be verified 
in the context of an actual OSEK operating system. 

 Experiments can be conducted using typical HIL experimentation and testing 
tools (e.g., dSPACE ControlDesk

®
) as the V-ECU includes measurement and 

calibration variable descriptions according to the ASAM MCD-2 standard and 
allows communication according to ASAM MCD-1 (XCP). 

 In terms of communication delays between the controller software and the envi-
ronment model, the simulation behavior is closer to that of a HIL simulation. 
Thus, the control engineer gets a better picture of the control algorithm’s stabil-
ity in a later HIL context. 

Application Software 

Software 

Component 
Software 

Component 

Basic Software 

Runtime Environment 

 Services Oper-
ating 

System 
(OS) 

Diagnostic 
Event Manager 

(DEM) 

 

 

 
 

 

 

Diagnostic 
Monitor 1 
Diagnostic 
Monitor 1 
Diagnostic 

Monitor 
Functionality 

 
 

 

  

Functionality 



 

In the following section the methodology presented above is applied to the Electro-
hydraulic Brake System presented in section 2. Note that the focus is on the integrat-
ing of diagnostics. A more general description of the application can be found in [1]. 

3.2 Transforming Controllers in Simulink into a Virtual ECU 

Following the methodology described above, the first step towards a V-ECU is to 
model the controller behavior in Simulink and the software architecture in Sys-
temDesk (step 1 and step 2 from the methodology part). For diagnostics, the part of 
interest is the creation of the monitor runnables, which later contain the monitoring 
functionality. This is done in SystemDesk. In the case of the brake pressure control-
ler, the monitor runnables are named Monitor_MotorTorqueLimit, Monitor_ControlErr 
and Monitor_MotorCurrentGradient. The interface to the DEM is obtained from EB 
tresos AutoCore (step 3 in the methodology). The resulting architecture is shown in 
figure 12. The interface to the DEM can be seen at bottom right (“Monitor_CE”, 
“Monitor_MCD” and “Monitor_MTL”). 

 

Figure 12: The EHBS controller architecture in SystemDesk 

3.2.1 Configuring the DEM 
To obtain the required interface from EB tresos Studio, the DEM basic software 
module must be configured. The DEM service component is generated from this con-
figuration in a process described below. 

First, a list of events must be specified in the DEM event configuration list. Each 
event in the event list defines a communication interface between the DEM basic 
software module and the monitor runnable at the applications software layer. Three 
monitors thus require three events. This is shown by figure 13. 

 

Figure 13: Creating DEM events for the brake pressure controller (EB tresos Studio) 



 

When the DEM events, the DEM software components have been configured, the 
code files for the DEM are generated. 

Later, in the context of RTE configuration (step 7 in the methodology) in Sys-
temDesk, the brake pressure controller can be connected to the DEM service, which 
is shown in figure 14. 

 

Figure 14: The connected brake pressure controller and DEM in SystemDesk 

The software architecture is now ready to be exported to TargetLink, where the be-
havior of the monitor runnables is specified. 

3.2.2 From Behavioral Model to Software Architecture and Back Again 
So far the functional behavior on application level has been implemented in Simulink, 
a basic AUTOSAR system has been set up and the DEM has been generated. What 
is still missing is the implementation of the runnables including the diagnostic moni-
tors. 

The software architecture, which includes the definitions of the monitor runnables, is 
therefore exported from SystemDesk and imported into TargetLink to integrate the 
implementation and generate the production code (step 5 and 6 in the methodology). 
In our project we already had an implementation model of the recuperation controller 
without monitoring capabilities. By using the update mechanism supplied by Tar-
getLink, the subsystems representing the monitor runnables can be generated into 
an existing implementation model. So we just had to implement the error detection 
functionality, which is described in chapter 2.5. The resulting controller hierarchy, 
including the environment model, is depicted in figure 15 with the three subsystems 
for the monitor runnables highlighted in the bottom right corner. Afterwards, the code 
for the monitor runnables is generated. Both control algorithm implementations are 
tested using SIL simulation in TargetLink. The results (see figure 16) show that the 
generated code’s behavior corresponds to that of the Simulink model. 

The resulting architecture is exported and imported back into SystemDesk. Now all 
the artifacts required for generating a V-ECU with DEM for a recuperating electrohy-
draulic brake controller are available. 



 

2

Trq_BrakeBoosterReq[Nm]

1

Trq_DriveRef[Nm]

In1 value

In1 value

In1 value

In1 value

In1 value

In1 value

In1 value

In1 value

z

1

Unit Delay1

z

1

Unit Delay

b_Reset

Pos_AccPedal

F_Foot

Trq_Drive

p_Camber_ref

Trq_Drive_ref

TargetLink

Model-

in-the-loop

mode

TL_sw_Recuperation_Controller

p_Chamber

p_Chamber_ref

b_Reset

I_Act

Trq_BrakeBoosterReq

TargetLink

Model-

in-the-loop

mode

TL_sw_BrakePressureController

6

I_Act[A]

5

Reset_VehicleStates[0|1]

4

p_Chamber[Pa]

3

F_FootForce[N]
2

Trq_Drive[Nm]

1

Pos_AccPedal[%]

Vehicle

Simulation Model

Environment
DsOffsimSwitch2

DsOffsimSwitch1

Pos_AccPedal[%]

Trq_Drive[Nm]

F_FootForce[N]

p_Chamber[Pa]

Reset_VehicleStates[0|1]

I_Act[A]

Trq_DriveRef[Nm]

Trq_BrakeBoosterReq[Nm]

Controller

1

Trq_BrakeBoosterReq

DRP_p_Chamber_value

DRP_p_Chamber_ref_value

DRP_b_Reset_value

DSP_Trq_BrakeBoosterReq_value

IRVWA_Trq_BrakeBoosterReq

run_BPC

sw_BrakePressureController

p_Chamber_ref

RP_p_Chamber_ref

sw_BrakePressureController

p_Chamber

RP_p_Chamber

sw_BrakePressureController

b_Reset

RP_b_Reset

sw_BrakePressureController

I_Act

RP_I_Act

sw_BrakePressureController

Trq_BrakeBoosterReq

PP_Trq_BrakeBoosterReq

IRVRA_Trq_BrakeBoosterReq

Monitor_MotorTorqueLimit

DRA_I_Act_value

Monitor_MotorCurrentGradient

DRA_p_Chamber_value

DRA_p_Chamber_ref_value

Monitor_ControlErr

4

I_Act

3

b_Reset

2

p_Chamber_ref

1

p_Chamber

value

value

value

value

value

value

Trq_BrakeBoosterReqTrq_BrakeBoosterReq

 

Figure 15: Controller hierarchy including the environment model 

 

Figure 16: Simulated reference signal of drive motor, control and controlled variable 

with floating (gray, —) and fixed- point arithmetic (black, ) 

0 5 10 15 20 25
0

50

100

150

t / sec

p
_

c
h

a
 /

 b
a
r

0 5 10 15 20 25
-1

0

1

2

3

t / sec

T
_

e
p

b
_

re
q

 /
 N

m

0 5 10 15 20 25
-50

0

50

100

150

200

t / sec

T
_

d
r_

re
f 

/ 
N

m



 

3.2.3 Simulating the V-ECU 
To analyze the behavior of the controller software in combination with the basic soft-
ware, a V-ECU is built as described in section 3.1. The ECU is connected to the en-
vironment model previously used for MIL simulation (section 2.4) and SIL simulation 
(section 3.2.2). The unconnected ports in the software architecture (the black trian-
gles in figure 12) form the external interface of the V-ECU. These ports are connect-
ed to the environment model via virtual I/O (IoHwAb module in SystemDesk). 

Figure 17 shows that the resulting signals of the V-ECU simulation match those of 
the SIL simulation in TargetLink (figure 16). It shows that the communication with the 
DEM is configured correctly and behaves in the same way as in the MIL simulation 
(compare figure 9 with plots A, B and C). It also verifies the correct configuration of 
the operating system, the AUTOSAR specification of the controllers’ interfaces and 
communication via the RTE. 

 

Figure 17: Results of the V-ECU simulation in ControlDesk 

4.  Results and Future Work 

This paper presents an approach to develop and simulate a controller for an electro-
hydraulic brake system up to production code level on a virtual AUTOSAR ECU in-
cluding basic software modules. The designed controllers show the expected behav-
ior. The EHBS controller is accurate in the steady state, and the transient pressure 
errors are rapidly compensated. A monitor component is also integrated to measure 
faulty controller behavior, which can be evaluated and reacted to later on in the Di-
agnostic Event Manager. 

In_Read_sw_BrakePressureController_p_Chamber_value 

Out_Write_sw_Recuperation_Controller_Trq_Drive_ref_value 

Out_Write_sw_BrakePressureController_Trq_BrakeBoosterReq_value 

Monitor_MotorTorqueLimit 

Monitor_MotorCurrentGradient 

Monitor_ControlErr 



 

The transition to the V-ECU is supported by a tool chain that allows control engineers 
to design and test a complex controller on different levels of abstraction using simu-
lation. Extending the tool chain with EB tresos facilitated the integration of the DEM. 

By using the presented methodology the number of possible errors during later inte-
gration into an existing system is reduced, as the later AUTOSAR system is already 
considered in the early functional design phase of the controller. Thus, the number of 
iterations required between the system architect and the control engineer will be low-
er as well. This effectively saves development time and costs. 

This work completes the tool chain that has been developed in the context of the E-
Mobil project. The paper also concludes the results of a series of publications: In a 
first step, we defined a methodology for a seamless development and testing pro-
cess of controllers from the functional behavior to the final AUTOSAR software archi-
tecture using offline simulation [4]. In a second step we applied our methodology to a 
first example system, a simple recuperation-ready brake controller [2]. Then we ap-
plied our methodology to a recuperative electrohydraulic brake system developed in 
the E-Mobil project, which can be considered a real-world example. Here, we made a 
first attempt to integrate an EcuM basic software module to show the general ap-
proach of integrating basic software in our AUTOSAR-architecture [1]. Finally, in this 
publication, we integrated an externally generated basic software module with EB 
tresos Studio from EB tresos AutoCore. We showed the functionality of the Diagnos-
tic Event Manager (DEM) as well as its configuration and generation, thereby 
demonstrating how EB tresos integrates into the tool chain. 

Literature 

[1]  E. Farshizadeh, H. Briese, S. Beringer, D. Holler und L. Stockmann, “Design and 
Analysis of a Controller for Electrohydraulic Brake Systems on AUTOSAR 
Architecture Level,” Stuttgarter Symposium, 2013.  

[2]  K. Krügel, L. Stockmann, D. Holler und K. Lamberg, “Simulation-based 
Development and Testing Environment for Electric Vehicles,” IAV, 2012. 

[3]  AUTOSAR, 
“http://www.autosar.org/download/R4.1/AUTOSAR_TPS_SystemTemplate.pdf,” 
[Online]. 

[4]  L. Stockmann, D. Holler und D. Spenneberg, “Early Simulation and Testing of 
Virtual ECUs for Electric Vehicles,” Electric Vehicle Symposium 26, 2012.  

Acknowledgements 

The project “Simulationsgestützter 
Entwurf für Elektrofahrzeuge” is 
funded by the European Union and 
the state of Northrhine-Westphalia 
(grant No. 64.65.69-EM-1008A). 



 

Autoren / The Authors:  

Dipl-Ing. Emad Farshizadeh, DMecS GmbH & Co. KG, 51105 Köln 

Dipl-Ing. Hermann Briese, DMecS GmbH & Co. KG, 51105 Köln 

Steffen Beringer, M. Sc., dSPACE GmbH, 33098 Paderborn 

Dipl-Inf. Dominik Holler, dSPACE GmbH, 33098 Paderborn 

Dipl-Ing. Lars Stockmann, dSPACE GmbH, 33098 Paderborn 

Hamza Qadir Raja, M. Sc., dSPACE GmbH, 33098 Paderborn 


