
❚❡❧❡❝�✁✁✂♥✄❝☎t✄�♥

◆❡t✆�♦✝✞ ✟♦�✂✉

Technische Universität Berlin

Telecommunication Networks Group

UniFlex: Accelerating Networking
Research and Experimentation through
Software-Defined Wireless Networking

Piotr Gawłowicz, Anatolij Zubow, Mikolaj Chwalisz and

Adam Wolisz

{gawlowicz, zubow, chwalisz, wolisz}@tkn.tu-berlin.de

Berlin, November 2016

TKN Technical Report TKN 16-0003

TKN Technical Reports Series

Editor: Prof. Dr.-Ing. Adam Wolisz

Abstract

Classical control and management plane for computer networks is addressing individual parameters
of protocol layers within an individual wireless network device. We argue that this is not sufficient in
phase of increasing deployment of highly re-configurable systems, as well as heterogeneous wireless
systems co-existing in the same radio spectrum which demand harmonized, frequently even coordi-
nated adaptation of multiple parameters in different protocol layers (cross-layer) in multiple network
devices (cross-node).

We propose UniFlex, a framework enabling unified and flexible radio and network control. It
provides an API enabling coordinated cross-layer control and management operation over multiple
network nodes. The controller logic may be implemented either in a centralized or distributed manner.
This allows to place time-sensitive control functions close to the controlled device (i.e., local control
application), off-load more resource hungry network application to compute servers and make them
work together to control entire network.

The UniFlex framework was prototypically implemented and provided to the research community
as open-source. We evaluated the framework in a number of use-cases, what proved its usability.

TU BERLIN

Contents

1 Introduction 5

2 System Model 7

3 Requirements and Design Principles 8

4 Architecture Overview 10
4.1 Control Applications . 10
4.2 Northbound Interface . 11
4.3 Distributed Control Framework . 12
4.4 Southbound Interface . 12
4.5 UniFlex Framework UML Diagram . 13

5 Implementation Details 15
5.1 Northbound Interface . 15
5.2 Agent . 17
5.3 Broker . 17
5.4 Control Application . 17
5.5 Southbound Interface . 18
5.6 Deployment . 19
5.7 Support of other Programming Languages . 19

6 Integration with External Software Libraries 20
6.1 Python Scientific Packages . 20
6.2 Node-RED Integration . 20
6.3 Mininet Integration . 20

7 Applications 22
7.1 Wireless Topology Monitor . 22
7.2 Mobility Management . 23
7.3 Interference Management . 23
7.4 Device-to-Device . 24

8 Evaluation 26
8.1 Basic Network Operation . 26
8.2 Scalability . 27

9 Related Work 28

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 3

TU BERLIN

10 Conclusions 29

11 Acknowledgments 29

12 Appendix A – Description of UniFlex APIs 33

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 4

TU BERLIN

Chapter 1

Introduction

The control plane and the management plane have played a very important role in the classical
telecommunication systems, but have been given much less attention in computer networks. As the
matter of fact the only widely accepted approach is the usage of SNMP or NETCONF as basis for
creating management applications. This is increasingly recognized as not sufficient - especially in
case of wireless networks where many parameters have to be frequently tuned in response to chang-
ing wireless propagation, interference and traffic conditions. There were already couple of attempts
for wireless control protocols including LWAPP and CAPWAP, but those were designed with focus
on configuration and device management and are not suitable for time-sensitive control of devices.

Furthermore, classical control/management actions have been addressing individual parameters of
protocol layers within an individual network device. This is not sufficient in phase of increasing
deployment of highly re-configurable systems, as well as heterogeneous wireless systems co-existing
in the same radio spectrum which demand harmonized, frequently even coordinated (simultaneous)
change of multiple parameters in different parts of hardware and software in multiple network devices.

Typical example of emerging real scenarios are LTE-U and Wi-Fi in 5 GHz and Wi-Fi, Bluetooth
and ZigBee in 2.4 GHz ISM band. On the other hand even homogeneous deployments are suffering
from intra-technology interference [1]. Here in recent years we have seen a boom of cross-layer
design proposals for wireless networks [2, 3] where additional information from some layers are
obtained and used to optimize operation of another layer.

So far control applications had to solve the challenges of harmonized/simultaneous actions on case-
by-case basis, which significantly complicated development of such applications - and lead to lack of
any compatibility across the individual solutions. We argue that the efficiency of wireless networks
can be significantly improved by enabling the management and control of the different co-located
wireless technologies and their network protocols stacks (cross-layer) in a coordinated way using
either centralized or distributed controllers [4].

Contribution: In this paper we propose UniFlex, a framework for Unified and Flexible radio and
network control. The suggested API supports typical functions needed for coordinated cross-layer,
cross-technology and cross-node control and similarly as in the SDN paradigm we allow for central-
ized control, but support equally well also hierarchical control structure and logically centralized but
physically distributed control. Network control applications can be either co-located with controlled
device (both running on the same network node, e.g. for latency reasons) or separated from each
other (running on two nodes, e.g. control application runs on server due to requiring high comput-
ing power). We believe that UniFlex will be an enabler for rapid prototyping of control applications
for wireless network devices, management and control of operation of - possibly heterogeneous -
nodes in wireless networks. The UniFlex prototype is provided as open-source to the community:
https://github.com/UniFlex.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 5

TU BERLIN

The rest of this report is organized as follows. In Sec. II the system model is introduced, while
in Sec. III requirements for the wireless network control plane are defined. Sec. IV describes the
architecture of envisioned UniFlex framework. In Sec. V and VI details of our prototypical imple-
mentation and integration with external software are given. Examples of wireless network control
applications implemented using UniFlex are presented in Sec. VII. Performance of UniFlex proto-
type is evaluated in Sec. VIII. In Sec. IX related research is discussed and finally, Sec. X summarizes
our main findings and concludes the paper.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 6

TU BERLIN

Chapter 2

System Model

In this section, we define our system model and provide definitions of all terms that we use consis-
tently in this paper.

The network is a collection of nodes under common management and control domain (authority).
A node is collection of equipment sharing a common platform and being run under a single instance
of operating system. The types of nodes span from small constrained devices to powerful compute
servers. A node is equipped with zero or more devices. A device is a piece of hardware fulfilling a
dedicated functionality. Additionally, it may expose set of operations in Native Device Programming
Interface (NDPI) to control it’s behaviour and parameters. There are different classes of sets of
operations for different devices. For example, a wireless network device provides packet forwarding
functions with usage of wireless transmission technology (e.g. 802.11, LTE) and exposes NDPI to
control its parameters including transmission power, central frequency, bandwidth, etc.

Operation of a network is harmonized by single or multiple controllers. The controller logic
may be implemented either as standalone or multiple cooperating control applications (aka network
applications) that run in node(s). In particular, a control application may be located in the same node
as network device that it is controlling.

We assume the existence of a common Control Channel enabling control application(s) to: i)
access NDPI of all devices in network, ii) use it to control their behaviour and iii) exchange control
messages between each other for cooperation purposes. This control channel may be realized over
the wireless network itself (in-band) and/or additional wired backhaul infrastructure (out-band).

Node NodeNodeNode

Control Channel

Figure 2.1: System model overview.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 7

TU BERLIN

Chapter 3

Requirements and Design Principles

The main goal of of our work is to facilitate and shorten time required for prototyping of novel
control solutions in heterogeneous wireless networks. We argue that novel wireless applications may
be realized when following functionality is provided:

• Coordinated collection of information from and execution of commands on different proto-
col layers (cross-layer), heterogeneous devices (cross-technology) and multiple nodes (cross-
node) within network,

• Existence of a global and consistent view of the entire network, i.e. knowledge about the state
of all devices and their relationship,

• Possibility to implement logically centralized and physically distributed control applications,
i.e. placing time-sensitive task close to device and off-loading greedy tasks to powerful servers,

• Support for multiple levels of control for scalability reasons, i.e. local control applications
handle frequent commands and events, while remote controllers handle rare events (Fig. 3.1),

• Support for detecting network changes in proactive and reactive control schemes in control
applications,

• A high-level API for control of operation of individual wireless devices and groups of devices,

• Location transparency i.e. the same API syntax for execution of commands on local and remote
devices,

• Possibility to execute commands on group of nodes/devices.

Control and optimization of operation of wireless network usually involves tuning parameters of
network devices being in proximity of each other, i.e. in wireless communication/interference/sensing
area. Examples are the radio channel and transmit power assignment to co-located Access Points in
Wi-Fi networks. Hence, the control plane requires mechanism to discover the wireless devices in
the network and their (wireless) relationship. Moreover, this information has to be monitored and
updated at run-time.

Having a global view on the entire wireless network enables control programs to efficiently manage
and control of wireless devices. Changes in the network state can be detected in two ways, namely
proactive and reactive. In proactive approach, the network controller is polling the network entities,
while in reactive approach execution of control program functions is triggered by events generated by
the nodes in the network. It should be up to experimenter to define her control strategy.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 8

TU BERLIN

For coordinated control among multiple devices of different nodes, the framework API has to
support time synchronized execution of functions across multiple network devices. Examples are the
coordinated channel switch of multiple devices due to appearance of an interference source.

While it is natural that the device programming interface is different for each wireless technology,
in most cases it also varies across different implementation of the same technology, i.e. wireless
devices of different vendors. A unification of the different Native Device Programming Interface
(NDPI) would be desirable as it would allow controlling the devices of a HetNet in a unified way.
Similar concept is nowadays developed for wired switches, e.g. Switch Abstraction Interface [5].

C
o

m
p

u
te

 n
o

d
e

Remote Controller
N

et
w

o
rk

 n
o

d
e

N
et

w
o

rk
 n

o
d

e

(Wireless)
Network Device

Local Controller

(Wireless)
Network Device

Local Controller

N
et

w
o

rk
 n

o
d

e
(Wireless)

Network Device

Frequent
commands/

events

Rare
commands/

events

Figure 3.1: UniFlex’s levels of control. Local controllers handle frequent commands and events,
while remote controllers handle rare events. The exchange of events between controllers
is also rare.

In the general SDN concept the control plane is logically centralized enabling control programs
to have a global view of the entire network. This approach simplifies the development of control
application a lot. However, from the practical point of view a centralized controller would introduce a
significant delay in the control plane, what can prevent time sensitive control logic to be implemented.
Moreover, transporting all monitoring data from devices to a central controller may create too high
load on the control plane. Sometimes pre-processing data locally at the node is feasible. In this way,
controller may be partitioned into smaller applications where parts of them would run on the network
nodes and others on the central compute node. Another advantage of such a split is the possibility
of re-usage of control applications. For example, an averaging filter may be implemented once as
control application and used as part of many other controllers. Fig. 3.1 shows the UniFlex’s levels
of control. Local controllers handle frequent commands and events, while remote controllers handle
rare events. The exchange of events between controllers is also rare.

In summary, the envisioned control framework may be considered as a wireless network operating
system, that runs multiple control applications (network apps) communicating with each other and
providing them with an interface for controlling all wireless network devices in coordinated way.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 9

TU BERLIN

Chapter 4

Architecture Overview

Fig. 4.1 shows an overview of the architecture of the UniFlex framework. The framework is a dis-
tributed middleware platform running across multiple nodes that interconnects all control applications
and wireless network devices. The network applications running on top of middleware perform con-
trol tasks over wireless devices by utilizing the provided API in Northbound Interface. The South-
bound Interface is responsible for translating calls coming from control applications to NDPI. In the
following subsections, we provide detailed description of the UniFlex framework.

Compute & Network Node

NBI

SBI

(Wireless)
Network Device

App
App

Control App

Compute Node

NBI

App
App

Control App

SBI

(Wireless)
Network Device

UniFlex Middleware

Network Node

Figure 4.1: UniFlex’s high-level architecture: Northbound Interface (NBI) and Southbound Interface
(SBI).

4.1 Control Applications

A control application is an entity that implements particular network controller logic. In general, it
collects information and measurements from network, make control decisions according to set policy
and perform network reconfiguration.

Each control application is provided with a global view on all nodes in the network. Basically,
control application is operating on proxy object of remote nodes. Each node proxy contains proxy
objects referring to application and device modules present in a given remote node. By default, each

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 10

TU BERLIN

control application is able to communicate with all applications and control all device modules in
entire wireless network, but some access policies may be applied.

Control applications may send as well as receive events generated by framework, devices and
other applications. In order to be notified about specific event, an application has to subscribe to this
event. Events originated from devices are usually used in reactive control approach, e.g. every time a
network device is not able to receive a frame correctly, it sends a FrameLostEvent. Applications may
use events to communicate with each other.

Events may be sent in three modes: i) unicast, ii) node-broadcast and iii) global-broadcast. Us-
ing unicast mode an application is able to send events to a particular recipient. In node-broadcast
mode application sends events to a particular node and all applications running on that given node
will receive it. Finally, using global-broadcast applications and devices are able to send events to all
applications in the entire network. An event always contains an identifier of node and entity (appli-
cation or device) that generated it. In addition, events of specific type may contain additional data, as
measurement samples, etc.

4.2 Northbound Interface

Fig. 4.3 shows the Northbound Interface description as UML class diagram. Each network control
application operates on proxy objects referring to nodes, applications and device modules. Those
proxy objects provides an access to the UniFlex Northbound Interface. The NBI is the same for
devices located in the same host machine as well as for remote devices. It is the framework that is
responsible for delivering and executing function calls in proper device.

The Northbound Interface gives an application possibility to send, subscribe for and receive events.
An application sends events using send_event(event) function and subscribe for events using sub-
scribe_for_events(eventType, callback). Once subscribed the framework will deliver events of proper
type to application and fire bounded callback passing event as the argument. In order to send/re-
ceive events in unicast, node-broadcast and global-broadcast mode, an application has to execute
send_event()/subscribe_for_events() function on application (device) proxy, node proxy and self-
object, respectively.

In addition, a control application may execute Remote Procedure Calls (RPC) on device/proto-
col proxy object to call functions from its native programming interface. By default, all RPC calls
are executed on the device/protocol proxy object are blocking execution of control application un-
til function returns. For convenience, the DeviceProxy/ProtocolProxy class provides three
functions, namely: i) delay(relative_time), ii) exec_time(absolute_time) and iii) callback(cb=None).
Using those functions one may delay execution of call, schedule execution of call in future point
in time and execute non-blocking call, respectively. Optionally, it is possible to register callback
function for value returned from function call. Calling examples are given in Sec. 5.1.

In order to control a node, an application has to first obtain a NodeProxy object. This is achieved
by subscribing to NewNodeEvent events. On discovery of a new node UniFlex notifies the ap-
plication about this by sending event containing a node proxy. Thereafter, the application can re-
trieve the DeviceProxy, ProtocolProxy and/or ApplicationProxy objects from obtained
NodeProxy and execute commands on them. Note that application is notified about all nodes in net-
work including the one that it run on top of – a proper flag Local in NodeProxy is used to distinguish

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 11

TU BERLIN

between local and remote nodes. The framework tracks presence of all nodes in network and notifies
applications about node lost events.

4.3 Distributed Control Framework

The UniFlex is a distributed middleware platform that inter-connects network devices and control ap-
plications. The framework takes care of node management including node discovery and monitoring
connection to between all nodes. Whenever new node is discovered or connection with some node is
lost, UniFlex notifies all applications about the changes by sending proper event.

While Control Application running on top of the framework are able to control wireless devices/pro-
tocols with simple API, it is the framework, that is responsible for delivering and executing function
calls in proper device/protocol. Moreover, the middle-ware is also responsible for discovery of capa-
bilities of each device/protocol and throwing exceptions if not supported function is to be called.

Using UniFlex it is possible to develop distributed network control applications, i.e. it is possible
to split-up control logic into smaller cooperating control applications running on different nodes.
In this way, UniFlex by design support three types of control programs: i) local – when controller
is running in the same node as controlled device(s), ii) non-local – when controller is running on
different node then controlled device(s) and iii) hybrid or hierarchical – when controller logic is split
between multiple nodes. A hierarchical control is a trade-off between local and global control. It
allows putting time sensitive control functions close to device, and offload complex tasks to remote
compute nodes (servers in cloud). Note that framework provides location transparency meaning that
calling syntax is always the same for local as well as remote device.

4.4 Southbound Interface

The Southbound Interface works in two directions, i.e. control application may execute functions
and change parameters of device (in-direction), but it may also receive data, measurements, samples,
etc. from device (out-direction). All communication in in-direction is realized with RPC calls, while
communication in out-direction is realized using events.

Network Device
Module

NDPI

Pythonic
Interface

Network
Device

Wi-Fi Ath9k
Module

NETLINK
mac80211

setTxPower()

ath9k
Device

Wi-Fi GNURadio
Module

XML-RPC

USRP
Device

setTxChannel()

A) B)

Figure 4.2: Device Module is an Python wrapper for Native Device Programming Interface.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 12

TU BERLIN

The Southbound Interface is realized with help of Device and Protocol Modules. Device Module
translates function calls from control applications into Native Device Programming Interface (NDPI)
– Fig.4.2A. While Protocol Module translates function calls into Native Protocol Programming Inter-
face (NPPI). In other words, Device/Protocol Module wraps different API and tools used to program
device/protocol, and exposes them to framework in Pythonic way (i.e. as Python functions). In
Fig.4.2B, we present two Device Modules as an example. As shows the Python functions are deliv-
ered to modules and translated to proper NDPI calls, i.e. NETLINK and XML/RPC respectively.

In many cases, while the semantics of features supported by different devices may be the same,
their NDPI may differ greatly. We argue that this would be error prone and would prevent portability
and re-usibility of control application. We believe that those issues can be solved by a unified ab-
straction layer that hides specific NDPIs of different devices behind common one. We found Unified
Programming Interface (UPI) defined in WiSHFUL project [6, 7] to be an appropriate option.

4.5 UniFlex Framework UML Diagram

The UML diagram in Fig. 4.3 presents UniFlex architecture in more detail. The Distributed Control
Framework is consists of set of communicating Agents. The Agent is provides communication
middleware for Control Applications, Device and Protocol Modules. Description of functions is
given in Appendix A.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 13

TU BERLIN

NodeProxy

-hostname
-uuid

+DeviceProxyList::get_devices()
+DeviceProxy::get_device(uuid)

+ControlApplicationProxyList::get_control_applications()

+Time::get_time()

+Accuracy::get_time_synchronization_accuracy()

+Boolean::is_synchronizing()

+ControlApplicationProxy::get_control_application(uuid)
+Boolean::send_event(event)
+Boolean::subscribe_for_events(eventType)
+Boolean::unsubscribe_from_events(eventType)

ModuleProxy

-uuid

+ModuleProxy::callback(callbackFunction)
+ModuleProxy::delay(relativeTime)
+ModuleProxy::exec_time(absoluteTime)
+Boolean::subscribe_for_events(eventType)
+Boolean::unsubscribe_from_events(eventType)

ControlApplicationProxy

-uuid

+Boolean::is_running()
+Boolean::start()
+Boolean::stop()
+Boolean::send_event(event)
+Boolean::subscribe_for_events(eventType)
+Boolean::unsubscribe_from_events(eventType)

ControlApplication

-uuid

+NodeProxy::get_local_node()
+Boolean::send_event(event, mode)
+Boolean::subscribe_for_events(eventType, mode)
+Boolean::unsubscribe_from_events(eventType)

Agent

-uuid

+Boolean::add_control_application(ctrApp)
+Boolean::remove_control_application(uuid)
+ControlApplicationList::get_control_applications()
+ControlApplication::get_control_application(uuid)

-controlApplicationList

+Boolean::start_control_application(uuid)
+Boolean::stop_control_application(uuid)

1

*

*

Control Application operates on NodeProxy objects

Module

-uuid

+Boolean::send_event(event, mode)

-deviceModuleList

+Boolean::add_device_module(deviceModule)

+DeviceModule::get_device_module(uuid)

1 *

-is_running

+DeviceModuleList::get_device_modules()

1

*

+String::get_time_synchronization_source()

DeviceProxy

+operation_1(arg1,...)
+operation_N(arg1,...)

ProtocolProxy

+operation_1(arg1,...)
+operation_N(arg1,...)

+ProtocolProxy::get_protocol(uuid)
+ProtocolProxyList::get_protocols()

DeviceModule

+operation_1(arg1,...)
+operation_N(arg1,...)

ProtocolModule

+operation_1(arg1,...)
+operation_N(arg1,...)

1

-protocolModuleList

+Boolean::add_protocol_module(protocolModule)

+ProtocolModule::get_protocol_module(uuid)
+ProtocolModuleList::get_protocol_modules()

Figure 4.3: UniFlex framework (UML class diagram).

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 14

TU BERLIN

Chapter 5

Implementation Details

The UniFlex framework was prototypically implemented. Particular attention was paid to enabling
code re-usability and support for different programming languages as well as possibility of usage of
specialized external software libraries.

Our prototype is implemented in Python language, what makes it possible to run on multiple differ-
ent host types (Linux, OpenWRT, Mac OS and Windows) and allows for rapid prototyping of control
applications. As we used only standard and common Python libraries, we are able to run and test our
implementation on multiple platforms, including x86, ARM and MIPS.

An overview of framework implementation is presented in Fig.5.1. An Agent exposes Northbound
Interface to Applications and connects to Device Modules using Southbound Interface. Agents com-
municate with each other over Broker. Each depicted entity will be described in the following sub-
section in more detail.

The framework is distributed as a single Python package containing implementation of Agent and
Broker, and base classes for Applications and Device Modules. In other words, we provide core
functionality of distributed control plane that is able to run on variety of nodes including constrained
devices, and leave implementation of control applications and device modules to researchers.

5.1 Northbound Interface

Sending and subscription of events is implemented around PUB and SUB sockets available in ØMQ
library [8] communication library.

The Remote-Procedure-Call mechanism was implemented on top of unicast event mechanism. For
this purpose, we introduced two events, namely: CommandEvent and ResponseEvent that are
handled internally by Agent. The CommandEvent event contains Calling Context, i.e. information
WHAT (operation), WHERE (node and device), HOW (blocking, delayed, etc.) and optionally WHEN
(point in time) is to be executed, while the ResponseEvent contains return value of function call.
Creation of Calling Context and sending of CommandEvent is hidden behind execution of RPC call
on device proxy objects. To facilitate building of Calling Context, we introduce following functions:
delay(), exec_time() and callback() that may be executed on device proxy object. They are optional
and may be chained together. The examples of the supported calling semantics are presented in
Listing 5.1.

In order to support delayed and time-scheduled function execution, the Agent class is equipped
with scheduler (Python Apscheduler). Note, when coordinating multiple nodes by means of time
scheduled execution, nodes in network must have common notion of global clock (e.g. GPS or time
protocols like PTP).

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 15

TU BERLIN

Python Node

NBI

SBI

(Wireless)
Network Device

App
App

Control App

Agent Broker

Node-RED Node

Python Node

App
App

Control App

Agent

Python Node

(Wireless)
Network Device

Agent

Data Visualization

Agent

Node-RED Node

Data Processing Pipe

Agent

NBI

NBI

NBI

SBI

Figure 5.1: Overview of UniFlex framework implementation.

Listing 5.1: Calling examples.
#definition of callback function
def my_get_power_cb(data):

print(data)

#get device proxy from node proxy
device = node.get_device(0)

#execution of blocking call
result = device.radio.get_tx_power()

#execution of non-blocking call
device.callback(my_get_power_cb).radio.get_tx_power()

#delay execution of non-blocking call
device.delay(3).callback(my_get_power_cb).radio.get_tx_power()

#schedule execution of non-blocking call
t = datetime.now() + timedelta(seconds=3)
device.exec_time(t).callback(my_get_power_cb).radio.get_tx_power()

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 16

TU BERLIN

5.2 Agent

The Agent is an entity that runs Applications and Device Modules, and connects them to distributed
control plane. It is mainly responsible for transferring events between local and remote (over Broker)
applications and device modules. Moreover, it implements RPC mechanism as described in previous
subsection.

Agent provides up-to-date information about all nodes in network to all its application. For this
purpose we implemented discovery and heartbeat (based on hello messages) mechanisms. Every time
an Agent discovers new node sending hello messages over Broker, it sends node unicast NodeInfor-
mationRequest and based on received NodeInformationResponse builds NodeProxy object. Then, the
Agent notifies all its applications using NewNodeEvent. From this point, the Agent monitors pres-
ence of node by means of refreshing hello timer. If it expires, Agent sends NodeLostEvent to all its
application.

Each application and device module is started within its own thread what increase performance,
while preventing race-conditions.

5.3 Broker

While Agent is responsible for transporting events between Applications and Device Modules in
single Node, the Broker takes care for delivering events between Nodes. For optimization, events
of specific type are delivered only to those nodes that subscribed for them (i.e. listen on topic that
is event’s name). All Agents together with Broker constitute distributed UniFlex control framework
middle-ware.

The Broker is wrapping and switching events between XPUB and XSUB sockets available in ØMQ
library [8] library. The ZMQ itself implements mechanisms for topic agreement and message routing.

By default Pickle library is used for (de)serialization of events. This solution is very convenient,
because developer do not have to care about writing parsing and serializing functions, which is weari-
some and error prone task. On the other hand, it allows only for inter-Python communication and has
lower performance comparing to fast serialization libraries. For inter-language communication and
efficiency, we provide a possibility to define parse and serialization functions. If provided, they are
used instead of Pickle. Those functions may be implemented in any format, but it has to be consistent
among all nodes. Every time an agent sends/receives an event, it checks whether those functions are
provided. If so, it uses them, otherwise Pickle functions are called.

5.4 Control Application

A Control Application is an entity that implements the entire or part of the network control logic. It
can be as simple as a signal filter or as complicated as a mobility management unit. Application has
to inherit from ControlApplication base class provided in UniFlex framework package.

While it is possible to subscribe at run-time to events using subscribe_for_event() as described in
Sec. 4.2, we expect that mostly permanent (i.e. lasting for life-cycle of an application) subscriptions
will be used. For this purpose, we provide on_event decorator that binds event notification with
desired function. For example in Listing 5.2, the application subscribes for NewNodeEvent events
and gets notification whenever a new node is discovered. Each event contains a proxy object to source

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 17

TU BERLIN

node and entity (application or device module), that an application may use to perform RPC calls and
to send events.

Listing 5.2: Example of blocking RPC call

@on_event(NewNodeEvent)
def add_node(self, event):

node = event.node
device = node.get_device(0)
txPower = device.radio.get_tx_power()

5.5 Southbound Interface

The Southbound Interface is realized with help of Device Modules that translate function calls from
control applications into Native Device Programming Interface (NDPI) and Protocol Modules that
translate them into Native Protocol Programming Interface(NPPI). We provide a DeviceModule
and ProtocolModule base classes, which have interface to Agent, receive commands from control
applications and execute proper function implementation according to requested commands. In order
to be used within the UniFlex framework, a device’s NDPI has to be wrapped with Device Module
that inherits from base class. The same applies to protocol, i.e. its NPPI has to be wrapped with class
inheriting from Protocol Module class. An example of function implementation is presented in List-
ing 5.3. Here, a wifi_set_channel function takes channel as an argument and use NETLINK
interface to communicate with Linux 802.11 subsystem to configure the network device. We provide
bind_function decorator to mask function names which can also be used to implement an unified ab-
straction layer. In example, the function is hidden behind proper operation from UPI definition. Note
that the Device and Protocol Modules are Python objects and they keep state between consecutive
function calls. Finally, as the Agent takes care about parsing of function arguments and serialization
of return values, developer of Device/Protocol Module do not have to care about it.

The UniFlex framework creates a DeviceProxy object for each Device Module and ProtocolProxy
object for each Protocol Module present in controlled node and passes them to all control applica-
tions running on top. Such a proxy object contains all functions of device/protocol module and cor-
responding functions are bound together, i.e. calling function on proxy object translates in execution
of function in device/protocol module object. This way, we achieve location-transparency.

We manage to make Device and Protocol Modules very thin and without dependencies to Uni-
Flex core framework, so once implemented it may be used as part of the framework, but also as a
standalone application.

Listing 5.3: Example implementation of a device module function

@bind_function(upi.radio.set_channel)
def wifi_set_channel(self, channel):

self.channel = channel
set channel in wireless interface using NETLINK
.......
return reponse

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 18

TU BERLIN

As an example, we provide two device modules for different implementation of the same wireless
technology, i.e. IEEE 802.11. The WiFiAth9kDeviceModule translates Python function calls
into NDPI of COTS Atheros 9500 wireless card (mostly into NETLINK calls), while
WiFiGnuRadioDeviceModule maps them into parameter exposed by GNU-Radio engine. We
have modified the 802.11 implementation [9] in order to expose internal parameters of Wi-Fi protocol
stack for control purpose.

5.6 Deployment

We adopted yaml format for preparation and storing configuration for Agent. Such configuration
file is loaded by Agent on it start and contains information about where to connect (Broker’s URIs)
and network applications as well as device modules to be started. The example configuration file is
show on Listing 5.4. In order to load control application or device module, one has to specify its
source (source file or Python module) and give a name of the class. It is possible to pass dictionary of
arguments to class constructor using kwargs attribute. A Device Module is additionally given a name
of device that it is serving. It is stored in device object attribute.

Listing 5.4: Example of Agent configuration file
agent:

name: ’LocalWiFiController’
info: ’Distributed WiFi controller - local part’
sub: ’tcp://192.168.1.1:8990’ #Broker XPUB
pub: ’tcp://192.168.1.1:8989’ #Broker XSUB

List of control apps
applications:

local_wifi_controller:
file : local_wifi_controller.py
class_name : MyLocalWiFiController

List of device modules
modules:

wifi_ath9k:
module : module_wifi_ath9k
class_name : WifiModule
device : ’phy0’

wifi_gnuradio:
module : module_wifi_gnuradio
class_name : WifiModule
device : ’uhd0’
kwargs: {UsrpServer=’http://10.0.0.1:8080’}

5.7 Support of other Programming Languages

Since the UniFlex prototype is implemented around ZMQ library, that is available for most of pro-
gramming languages, support of other programming languages like C/C++ is possible. As a proof,
we provide basic support for Node-RED (see Sect. 6.2) and the Android OS.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 19

TU BERLIN

Chapter 6

Integration with External Software Libraries

There exists a wide range of specialized open-source software libraries and tools for data processing,
mining, visualization, machine learning, etc. We argue that a control framework has to provide in-
tegration with such external tools in order to be widely used. This section gives a brief overview of
currently supported integration with external software.

6.1 Python Scientific Packages

As UniFlex control applications are written using Python programming language, network developers
can easily import any Python module within her network application. There exists number of scien-
tific libraries for Python language including tools for data mining (SciPy), data processing (NumPy),
machine learning (Tensorflow, PyBrain), etc.

6.2 Node-RED Integration

Flow graphs are a great abstraction model with sufficient computational power to be able to program
complex control behavior. Node-RED1 is a tool used by Internet-of-Things (IoT) community for
wiring together hardware devices, APIs and online services in new and interesting ways. The UniFlex
framework provides the possibility to connect to Node-RED. In a Node-RED flow graph, it is possible
to subscribe to any event and also generate events, which are afterwards are processed by UniFlex
control application(s).

Fig. 6.1 shows an example Node-RED flowgraph illustrating how UniFlex events can be consumed
and produced in Node-RED. It subscribes to SpectralScanSampleEvent, calculates a moving aver-
age and publishes the result as an AverageSpectralScanSampleEvent event, which can afterwards be
processed by another UniFlex control application.

With usage of ZMQ implementation for node.js, we provide two new Node-RED nodes: i) UniFlex
Subscriber Node that connects to Broker and receives events of pre-configured type; and ii) UniFlex
Publisher Node that sends events to Broker.

6.3 Mininet Integration

In order to offer the application developer an easy way to test own network control programs, before
deploying them in a real testbed, our framework can be executed in Mininet [10], a container-based

1http://nodered.org/

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 20

http://nodered.org/

TU BERLIN

Figure 6.1: Example Node-RED flowgraph consuming and producing UniFlex events.

emulation which is able to emulate large network topologies on a single computer. Specifically, we
use Mininet-WiFi [11], [12] which allows rapid prototyping and experimental evaluation of control
programs for wireless environments by augmenting the well-known Mininet emulator with virtual
802.11 WiFi stations and access points. Hence, it allows the emulation of control programs requiring
access to the higher 802.11 MAC protocol stack, aka SoftMAC [13].

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 21

TU BERLIN

Chapter 7

Applications

In this section we present selected network apps we implemented using UniFlex framework.

7.1 Wireless Topology Monitor

Knowledge of wireless topology is of great importance when performing experiments within wireless
testbeds as it provides the network programmer with a full view of the network. Usually, optimiza-
tion of wireless networks is touching configuration of neighboring nodes (channel assignment, load
balancing, station handover, D2D, etc).

We implemented topology monitoring as a control application in UniFlex. It consists of local
application running on each wireless node that collects and aggregates information about wireless
neighbors and sends it up to Wireless Topology Monitor application residing in central compute node.
For example, in case of 802.11 infrastructure networks the local app running on each AP would
periodically report the set of associated client stations.

In general the information about all wireless neighbors, a so-called hearing map, is desired, which
can be obtained by the local app by means of packet sniffing over a monitor interface, i.e. from all
received frames the packet headers are processed to get information about transmitter address as well
as additional information like signal strength and bitrate. For efficiency reasons the local apps do
not send the sniffed frames directly to the Wireless Topology Monitor app, instead only aggregated
information like transmitter address, average signal strength and bitrate are send via events to central
Wireless Topology Monitor app.

Based on the received information from the local network apps the Wireless Topology Monitor app
is able to create the wireless topology graph. Note, that even within a single technology a topology
may be defined in multiple ways. It may represent so called hearing map, where an edge is between
nodes in communication range, or a connectivity map. While a hearing map may be used to dis-
cover handover or D2D opportunities, a connectivity map may be used to control link transmission
parameters.

The Topology Monitor app may be parameterized to generate topology graph of required type(s).
Moreover, its interfaces are technology independent, i.e. being given properly structured and de-
scribed input data, it is able to generate topology graph.

The nodes in the topology graph contain unique identifiers (UUID) of UniFlex-enabled nodes,
or transmitter MAC address for other nodes. Edges represent connections between nodes and their
weights take value of pre-configured parameter, like bitrate, signal strength, etc. The topology graph
contains also meta-data describing it. In multi-channel environments the topology graph is a set of
graphs, one for each radio channel.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 22

TU BERLIN

Any other network app can subscribe to events generated by Topology Monitor app, e.g. notification
about topology changes. Note, the network nodes in topology graph can be directly accessed as
UniFlex provides helper functions mapping node identifiers to node reference objects (if known).

7.2 Mobility Management

Network
Load

AP

Mobility
Manager

Handover
App

AP

CQI
Collector

STA mobility

HORequest

change_routing

send_CSA addSTA/
set_ARP

Local
Node

Compute Node

HOReply
Event

CQI/Load-
Report
Events

Gateway

Network
Load

CQI
Collector

Local
Node

Figure 7.1: Mobility management for enterprise 802.11 networks.

Novel applications, e.g. mobile HD video, and devices, e.g. smartphones and tablets, require
much better mobility support and higher QoS/QoE. Therefore, in [14, 15] we presented BIGAP, a
seamless handover scheme for high performance enterprise IEEE 802.11 networks. We implemented
the mobility management function of BIGAP in UniFlex. Fig. 7.1 shows the hierarchical controller
architecture consisting of a central network app and multiple local network apps. On each AP two
local control applications are running for collection of information, i.e. quality of the active wireless
links as well as potential links to client stations in communication range which are currently being
served by another co-located AP (CQIReportEvent). This data as well as information about the cur-
rent network load at each AP (LoadReportEvent) is reported as event to the central mobility manager
network app which decides on handover by sending out a HORequest. The latter is processed by the
Handover App which performs the actual handover operation as described in [14].

7.3 Interference Management

Another known problem experienced in 802.11 networks is performance degradation due to co-
channel interference because of hidden nodes. The impact can be mitigated by preventing overlapping

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 23

TU BERLIN

Figure 7.2: Interference management through airtime management in 802.11 networks.

transmissions (in time) of affected nodes, e.g. APs, by efficient airtime management through interfer-
ence avoidance techniques at the MAC layer. We implemented interference management in UniFlex
using hMAC [16]. In particular the following two features have been implemented: i) detection of
wireless links suffering from hidden nodes and ii) execution of airtime management in which two
wireless links suffering from the hidden node problem are getting exclusive time slots assigned.

Fig. 7.2 illustrates the developed hierarchical controller architecture. Here we have two control ap-
plications running on each AP locally due to timing constraints and efficiency reasons. The TxFeed-
back control application provides transmission feedback information like number of ARQ retries to
the central Hidden-node detection control application which is using this information for discovery
of hidden-nodes. Each pair of wireless links suffering from hidden-node is reported using HNRe-
portEvent and consumed by another central control application, Interference Manager, which in turn
decides on the time slot configuration to be used. The actual assignment of time slots to nodes is
performed by the local TDMA scheduler.

7.4 Device-to-Device

The efficiency of wireless infrastructure networks can be significantly improved by enabling direct
device-to-device (D2D) communication between stations (Fig. 7.3). We implemented D2D function-
ality for 802.11 network as a central network app whose functionality can be used by other control
programs. The interaction takes place by exchange of events, namely, EnableD2D and D2DLink event
respectively. On receiving an EnableD2D event the D2D network app performs remote API function
calls on the network devices of the corresponding two client stations. On one station is enables soft
AP mode whereas on the other station connects to that AP. Moreover, on both clients IP connectivity
is configured using the appropriate API function calls. Note, all the implementation details are hidden
from the high level control design, thus simplify a controller implementation.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 24

TU BERLIN

AP

D2D App

STA1

EnableD2D
Event

enableAPMode()
configureIP()

D2D link

STA2

D2DLink
Event

connectToNetwork()
configureIP()

Compute
Node

Figure 7.3: UniFlex network app enabling direct device-to-device connectivity in IEEE 802.11
networks.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 25

TU BERLIN

Chapter 8

Evaluation

In this section we analyze the performance of our prototypical implementation with respect to two
categories: i) basic network operation and ii) scalability with respect to the number of controlled
network nodes.

8.1 Basic Network Operation

Observing and modifying the network state by means of executing API functions is a basic building
block of UniFlex operations, its performance is of great importance on the overall system’s perfor-
mance. We identified latency for network state monitoring and API function execution as an important
performance metric.

For this measurement, the experiments were conducted using three different network nodes: i) high
performance Intel i7-4790, ii) small-form-factor-PC based on Intel NUC and iii) low-power single-
board ARM Cortex-A8 machines (BeagleBone). All three nodes were equipped with a single 802.11
network device. For the evaluation of the performance of local calls we implemented a local control
application whereas for remote calls a global controller running on a different node connected by
Gigabit-Ethernet was used. We measured the latency of executing API functions, both locally and
remotely.

Table 8.1 shows the median (mean) and 99th percentile of the latency when executing a single
blocking local API function call, get_interfaces() which returns the available wireless interfaces of a
wireless node.

Latency Median 99 %ile

Intel (i7-4790, 3.6 GHz) 0.4017 ms 0.5009 ms
Intel NUC (i5-4250U, 1.3 GHz) 0.7627 ms 1.3986 ms
BeagleBone (ARM armv7l, 1 GHz) 10.0138 ms 11.4258 ms

Table 8.1: Latency for executing single blocking local API function.

Further, Table 8.2 shows the results when executing the same function remotely. Note that the
network overhead for the execution of this API call is around 1600 Bytes per call.

From the results we can conclude that the latency of performing an API call, locally or remotely, is
sufficient low to be used for real-world control applications. However, when using slow ARM SoCs
the latency is 11− 25× larger as compared to i7-4790 which might be insufficient. However, we
argue that the UniFlex agent can be easily implemented in a low-level programming language like C.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 26

TU BERLIN

Latency Median 99 %ile

Intel (i7-4790, 3.6 GHz) 1.2896 ms 1.5042 ms
Intel NUC (i5-4250U, 1.3 GHz) 2.6748 ms 3.1662 ms
BeagleBone (ARM armv7l, 1 GHz) 14.5829 ms 16.4588 ms

Table 8.2: Latency for executing single blocking remote API function.

8.2 Scalability

Another important performance metric is scalability. A key feature of our framework is its distributed
architecture for scale-out performance. As the number of network nodes to be controlled grows the
demand on the control plane increases.

For this measurement, the experiments were conducted in the ORBIT testbed [17] consisting of
i7-4790 x86 machines. The number of controlled network nodes was varied from one to 87 nodes.
A single central control program was executing API calls, get_interfaces(), on each node using non-
blocking calling semantic. We measured the latency to get the results from all nodes.

The results are shown in Fig. 8.1. It takes less than 25 ms to execute a non-blocking API call on
all 87 network nodes. Note, that the latency per API call decreases with the number of nodes, i.e.
2.37 ms vs. 0.24 ms for 1 and 87 nodes respectively. This is because non-blocking calls are executed
in parallel.

Note, that with 87 nodes and a API calling rate of 10 Hz the control plane workload at the cen-
tral controller is already high, i.e. 16 Mbit/s. In order to reduce it the use of hierarchical or local
controllers is advisable.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

No. of wireless nodes

La
te

n
c

y
[m

s]

Asynchronous function call (get_interfaces())

Median
99 %ile

Figure 8.1: Latency for executing single non-blocking API function call on a set of nodes.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 27

TU BERLIN

Chapter 9

Related Work

Related work falls into three categories:

Cross-layer Control: CRAWLER [18, 19] is experimentation architecture for centralized network
monitoring and cross-layer coordination over different devices. ClickWatch [20] aims for simpli-
fication of experimentation of wireless cross-layer solutions implemented using the Click Modular
Router [21]. Both frameworks aim to facilitate experimentation and offer possibility to control all
nodes in the network from a single centralized controller. In contrast, UniFlex is more flexible as
it allows distributing controller logic over multiple nodes so that time sensitive control logic can be
executed directly on the network node to be controlled.

Software-defined Networking: There are already lots of distributed control frameworks, but they
are mostly focused on control of wired switches using open protocols (e.g. OpenFlow). Some of
them, like ONOS [22] and ONIX [23] are focused on scalability and performance. As they are al-
ready in very advanced state, it is hard to use them for resource constrained devices or to adjust them
to wireless networking. Ryuo [4] and Kandoo [24] provide the possibility for offloading of control
applications to local controllers as a way to limit the control plane load. Local controllers handle
frequent events, while a logically centralized root controller handles rare events. In contrast UniFlex
is not restricted to two levels of controllers as it allows direct communication between any controller
applications. Beehive [25][26] provides interesting features like automatic distribution of network ap-
plications over network nodes. While having similar concepts, Beehive does not differentiate between
control applications and device modules which are of great importance when targeting the control of
heterogeneous wireless networks.

CoAP [27] proposes a vendor neutral centralized framework for configuration, coordination and
management of residential 802.11 APs using an open API implemented over OpenFlow [28]. In con-
trast to UniFlex the CoAP API is restricted to control of 802.11 networks. Moreover, only centralized
control programs are possible. OpenRF [3] provides programming abstractions tailored for wireless
networks, i.e. MIMO interference management techniques that impact the physical layer. OpenRF
is restricted to centralized control of 802.11 infrastructure networks. Finally, in [29] SDN architec-
ture for centralized spectrum brokerage in residential infrastructure Cognitive Radio networks was
proposed.

General Distributed Control Platforms: ROS [30] is an open source robot operating system for
rapid prototyping. ROS is focused on providing control for a single robot, trying to achieve one goal,
and having all devices working towards that goal. In UniFlex, we are trying to achieve harmonization
of multiple devices. Moreover, we also provide time scheduled execution of operations on multiple
devices.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 28

TU BERLIN

Chapter 10

Conclusions

This paper introduces UniFlex, a framework that uses SDN concepts to simplify prototyping of novel
wireless networking solutions requiring cross-layer control coordinated among multiple heteroge-
neous wireless network nodes. It provides a rich API for management and control of operation of
network devices. Control applications representing controller logic can be implemented in a local,
central or distributed manner. This allows to place time-sensitive control functions close to controlled
device, off-load resource hungry application to compute servers and make them work together to
control the entire network.

Chapter 11

Acknowledgments

This work has been supported by the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No. 645274 (WiSHFUL project).

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 29

TU BERLIN

Bibliography

[1] J. Mvulla, E.-C. Park, M. Adnan, and J.-H. Son, “Analysis of asymmetric hidden node problem
in IEEE 802.11 ax heterogeneous WLANs,” in Information and Communication Technology
Convergence (ICTC), 2015 International Conference on. IEEE, 2015, pp. 539–544.

[2] V. Pejovic and E. M. Belding, “Whiterate: A context-aware approach to wireless rate adapta-
tion,” IEEE Transactions on Mobile Computing, vol. 13, no. 4, pp. 921–934, 2014.

[3] S. Kumar, D. Cifuentes, S. Gollakota, and D. Katabi, “Bringing cross-layer MIMO to today’s
wireless LANs,” in ACM SIGCOMM Computer Communication Review, vol. 43, no. 4. ACM,
2013, pp. 387–398.

[4] S. Zhang, Y. Shen, M. Herlich, K. Nguyen, Y. Ji, and S. Yamada, “Ryuo: Using high level
northbound API for control messages in software defined network,” in Network Operations and
Management Symposium (APNOMS), 2015 17th Asia-Pacific, Aug 2015, pp. 115–120.

[5] “Switch Abstraction Interface (SAI) as part of Open Compute project.” [Online]. Available:
https://github.com/opencomputeproject/OCP-Networking-Project-Community-Contributions

[6] P. Ruckebusch, S. Giannoulis, E. De Poorter, I. Moerman, I. Tinnirello, D. Garlisi, P. Gallo,
N. Kaminski, L. DaSilva, P. Gawlowicz et al., “A unified radio control architecture for prototyp-
ing adaptive wireless protocols,” in Networks and Communications (EuCNC), 2016 European
Conference on. IEEE, 2016, pp. 58–63.

[7] C. Fortuna, P. Ruckebusch, C. Van Praet, I. Moerman, N. Kaminski, L. DaSilva, I. Tinirello,
G. Bianchi, F. Gringoli, A. Zubow et al., “Wireless software and hardware platforms for flexible
and unified radio and network control,” in European Conference on Networks and Communica-
tions (Eu-CNC), 2015.

[8] iMatix Corporation, “ZMQ - Code Connected,” http://zeromq.org/, January 2014, accessed:
2015-08-04.

[9] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “Towards an Open Source IEEE 802.11p
Stack: A Full SDR-based Transceiver in GNURadio,” in 5th IEEE Vehicular Networking Con-
ference (VNC 2013). Boston, MA: IEEE, December 2013, pp. 143–149.

[10] “Mininet.” [Online]. Available: http://mininet.org/

[11] “Mininet-WiFi.” [Online]. Available: https://github.com/intrig-unicamp/mininet-wifi

[12] R. R. Fontes, S. Afzal, S. H. Brito, M. A. Santos, and C. E. Rothenberg, “Mininet-WiFi: Emu-
lating software-defined wireless networks,” in Network and Service Management (CNSM), 2015
11th International Conference on. IEEE, 2015, pp. 384–389.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 30

https://github.com/opencomputeproject/OCP-Networking-Project-Community-Contributions
http://mininet.org/
https://github.com/intrig-unicamp/mininet-wifi

TU BERLIN

[13] “Linux wireless - mac80211.” [Online]. Available: https://wireless.wiki.kernel.org/en/
developers/documentation/mac80211

[14] A. Zubow, S. Zehl, and A. Wolisz, “BIG AP – Seamless Handover in High Performance Enter-
prise IEEE 802.11 Networks,” in Network Operations and Management Symposium (NOMS),
2016 IEEE, April 2016.

[15] S. Zehl, A. Zubow, and A. Wolisz, “Bigap - a seamless handover scheme for high performance
enterprise ieee 802.11 networks,” in NOMS 2016 - 2016 IEEE/IFIP Network Operations and
Management Symposium, April 2016, pp. 1015–1016.

[16] ——, “hMAC: Enabling Hybrid TDMA/CSMA on IEEE 802.11 Hardware,” Telecommunica-
tion Networks Group, Technische Universität Berlin, Tech. Rep. TKN-16-004, November 2016.

[17] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Siracusa, H. Liu,
and M. Singh, “Overview of the ORBIT radio grid testbed for evaluation of next-generation
wireless network protocols,” in IEEE Wireless Communications and Networking Conference,
2005, vol. 3. IEEE, 2005, pp. 1664–1669.

[18] I. Aktaş, O. Punñal, F. Schmidt, T. Drüner, and K. Wehrle, “A framework for remote automation,
configuration, and monitoring of real-world experiments,” in Proceedings of the 9th ACM inter-
national workshop on Wireless network testbeds, experimental evaluation and characterization.
ACM, 2014, pp. 9–16.

[19] I. Aktas, F. Schmidt, M. H. Alizai, T. Drüner, and K. Wehrle, “CRAWLER: An experimentation
platform for system monitoring and cross-layer-coordination,” in World of Wireless, Mobile and
Multimedia Networks (WoWMoM), 2012 IEEE International Symposium on a. IEEE, 2012,
pp. 1–9.

[20] M. Scheidgen, A. Zubow, and R. Sombrutzki, “Clickwatch—an experimentation framework for
communication network test-beds,” in 2012 IEEE Wireless Communications and Networking
Conference (WCNC). IEEE, 2012, pp. 3296–3301.

[21] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The click modular router,”
ACM Transactions on Computer Systems (TOCS), vol. 18, no. 3, pp. 263–297, 2000.

[22] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor,
P. Radoslavov, W. Snow et al., “ONOS: towards an open, distributed SDN OS,” in Proceedings
of the third workshop on Hot topics in software defined networking. ACM, 2014, pp. 1–6.

[23] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker, “Onix: A distributed control platform for large-scale
production networks,” in Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’10. Berkeley, CA, USA: USENIX Association, 2010,
pp. 351–364. [Online]. Available: http://dl.acm.org/citation.cfm?id=1924943.1924968

[24] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient and scalable offloading
of control applications,” in Proceedings of the first workshop on Hot topics in software defined
networks. ACM, 2012, pp. 19–24.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 31

https://wireless.wiki.kernel.org/en/developers/documentation/mac80211
https://wireless.wiki.kernel.org/en/developers/documentation/mac80211
http://dl.acm.org/citation.cfm?id=1924943.1924968

TU BERLIN

[25] S. H. Yeganeh and Y. Ganjali, “Beehive: Towards a simple abstraction for scalable
software-defined networking,” in Proceedings of the 13th ACM Workshop on Hot Topics in
Networks, ser. HotNets-XIII. New York, NY, USA: ACM, 2014, pp. 13:1–13:7. [Online].
Available: http://doi.acm.org/10.1145/2670518.2673864

[26] ——, “Beehive: Simple distributed programming in software-defined networks,” in
Proceedings of the Symposium on SDN Research, ser. SOSR ’16. New York, NY, USA: ACM,
2016, pp. 4:1–4:12. [Online]. Available: http://doi.acm.org/10.1145/2890955.2890958

[27] A. Patro and S. Banerjee, “COAP: A software-defined approach for home WLAN management
through an open API,” ACM SIGMOBILE Mobile Computing and Communications Review,
vol. 18, no. 3, pp. 32–40, 2015.

[28] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner, “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Com-
puter Communication Review, vol. 38, no. 2, pp. 69–74, 2008.

[29] A. Zubow, M. Döring, M. Chwalisz, and A. Wolisz, “A SDN approach to spectrum broker-
age in infrastructure-based Cognitive Radio networks,” in Dynamic Spectrum Access Networks
(DySPAN), 2015 IEEE International Symposium on. IEEE, 2015, pp. 375–384.

[30] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “ROS:
an open-source Robot Operating System,” in ICRA workshop on open source software, vol. 3,
no. 3.2. Kobe, Japan, 2009, p. 5.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 32

http://doi.acm.org/10.1145/2670518.2673864
http://doi.acm.org/10.1145/2890955.2890958

TU BERLIN

Chapter 12

Appendix A – Description of UniFlex APIs

Table 12.1: Agent API

Function Description
Boolean::add_control_application(controlAppObj) Add ControlApplication object to Agent.

Returns True if succeeded; otherwise False
Boolean::remove_control_application(uuid) Remove ControlApplication object from Agent

by its UUID.
Returns True if succeeded; otherwise False

ControlApplicationList::get_control_applications() Get all Control Application of Agent.
Returns list of ControlApplication objects.

ControlApplication::get_control_application(uuid) Get ControlApplication object by its UUID.
Returns Control Application object.

Boolean::start_control_application(uuid) Start Control Application by its UUID.
Returns True if succeeded; otherwise False

Boolean::stop_control_application(uuid) Stop Control Application by its UUID.
Returns True if succeeded; otherwise False

Boolean::add_device_module(deviceModuleObj) Add DeviceModule object to Agent.
Returns True if succeeded; otherwise False

DeviceModuleList::get_device_modules() Get all Device Modules installed in Agent.
Returns list of DeviceModule objects.

DeviceModule::get_device_module(uuid) Get DeviceModule object by its UUID.
Returns DeviceModule object.

Boolean::add_protocol_module(protModuleObj) Add ProtocolModule object to Agent.
Returns True if succeeded; otherwise False

ProtocolModuleList::get_protocol_modules() Get all Protocol Modules installed in Agent.
Returns list of ProtocolModule objects.

ProtocolModule::get_protocol_module(uuid) Get ProtocolModule object by its UUID.
Returns ProtocolModule object.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 33

TU BERLIN

Table 12.2: Module API

Function Description
Boolean::send_event(event, mode) Sent event using one of two modes: node-

broadcast and global-broadcast.
Returns True if succeeded; otherwise False

Table 12.3: Device Module API

Function Description
operation_1(arg1,...) Python wrapper for operation exposed by device.
operation_N(arg1,...) Python wrapper for operation exposed by device.

Table 12.4: Protocol Module API

Function Description
operation_1(arg1,...) Python wrapper for operation exposed by proto-

col.
operation_N(arg1,...) Python wrapper for operation exposed by proto-

col.

Table 12.5: Control Application API

Function Description
NodeProxy::get_local_node() Get NodeProxy object for local node , i.e. the one

that runs Application.
Returns NodeProxy object.

Boolean::send_event(event, mode) Sent event using one of two modes: node-
broadcast or global-broadcast.
Returns True if succeeded; otherwise False

Boolean::subscribe_for_events(eventType, call-
back, mode)

Subscribe for events of specific type using one of
two modes:
- node-broadcast — subscribe for events of spe-
cific type generated on local node
- global-broadcast – subscribe for events of spe-
cific type generated at any node in network
The callback function will be called on reception
of event.
Note: If event type is not specified, application
subscribes for events of all types.
Returns True if succeeded; otherwise False

Boolean::unsubscribe_from_events(eventType) Unsubscribe from event from specific type. If
event type is not given, unsubscribe from all
event types.
Returns True if succeeded; otherwise False

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 34

TU BERLIN

Table 12.6: NodeProxy API

Function Description
Time::get_time() Get time of remote node.

Returns UNIX time of remote node.
Boolean::is_synchronizing() Check if remote node is synchronizing with some

time server.
Returns True is remote node runs time synchro-
nization process; False otherwise

String::get_time_synchronization_source() Get time synchronization source of remote node.
Note: we need to check if remote node synchro-
nizes with the same source as application’s local
node.
Returns name of synchronization source.

Accuracy::get_time_synchronization_accuracy() Get time synchronization accuracy.
Returns time synchronization accuracy in mil-
liseconds.

DeviceProxyList::get_devices() Get proxy objects for all device modules installed
in remote node.
Returns list of Device Module Proxy objects.

DeviceProxy::get_device(uuid) Get Device Module proxy object by its UUID.
Returns DeviceModuleProxy object.

ProtocolProxyList::get_protocols() Get proxy objects for all protocol modules in-
stalled in remote node.
Returns list of Protocol Module Proxy objects.

ProtocolProxy::get_protocol(uuid) Get Protocol Module proxy object by its UUID.
Returns ProtocolModuleProxy object.

ControlApplicationProxyList:: Get proxy objects for all control
get_control_applications() applications installed in remote node.

Returns list of ControlApplicationProxy objects.
ControlApplicationProxy:: Get Control Application proxy object by
get_control_application(uuid) its UUID.

Returns ControlApplicationProxy object.
Boolean::send_event(event) Send event to remote node in node-broadcast

mode, i.e. event is delivered to node and broad-
casted to all subscribed Control Applications.
Returns True if succeeded; otherwise False

Boolean::subscribe_for_events(eventType, call-
back)

Subscribe for events of given type generated in
remote node. If event type is not given, subscribe
for all events generated in remote node. The call-
back function will be called on reception of event.
Returns True if succeeded; otherwise False

Boolean::unsubscribe_from_events(eventType) Unsubscribe from events of given type generated
in remote node. If event type is not given unsub-
scribe from all events generated in remote node.
Returns True if succeeded; otherwise False

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 35

TU BERLIN

Table 12.7: ControlApplicationProxy API

Function Description
Boolean::is_running() Check if remote control application is running.

Returns True if remote app is running; otherwise
False

Boolean::start() Start remote control application.
Returns True if succeeded; otherwise False

Boolean::stop() Stop remote control application.
Returns True if succeeded; otherwise False

Boolean::send_event(event) Send event to remote application in unicast mode.
Node: event will be delivered only if remote ap-
plication subscribe for it.
Returns True if succeeded; otherwise False

Boolean:: Subscribe for events of given type generated
subscribe_for_events(eventType, callback) in remote control application. If event type is not

given, subscribe for all events generated in re-
mote control application. The callback function
will be called on reception of event.
Returns True if succeeded; otherwise False

Boolean::unsubscribe_from_events(eventType) Unsubscribe from events of given type generated
in remote control application. If event type is not
given unsubscribe from all events generated in re-
mote control application.
Returns True if succeeded; otherwise False

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 36

TU BERLIN

Table 12.8: ModuleProxy API

Function Description
ModuleProxy::callback(callbackFunction) Execute operation of device in non-blocking

mode and register callback function that will be
called upon reception of return value from opera-
tion.
If callbackFunction is not defined operation will
be executed in non-blocking mode.
Returns the same ModuleProxy object -> func-
tion chaning.
Example:
device.callback(myCallback).set_channel(11).

ModuleProxy::delay(relativeTime) Delay execution of operation by given amount of
time. It will result in non-blocking call. Use call-
back function to register callback.
Returns the same ModuleProxy object -> func-
tion chaning.
Example:
device.delay(5s).set_channel(11).

ModuleProxy::exec_time(absoluteTime) Schedule execution of operation in remote device
module. It will result in non-blocking call. Use
callback function to register callback. Absolute
time is UNIX time.
Returns the same ModuleProxy object -> func-
tion chaning.
Example:
device.exec_time(execTime).set_channel(11).

Boolean:: Subscribe for events of given type generated in
subscribe_for_events(eventType, callback) remote device module. If event type is not given,

subscribe for all events generated in remote de-
vice module. The callback function will be called
on reception of event.
Returns True if succeeded; otherwise False

Boolean:: Unsubscribe from events of given type generated
unsubscribe_from_events(eventType) in remote device module. If event type is not

given unsubscribe from all events generated in re-
mote device module.
Returns True if succeeded; otherwise False

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 37

TU BERLIN

Table 12.9: DeviceProxy API

Function Description
operation_1(arg1,...) Python wrapper for remote operation exposed by

device.
operation_N(arg1,...) Python wrapper for remote operation exposed by

device.

Table 12.10: ProtocolProxy API

Function Description
operation_1(arg1,...) Python wrapper for remote operation exposed by

device.
operation_N(arg1,...) Python wrapper for remote operation exposed by

device.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN 16-0003 Page 38

	Introduction
	System Model
	Requirements and Design Principles
	Architecture Overview
	Control Applications
	Northbound Interface
	Distributed Control Framework
	Southbound Interface
	UniFlex Framework UML Diagram

	Implementation Details
	Northbound Interface
	Agent
	Broker
	Control Application
	Southbound Interface
	Deployment
	Support of other Programming Languages

	Integration with External Software Libraries
	Python Scientific Packages
	Node-RED Integration
	Mininet Integration

	Applications
	Wireless Topology Monitor
	Mobility Management
	Interference Management
	Device-to-Device

	Evaluation
	Basic Network Operation
	Scalability

	Related Work
	Conclusions
	Acknowledgments
	Appendix A – Description of UniFlex APIs

