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Abstract—WiFi networks suffer from severe network utility
degradation due to the usage of diverse modulation and coding
schemes. The proportional-fair allocation, that has been shown to
be a good remedy, can be enforced through the proper selection
of contention window values. This has been achieved so far for
centralized systems by an explicit solution of an optimization
problem or, as proposed recently, by following a learning-based
approach. In this paper, we present the first fully distributed
solution in which each of the WiFi nodes independently tunes
its contention window to achieve proportional fairness. Our
solution is therefore applicable also for a set of collocated,
unconnected WiFi networks. We compare the throughput and
air-time allocation that this algorithm achieves to the values
achieved by standard WiFi binary exponential back-off and
values achieved by known centralized algorithms.

Index Terms—WiFi, Contention Window, Distributed Opti-
mization

I. INTRODUCTION

The widely deployed WiFi stations employ various modu-
lation and coding schemes (MCSs) to preserve transmission
robustness in response to the quality of the radio link they
experience, which in turn depends on their communication
distance, mobility, and other factors. The lower MCSs offer
increased robustness against errors at the cost of a slower data
rate. Under the frame-level fairness implied by the standard
WiFi contention window (CW ) adaptation, a station with poor
transmission conditions captures extensive air-time share and
reduces the air time available to other (possibly faster) stations,
and hence the station slows down all stations. This pathological
behavior was first identified in 802.11b networks [1]. Then,
Patras et al. [2] demonstrated that the effect is dramati-
cally exacerbated in today’s high throughput networks (i.e.,
802.11n/ac), where the data rates among stations may vary by
orders of magnitude, e.g., the throughput of a station using the
data rate of 780 Mbps becomes similar to that of a co-existing
station with the data rate of 6 Mbps.

The proportional-fair allocation, introduced by Kelly
et al. [3], was shown to address the performance anomaly
problem appropriately [4]. By definition, it maximizes the
network utility (defined as the sum of the logarithms of
individual throughputs) subject to the constraints that the
communication conditions impose on the individual stations.
In [5], the proportional fairness allocation in WiFi networks
was formulated as a convex optimization problem that is
solved by selecting optimal contention window values for
the stations. The existing approaches to solve this problem

are deployed in a central node (e.g., AP or a controller
node) and require knowledge of individual MAC parameters
(e.g., packet duration) and/or throughput of each transmitting
station. Such centralized operation cannot be assumed in the
case of overlapping but separately managed WiFi networks –
the typical case for an apartment complex or office building
occupied by multiple companies. In fact, the standard does
not envision the possibility of communication between nodes
belonging to different networks eliminating any attempt for
centralized control (e.g., by the elected leader).

Therefore, we have started working on a distributed
learning-based approach where each of the WiFi nodes, based
on local observation of the traffic, independently tunes its own
contention window to achieve global proportional fairness. Our
approach follows the mindset of a distributed stochastic convex
optimization framework. Unfortunately, we have found no the-
oretical results which might be applied to our case. Motivated
by this real technical problem, one of the authors succeeded
to deliver rigorous proof of the convergence of the Kiefer-
Wolfowitz algorithm [6] in a distributed and asynchronous
setting. The results, published in [7], [8], have been very
encouraging but, unfortunately, obtained under mathematical
assumptions that are not strictly satisfied by our technical
problem.

In this work, we explore the usability of the distributed
and asynchronous Kiefer-Wolfowitz (DA-KW) algorithm un-
der realistic assumptions in a practical use-case of wireless
optimization. Specifically, the contributions of this work are
as follow:
• We propose a simple approach for distributed contention

window tuning that achieves proportional fairness in
coexisting WiFi scenarios. To this end, we apply the
DA-KW algorithm to the WiFi domain with slight mod-
ifications to address the practical issues.

• Using simulations, we evaluate the proposed approach in
terms of convergence speed and achieved performance
in multiple scenarios. Moreover, we compare its perfor-
mance with the standard WiFi.

• We investigate the impact of the level of coordination
(i.e., synchronized execution and information exchange).
It appears that there is no significant gain of the coordi-
nation in the case of a single collision domain. However,
coordination and information exchange allow achieving
optimal channel allocation in the case of overlapping
collision domains.



II. RELATED WORK

Proportional fairness in WiFi networks has been extensively
studied, e.g., [9]–[11]. Checco et al. [4] provided an anal-
ysis of proportional fairness in WiFi networks. The authors
proved that a unique proportional fair rate allocation exists
and assigns equal total (i.e., spent on both colliding and
successful transmission) air-time to nodes. Patras et al. [2]
extended this analysis to multi-rate networks, and confirmed
that under proportional fair solution all the stations get an
equal share of the air-time, which is inversely proportional to
the number of active stations. The authors formulated network
utility maximization as a convex optimization problem and
provided a closed-form solution that can be solved explicitly.
To this end, an AP estimates the average duration of successful
transmissions for each station and pass it as an input to the
optimization tool. The computed CW values are distributed
to nodes in a beacon frame. The optimization is executed
periodically (i.e., every beacon interval) to react to changes
in the network (e.g., traffic or wireless conditions).

An alternative approach was proposed by Famitafreshi
et at. [12]. The authors use a stochastic gradient descent
(SGD) algorithm, which can iteratively learn the optimal con-
tention window only by monitoring the network’s throughput.
Specifically, the learning agent resides in the WiFi access
point (AP), where it can measure the uplink throughput of
each connected station and send the CW value updates to all
the stations in a beacon frame. The algorithm combines two
throughputs measured under different CW values to compute
the gradient and update the CW following the SGD algorithm.

Both proposed algorithms use global knowledge and central-
ized operation (i.e., deployed in AP). However, in typical sce-
narios, multiple networks under separate management domains
are co-located and have to coexist, and there is no central
entity with the full knowledge to perform the optimization or
learning.

III. RELEVANT WIFI BACKGROUND

In this section, we briefly describe the CSMA operation,
present its analytical models, and summarize the throughput
optimization in WiFi networks.

A. WiFi Random Back-off Operation

WiFi nodes use the Distributed Coordination Function
(DCF) mechanism to access the channel. The DCF is based
on the Carrier Sense Multiple Access/Collision Avoidance
(CSMA/CA) method and employs binary exponential back-
off (BEB) to control the contention window. Specifically,
in DCF, before a frame transmission, a WiFi station has
to perform a random back-off procedure. To this end, it
initializes its back-off counter with a random number drawn
uniformly from {0, . . . , CW−1}, where CW is the contention
window. Then, the station observes the wireless channel and
decrements the counter whenever it is sensed idle during a
DCF inter-frame space (DIFS) and freezes the back-off counter
otherwise. Finally, when the back-off counter reaches zero, the
station transmits a frame. If the transmission is successful (as

indicated by the reception of an acknowledgment), the station
sets CW to the minimal value, i.e., CWmin, for the next
transmission. Otherwise, it doubles the previous contention
window and performs the frame retransmission. The CW
is increased until it reaches the maximal value defined by
CWmax.

B. Analytical Model of Contention-based Medium Access

Here, we briefly describe the analytical model derived in [2]
which allows computing the total throughput achieved by WiFi
nodes. We assume that all nodes are in a single collision
domain (i.e., each node overhears transmissions of all other
nodes). For the sake of clarity of presentation, in this section,
we consider the case where all stations are saturated (i.e.,
they always have packets to transmit), but in Section VI, we
also evaluate our algorithm in scenarios with non-saturated
traffic. Note that the model allows for arbitrary packet sizes
and selection of MCS.

Let us consider a set of N wireless stations, where each
active station i accesses the channel with slot transmission
probability λi. The relation between channel access probability
to a constant contention window is CWi = 2−λi

λi
[13]. The

transmission failure probability experienced by a station i
equals pf,i = 1−(1−pn,i)(1−pi), where pn,i is the probability
that the transmission fails due to channel errors (e.g., noise or
interference), while pi = 1 −

∏N
j=1,j 6=i(1 − λj) denotes the

collision probability experienced by a packet transmitted by
this station. Then, the throughput of station i equals Si:

Si =
ps,iDi

PeTe + PsTs + PuTu
(1)

where, ps,i = λi(1 − pf,i) is the probability of a successful
transmission performed by station i, while Di denotes its
frame payload size in bits. Pe =

∏N
i=1(1 − λi) is the proba-

bility that the channel is idle during a slot of duration Te (e.g.,
9µs in 802.11n). Ps =

∑N
i=1 ps,i and Pu = 1−Pe−Ps are the

expected probabilities of successful and unsuccessful transmis-
sion with the expected durations Ts =

∏N
i=1

ps,i
Ps
Ts,i and Tu =∏N

i=1
pu,i

Pu
Tu,i, respectively. Here, Ts,i and Tu,i are the dura-

tions of successful and a failed transmissions of each station
that depend on the fixed preamble duration, the variable dura-
tion of a header, the size of a payload transmitted with the PHY
rate Ci, and whether an acknowledgment is sent (success)
or not (failure). Finally, pu,i = τipn,i

∏N
j=1,j 6=i (1− τj) +

τi

(
1−

∏i−1
j=1(1− τj)

)∏N
j=i+1(1−τj) is the probability of an

unsuccessful transmission (either due to collision or channel
errors) of stations of highest index i (when labeling stations
according to their transmission durations). Note that the proper
labeling is needed as the duration of a collision is dominated
by the frame with the longest duration involved in that
collision, and collisions should only be counted once.

Using the transformed variable yi = λi

1−λi
, the expression

of a station’s throughput (1) can be rewritten as:

Si = (1− pn,i)
yi
Y
Di (2)



where Y = Te +
∑N
i=1

(
yiTs,i

∏i−1
k=1 (1 + yk)

)
. We refer

to [2] for the details of the model and the transition from
identity (1) to (2).

C. Proportional-fair Allocation

Following [4], we formulate the proportional-fair allocation
problem as a convex optimization problem. The global utility
function is defined as the sum of the logarithms of individual
throughputs, i.e., U =

∑N
i=1 S̃i, where S̃i = log(Si). The

utility maximization problem is as follows:

maximize
N∑
i=1

S̃i

s.t. S̃i ≤ log
(
zi
yi
Y
Di

)
, i = 1, 2, ..., N

and 0 ≤ yi, i = 1, 2, ..., N (0 ≤ λi ≤ 1)

where zi = 1 − pn,i. The constraints ensure that the optimal
solution is feasible, i.e., it is within the log-transformed rate
region R̃. The rate region R is a set of achievable throughput
vectors S(λ) = [S1, S2, ..., SN ] as the vector λ of attempt
probabilities ranges over domain [0, 1]N . The set R is known
to be non-convex in 802.11 networks, but the log-transformed
rate region R̃ is strictly convex [5]. Moreover, as the strong
duality and the KKT (Karush-Kuhn-Tucker) conditions are
satisfied, a global and unique solution exists.

IV. DISTRIBUTED STOCHASTIC OPTIMIZATION PRIMER

Here, we briefly introduce the stochastic convex optimiza-
tion techniques in centralized (i.e., single agent) and dis-
tributed (i.e., multiple agents) settings.

A. Stochastic Convex Optimization

A Stochastic Convex Optimization deals with minimizing
of the expected value of a function F (x, ξ) that is convex in
x ∈ Rd where ξ is random vector:

Find x∗ = argmin
x∈K

f(x) := E(F (x, ξ)). (3)

The setup is that one has access to sample values of F (x, ξ).
If one could measure the gradient ∇f(x) of the function,

one could use a gradient descent algorithm where the pa-
rameters at the t-th iteration, xt, are updated according to
xt+1 = xt− ηt∇f(x), where ηt is the step size at iteration t.
However, in practical scenarios there is no access to the actual
gradient ∇f(x). Accordingly, the stochastic gradient descent
algorithms rely on constructing noisy gradient estimates g̃t,
which are then used to adjust the parameters according to
xt+1 = xt − ηtg̃t.

The Kiefer-Wolfowitz (KW) algorithm [6] is a gradient es-
timation method that combines two function evaluations with
perturbed values of its variable to compute the estimate. The
simultaneous perturbation stochastic approximation (SPSA)
algorithm [14] is an extension of the KW algorithm towards
multivariate problems. In SPSA, the partial derivatives with

respect to the different variables are estimated by simultane-
ously perturbing each variable by an independent and zero-
mean amount, instead of perturbing the variables one at a time.

The optimization procedure can be performed in a cen-
tralized or distributed setting. In the former case, a single
agent knows and controls all the variables in vector x and
has the exclusive right to query the function (we refer to it as
environment), while in the latter case, those assumptions do
not hold.

B. Distributed Convex Optimization

In the distributed settings, a set of N distributed agents try to
optimize a global objective function. The critical challenge is
that agents make individual decisions simultaneously, and the
value of the function depends on all agents’ actions. Moreover,
we assume that the agents are not synchronized (i.e., they
query the function and update their variable asynchronously at
a random point in time) and cannot communicate. Specifically,
each agent adjusts his own variable xi without knowing the
values of the other variables, i.e., x−i. Fig. 1 shows the
interaction between agents and the environment.

Agent Agent 
Environment	
stores	

and	computes	

Agent 
starts with random

delay 

				Every	 	submit

Observe

Fig. 1. The interaction between distributed agents and the environment –
agents asynchronously submit their individual variables to the environment
and get noisy observations of its value.

Following a naive application of the KW algorithm, each
agent estimates the gradient by perturbing its own variable by
a zero-mean change and querying the global function every
time interval τ . Then, it uses those measurements to determine
the gradient and updates its variable in proportion to the
computed estimate. Note that agents perform such experiments
without any coordination. Thus, when an agent attempts to get

Algorithm 1: DA-KW (executed by each agent i)

1 Input: Non-increasing sequences (δk) , (ηk)
2 Input: Function sample interval τ ≥ 1
3 Input: Phase offset pi ∈ {1, . . . , τ − 1}
4 Initialization: Choose arbitrary y0 ∈ R
5 for k = 0, 1, . . . , do
6 Draw εk uniformly from {−1, 1}
7 Let t = k × 2τ + pi
8 At t set xt = yk + εkδk
9 Observe g+k = f(xt).

10 At t+ τ set xt+τ = yk − εkδk
11 Observe g−k = f(xt+τ )

12 Compute gradient estimate g̃k =
g+k −g

−
k

2εkδk
13 Update yk+1 = yk − ηkg̃k
14 if ‖xt − x∗‖ < ε∗ break
15 end



a second evaluation of the function, the function may have
already changed due to another agent’s query. Intuitively, each
agent gets gradient estimates corrupted due to the actions of
other agents. However, we have recently proved that the KW
algorithm can converge to the optimal solution in a distributed
and asynchronous (DA) setting if the size of perturbation
is bounded [7]. The algorithm executed by each agent is
presented as Algorithm 1.

V. DISTRIBUTED CONTENTION WINDOW LEARNING

Based on a distributed and asynchronous Kiefer-Wolfowitz
algorithm, we propose a simple collaborative learning scheme
for WiFi nodes, which allows them to learn the optimal con-
tention window values without coordination and information
exchange.

A. Practical Issues

There are several practical issues that have to be considered.
First, the utility function evaluation is not immediate, as an
agent cannot measure the instantaneous throughput. Instead,
it has to count an amount of successfully transmitted data
by overhearing frames and compute the mean throughput
of neighboring nodes over the measurement time slot τ .
As agents follow this procedure simultaneously with random
phase offsets, the utility that each agent observes is an average
of multiple function evaluations during τ that correspond to
changing CW of agents. Second, in contrast to the formal
proof where the function is globally defined, the congestion
window takes values in a discrete set between CWmin and
CWmax. Finally, to make an algorithm responsive to changes
(e.g., used data rates), we use constant exploration and learning
parameters and remove the termination condition. Therefore,
the algorithm cannot converge to the optimum value but only
to its neighborhood.

B. Proposed Approach

We apply a modified version of the DA-KW algorithm to
learn the IEEE 802.11’s CW cooperatively. More specifically,
as illustrated in Algorithm 2, we introduce modifications to
match the discussed practical issues.

From the point of view of a single agent, our proposed
technique works as follows. During initialization, a WiFi
node selects a contention window value within the range of
[CWmin, CWmax]. The integer CW value is converted to
log-transformed variable y using function L. Specifically, L
computes channel access probability as λ = 2

CW+1 , and then
transformed variable as y = log( λ

1−λ ). By L−1, we designate
the operation inverse to L.

At a random time point t, node i perturbs its log-transformed
variable by a fixed exploration parameter δk, i.e., it replaces yk
by yk+εkδk and converts that value back to the discrete CWt

value. Next, for the duration of a single measurement slot τ
(e.g., 100 ms), it transmits all its frames applying the CWt

value to the back-off procedure. Simultaneously, the node
observes the environment formed by all WiFi nodes. That is,
by overhearing frames, it counts the amount of data transmitted

Algorithm 2: Proposed Algorithm (executed by each
agent i)

1 Input: L converts CW to log-transformed value y
2 Input: Constant parameters δk = δ, ηk = η
3 Input: Function sample interval τ
4 Input: Random phase offset pi ∈ [0, τ ]
5 Initialization: Choose y0 ∈ [L(CWmin), L(CWmax)]
6 for k = 0, 1, . . . , do
7 Draw εk uniformly from {−1, 1}
8 Let t = k × 2τ + pi
9 At t set CWt =

⌈
L−1(yk + εkδk)

⌉
10 Observe transmissions of neighbors for τ and

compute g+k =
∑N
i=1 S̃i.

11 At t+ τ set CWt+τ =
⌈
L−1(yk − εkδk)

⌉
12 Observe transmissions of neighbors for τ and

compute g−k =
∑N
i=1 S̃i.

13 Compute gradient estimate g̃k =
g+k −g

−
k

2εkδk
14 Update yk+1 = Πk (yk − ηkg̃k), where Πk is the

projection operator onto Kδk
15 end

by each neighbor. At the end of the measurement slot, it
computes the value of the network utility function, i.e., the sum
of the logarithms of the observed throughputs of the different
nodes and the known own throughput. Then at t+ τ , the node
again perturbs its log-transformed variable, i.e., it replaces
yk by yk − εkδk, and repeats the measurement procedure.
Finally, at t+ 2τ , it combines both measurements to compute
the gradient estimate and updates its log-transformed variable
yk+1 accordingly. The value is projected to the decision set
defined as Kα = [A + α,B − α], where α ≤ B−A

2 . The
projection of x to the nonempty interval [a, b] is defined as
Π[a,b] = max{min{b, x}, a}. Note that the gradient descent
is performed in a continuous domain using log-transformed
variable y, which is then converted and discretized into an
integer CW value.

C. Impact of Diverse Coordination Levels

To evaluate the impact of action synchronization among
the distributed nodes, we target the scenario with a two-step
approach that gradually removes the coordination:

Coordinated Learning: In the case of full coordination, the
measurement slots of agents are synchronized, i.e., pi = 0
for i ∈ {1, .., N}. Specifically, agents perform the gradient
estimation procedure and update the CW at the same time.
Therefore, the utility function is evaluated with constant vari-
ables in each time slot.

Uncoordinated Learning: In the general case, the actions of
distributed agents are not synchronized, and at any point in
time t each agent is at a different stage of the algorithm. Note
that from each agent’s perspective, the environment state could
change N − 1 times within a single measurement period.



VI. PERFORMANCE EVALUATION

We evaluate the distributed contention window tuning al-
gorithm by means of simulations using the ns3-gym frame-
work [15]. Specifically, we use the model for IEEE 802.11n
in infrastructure-based mode and create multiple overlapping
WiFi networks. Note that nodes belonging to separate net-
works cannot communicate. If not stated otherwise, we create
a fully-connected topology (i.e., single collision domain),
where nodes are uniformly spread in the area of 10-by-10 m;
hence, every transmitter can sense ongoing transmissions.
In order to change network contention conditions, we vary
the number of transmitting nodes. Moreover, we change the
data rates and frame sizes to influence the solution of the
proportional-fairness problem. To turn off the BEB procedure
and enable simple uniform back-off, i.e., we assign the same
value of CW to CWmin and CWmax. We bound the CW
value to the range used in WiFi, i.e., CW ∈ {15, 1023}, hence
the log-transformed CW operates in y ∈ {−6.23,−1.94}. We
show the convergence of the algorithm using the evolution of
the contention window, air-time share, and throughput.

A. Selection of Measurement Slot Duration

First, we evaluate the impact of the measurement slot
duration on the quality of the network utility estimates and the
algorithm’s convergence. To this end, we consider a scenario
with five transmitting stations with homogeneous traffic, i.e.,
each station is backlogged with 1000 B UDP packets and
transmits to its own AP with a data rate equal to 26 Mbps.

Fig. 2 shows the evolution of the contention window value
(we show c = log2(CW )) for each of transmitting nodes with
four slot durations, τ ∈ {25, 50, 100, 200}ms. We observe
higher variability for smaller values of τ , which is expected
due to the random nature of the frame transmissions. Specif-
ically, with smaller values of τ , the nodes cannot collect
enough statistics to accurately estimate the network utility.
These effects are alleviated by increasing the duration of τ
so that the throughput estimates become more accurate, but
at the cost of longer convergence time as updates are less
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Fig. 2. Convergence of individual CW under various measurement slot
duration τ ∈ {25, 50, 100, 200}ms.

frequent. For further evaluation, we select τ = 200 ms, and
leave its optimization as future work.

B. Homogeneous Traffic

Here, we examine the sensitivity of the proposed distributed
algorithm to the type of coordination and learning parameters.
We vary the number of active nodes with N ∈ {2, 10}. We use
the same homogeneous traffic parameters as in section VI-A.
Note that the exploration parameter δ and the learning rate η
were adequately selected to provide good performance.

We compare the performance of our technique to the
original IEEE 802.11 BEB technique and to the centralized
learning approach. In centralized learning, there is only a
single agent (e.g., residing in a cloud server) that collects
individual throughput data from each transmitting node, per-
forms gradient search and sends new CW values to the nodes.
Therefore, in contrast to the distributed learning where agents
have to estimate each others’ throughputs, in centralized learn-
ing, the single-agent gets exact throughput values as measured
by each transmitting node. Note that we do not model the
communication delay between the nodes and the cloud server,
which might be in the order of tens of milliseconds.

Fig. 3 and Fig. 4 show a representative evolution of individ-
ual contention windows, total network throughput, as well as
allocation of air-time in the scenario with two and ten nodes,
respectively. In each setting, the nodes start with the same
CW value selected from {15, 1023}. First, we observe that
nodes converge to similar CW values, as expected because
of the homogeneous traffic, and the algorithm converges to
equal air-time allocation and optimal total network throughput.
Note that in the case of ten active nodes, the total throughput is
around 20% higher than that achieved by WiFi. The algorithm
converges faster in the case of ten nodes, as the utility function
becomes steeper with an increased number of nodes [12].
The variability of CW is higher for ten nodes, as the node
estimates become noisier. Nevertheless, the network operates
with approximately optimal utility. Moreover, in the case of
two nodes, we observe an interesting cooperative behavior
where the initially more aggressive node slows down to free
more air-time for its peer, then both nodes increase their
aggressiveness to maximize the network utility. Note that the
convergence speed is rather slow (i.e., in order of tens of
seconds), so the learning-based schemes are useful in scenarios
with long-lasting flows (e.g., video streaming).

Our results also show that the distributed algorithm provides
similar performance as the centralized algorithm. Specifically,
in a single collision domain and thanks to CSMS/CA channel
access mechanism the throughput estimates computed by each
learning agent are very accurate (i.e., close to the real values).
Therefore, the exchange of those values is not needed and
would only introduce additional delay slowing down the
convergence even further. Moreover, the distributed algorithm
behaves similarly with and without learning coordination, i.e.,
there is no significant advantage to coordination.

Finally, the three right-most columns in Fig. 3 and Fig. 4
show the convergence behavior with different learning rates
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Fig. 3. Convergence of the proposed algorithm with two transmitting nodes.
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η ∈ {0.05, 0.1, 0.3}. Increasing the value of η allow the
algorithm to take bigger steps and to converge faster in case
of two nodes. But, when N = 10, the higher learning rate
brings more fluctuations due to increased noise in the utility
estimates. The evaluation with varying exploration parameters
was skipped due to the space limit.

C. Heterogeneous Traffic

Here, we evaluate the performance of the algorithm under
heterogeneous traffic, where the optimal CW values are not
identical for all transmitting nodes. We consider two scenarios,
where three nodes use diverse transmission parameters: i) the
same data rate (MCS3, 26 Mbps), but diverse packet sizes
Di ∈ {250, 500, 1000}B; ii) the same packet size (1500 B),
but diverse data rates Mi ∈ {6.5, 26, 65}Mbps.

In Fig. 5 and Fig. 6, we compare the performance of our dis-
tributed approach with standard WiFi operation. Specifically,
we are interested in air-time allocation, individual through-
puts and packets data rate. Due to the symmetric contention
process, WiFi assures an equal number of transmission op-
portunities to all nodes, i.e., frame-fairness. Our results show
the performance anomaly problem in WiFi, i.e., despite using

the higher data rate, the performance of the faster nodes is
capped at that of the slowest station. In contrast, the proposed
algorithm allows nodes to successfully and quickly converge
to equal air-time allocation (i.e., proportional-fair allocation).
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Fig. 5. Air-time allocation, individual throughput and packet rate in case of
heterogenous traffic, i.e., all nodes use the same packet size of 1500 B, but
different data rates Mi ∈ {6.5, 26, 65}Mbps.
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Fig. 6. Air-time allocation, individual throughput and packet rate in case of
heterogenous traffic, i.e., all nodes use the same data rate of 26 Mbps (MCS3),
but different packet sizes Di ∈ {250, 500, 1000}B.

D. Dynamic Scenario

Using a setup similar as in the previous sections, we
evaluate the adaptability of the proposed algorithm to network
dynamics. Specifically, we consider a dynamic scenario with
three transmitters that change data rates (e.g., due to the
change of wireless propagation condition). Fig. 7 shows the
individual air-time allocation and throughput. The traffic is
saturated, and nodes use a packet size of 1000 B. The nodes
start with the same data rate of 13 Mbps (MCS2), then at time
t = 20 s, nodes change the data rates (e.g., due to changing
shadowing conditions): Node-1 switches to 6.5 Mbps (MCS0)
and Node-2 switches to 65 Mbps (MCS7). At t = 60 s, nodes
change data rates again, i.e., Node-1 switches to 65 Mbps
(MCS7) and Node-2 switches to 6.5 Mbps (MCS0). Node-3
never changes its data rate.

We observe in Fig. 7 that the algorithm can adapt to the
changes in data rates. The convergence takes around 10 s after
the change occurs.
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Fig. 7. Air-time allocation and individual throughput in dynamic scenario.
Nodes start with the same data rate. At t = 20 s and t = 60 s, node 1 and 2
change the used data rate.

E. Unsaturated traffic

Here, we evaluate the behavior of the proposed algorithm
under unsaturated traffic conditions. Specifically, we simulate
two scenarios with three transmitting nodes, in which: i)
the total offered load does not saturate the wireless channel,
i.e., ri ∈ {200, 400, 600} pkts/s; ii) the total offered load
saturates the wireless channel as one node operates with
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Fig. 8. Individual contention window and packet rate in unsaturated scenario
(left) with offered load of ri ∈ {200, 400, 600} pkts/s and with one node
saturated (right), i.e., ri ∈ {200, 400, 2000} pkts/s.

saturated traffic, i.e., ri ∈ {200, 400, 2000} pkts/s. The nodes
use homogeneous transmission parameters, namely a data rate
of 26 Mbps (MCS3), and a packet size of 1000 B.

Fig. 8 shows the evolution of individual contention window
and packet rate in both scenarios. We observe that in the case
of unsaturated traffic the nodes increase their aggressiveness
until the offered load is satisfied. Next, they operate with a
stable CW as the perturbation of the CW does not change the
value of the network utility, and hence the estimated gradient
equals zero. In the second scenario, the node with a high traffic
load increases its aggressiveness until it saturates the wireless
channel, but without negatively affecting the slower nodes, i.e.,
they also adapt their CW properly to get enough transmission
opportunities and satisfy their own traffic.

F. Flow-In-the-Middle Topology

Finally, we evaluate the behavior of the proposed scheme
in a flow-in-the-middle (FIM) topology – Fig. 9. The FIM
topology is a simple multi-collision domain scenario, where
nodes have asymmetric contention information. Specifically,
the central transmitter can carrier sense transmissions of
both its neighbors, while the edge transmitters cannot carrier
sense each other. Therefore, the middle transmitter defers its
transmissions whenever at least one of its neighbors transmits
a frame, while concurrent transmissions of the edge nodes
can occur. Note that the transmissions of the edge nodes may
interleave, leaving no silent periods for the middle node. As
a result, the throughput of the middle node is lowered due to
the lack of transmission opportunities. In the worst case, the
middle node suffers from complete starvation [16].

We simulate a scenario where all three transmitters use
the same data rate of 26 Mbps (MCS3), and packet size

Fig. 9. Flow-In-the-Middle (FIM) Topology. In the network graph, vertices,
dotted lines, and arrows represent nodes, connectivity, and flows, respectively.



of 1000 B. The traffic is saturated. We disable the frame
capture effect to simplify our simulation model. In the FIM
topology, only the middle transmitter can estimate the global
utility function, however only if frame transmissions of its
neighbors are not colliding (i.e., the quality of estimation
decreases when the edge nodes become more aggressive).
The edge nodes can estimate the utility function only in
their local collision domains. We consider two cases of CW
learning, namely uncoordinated distributed learning, where
nodes locally estimate the utility function, and centralized
learning, where nodes perform gradient estimation procedure
synchronously and they exchange (e.g., over a control channel)
their own throughput values with all nodes to compute the
value of the global function.

Fig. 10 shows the evolution of the individual CW and
the air-time allocation, while the Fig. 11 shows the air-time
allocation averaged over the simulation duration (i.e., 100 s).
Our results confirm the problem of starvation of the middle
node in the case of standard WiFi BEB operation. Specifically,
the middle node gets only 5% of the channel air-time, while
the edge nodes around 80%. We also show the optimal air-time
allocation found with extensive simulations. The proposed
algorithm improves the fairness among nodes, i.e., the middle
node gets assigned more air-time while the edge nodes get
less. In the case of centralized learning, the nodes can find
the CW values leading to the optimal solution. However, in
the case of uncoordinated learning, the distributed algorithm
cannot converge. Instead, we can observe oscillations in the
CW evolution caused by inconsistent goals, i.e., the middle
node wants to achieve proportional fairness for three nodes,
while the edge nodes optimize its operation for two nodes.
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Fig. 10. The individual contention window and air-time allocation in FIM
topology for uncoordinated learning with locally estimated utility (left) and
centralized learning with global utility (right).

VII. CONCLUSIONS

In this paper, we apply a distributed Kiefer-Wolfowitz
algorithm to a wireless network optimization problem. We
address the distributed tuning of contention windows in WiFi
networks and show that nodes can learn the proper contention
windows values yielding proportional fair resource allocation
even without explicit communication. Specifically, in the case
of fully-connected topologies, they can individually estimate
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Fig. 11. The averaged air-time allocation attained by 802.11 WiFi and using
the proposed learning-based approach in the FIM topology. Optimal air-time
allocation is presented for comparison.

the global utility function by overhearing each others’ trans-
missions and use it to maximize the log-convex optimization
problem collaboratively. We have shown that the distributed
algorithm converges albeit the strict mathematical assumptions
used for the analytical proof of DA-KW do not hold. The
convergence time (in order of tens of seconds) makes the
learning-based algorithm suitable for long-lasting connections,
such as video streaming or conference. In the topologies
without full-connectivity nodes cannot estimate the global
utility, therefore the exchange of individual throughput values
is needed to make the distributed algorithm converge. The
automatic tuning of the learning parameters, which might
speed up the convergence, is left for further study.
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