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Abstract—Airborne pathogen transmission mechanisms play a
key role in the spread of infectious diseases such as COVID-
19. In this work, we propose a computational fluid dynamics
(CFD) approach to model and statistically characterize airborne
pathogen transmission via pathogen-laden particles in turbulent
channels from a molecular communication viewpoint. To this end,
turbulent flows induced by coughing and the turbulent dispersion
of droplets and aerosols are modeled by using Reynolds-averaged
Navier-Stokes equations coupled with realizable k− ϵ model and
the discrete random walk model, respectively. Via the simulations
realized by a CFD simulator, statistical data for the number of
received particles are obtained. These data are post-processed to
obtain the statistical characterization of the turbulent effect in
the reception and to derive the probability of infection. Our
results reveal that the turbulence has an irregular effect on
the probability of infection which shows itself by the multi-
modal distributions as a weighted sum of normal and Weibull
distributions.

I. INTRODUCTION

Airborne transmission is an important contagion mechanism
of pathogens, e.g., viruses, bacteria, in the spread of infectious
diseases such as influenza and COVID-19 [1]. In airborne
transmission, infectious diseases spread by pathogen-laden
particles such as droplets and aerosols through respiratory
activities [2]. In the literature of fluid dynamics, computational
fluid dynamics (CFD) simulators are widely employed to
model airborne transmission via droplets in order to model
turbulent flows and airflow-particle interactions more realis-
tically. In [3], coughing and the dispersion of droplets are
modeled by using the Navier-Stokes equations and large eddy
simulation (LES) turbulence model. In [4] and [5], flows as
a result of sneezing/coughing are modeled with Reynolds-
averaged Navier-Stokes (RANS) equations coupled with the
realizable k − ϵ and k − ω turbulence models, respectively.

The research in fluid dynamics literature focuses on the
propagation of droplets after the emission but not the recep-
tion elaborately. However, there is a similarity between air-
based molecular communication (MC) systems and airborne
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transmission of pathogens between two humans [6]–[8]. In
addition, the transfer of pathogen-laden particles between
humans can be considered as a way of communication [9].
Hence, the usage of MC is proposed to model the airborne
transmission with a holistic approach [8], [10]–[15].

The studies in [8], [11] lay the theoretical and experimental
foundations of dualities between pathogen-laden droplet prop-
agation and MC. In [13] and [14], the transmission mechanism
of Severe Acute Respiratory Syndrome-Corona Virus-2 in the
respiratory system is modeled with a MC perspective. In [15],
a statistical model for the spread of viruses through imperfectly
fitted masks is proposed. In [10], an end-to-end MC system
model which considers the coughed droplets as a cloud with
a probabilistic approach is proposed to model the airborne
transmission between two humans. This approach also enables
an analytical derivation of infection probability which can be
used in transmission and epidemiology models. However, none
of the aforementioned works employs the turbulent flows and
aerosols together with a MC perspective. Furthermore, the
statistical characterization of received particles under turbulent
flows and the corresponding expression for the probability of
infection is not known.

In this paper, a CFD approach is proposed to model the
airborne transmission of cough droplets and aerosols together
with turbulent flows between an infectious and susceptible
human which are the transmitter (TX) and receiver (RX),
respectively. In this approach, the channel is modeled as
a turbulent two-phase flow medium which comprises the
movement of airflows with turbulence (continuous phase) and
the motions of particles (discrete phase) interacting with these
airflows and RX. The turbulence is modeled by employing
the RANS equations coupled with the realizable k − ϵ model
and the turbulent dispersion of particles is tracked in the CFD
simulator by using the discrete random walk model.

In order to observe and characterize the effect of turbu-
lence in airborne transmission, extensive CFD simulations are
executed. Thus, statistical data for the received particles are
obtained and employed to derive the probability of infection.
Our statistical analysis shows that modeling the effect of
turbulence on infections is not straightforward, since the
probability density function of received particles are modeled
by multi-modal distributions, i.e., weighted addition of normal
and Weibull distributions. Lastly, it is shown that the increment978-1-6654-3540-6/22 © 2022 IEEE
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in the ambient airflow increases the probability of infection.

II. SYSTEM MODEL

In this section, the system model for a scenario where
the TX emits pathogen-laden spherical particles by coughing
towards the RX in a room with an airflow as illustrated in Fig.
1 is detailed. As shown in Fig. 2, emitted particles from the
TX is considered as an impulsive input signal and propagate
through the channel and sensed by the RX. Hence, the end-
to-end system response is given as the output of the system,
i.e., the infection state of the susceptible human. The end-
to-end system model includes the details about the receiver
model, turbulent two-phase channel model and emitted particle
characterization which is given as follows.

A. Emitted Pathogen-Laden Particle Size Distribution

In the literature of airborne transmission, only the prop-
agation of large droplets (≥ 10 µm) is taken into account.
However, there is also evidence for the airborne transmission
cases with aerosols (< 10 µm) [1]. Therefore, aerosols are
also included to the emitted cough particles in our scenario.
Experimental data in [16], [17] are used for the number and
size (diameter) of spherical droplets and aerosols, respectively.
These data are fitted by using the maximum likelihood es-
timation for a better implementation in the CFD simulator
according to a Weibull distribution which has the probability
density function (pdf) for data samples (x ≥ 0) as given by

f(x) =
k

λ

(x
λ

)k−1

e−(
x
λ )

k

, (1)

where k and λ are shape and scale parameters, respectively.
These parameters are estimated by using the maximum like-
lihood estimation which is based on finding the unknown

parameter values (y = [y1, y2, ..., yn]
T ) which maximizes the

log likelihood function (Ln(y;x)) as given by [18]

Ln(y;x) = log [fn(x;y)] =

n∑
k=1

log [fk(xk;y)] , (2)

where x represents the observed data samples, log(.) is the
natural logarithm, and fk(xk;y) is the joint pdf where data
samples are assumed as independent and identically distributed
random variables. Hence, the estimated parameters are deter-
mined according to the rule as given below:

ŷ = argmax
y∈Θ

Ln(y;x) (3)

where Θ is the parameter space. By applying this rule, the
parameters are estimated in a least-square sense iteratively, i.e.,
the best fit for the estimated function is found by minimizing
the sum of the squared error between the estimated values and
actual values. Thus, the shape and scale parameters for the pdfs
of droplet (kd, λd) and aerosol sizes (ka, λa) are estimated as
λd = 0.0001184 with the estimation variance 5.553e − 12,
kd = 1.9368 with the estimation variance 0.00293, and λa =
7.92e − 7 with the estimation variance 5.0147e − 18, ka =
1.7338 with the estimation variance 2.785e− 5, respectively.

B. Turbulent Two-Phase Flow Channel Model

Pathogen-laden particles, which consist of large droplets
and aerosols, are subject to some interactions with the air
after the emission with an initial velocity from the TX. These
interactions lead to turbulent airflows in the vicinity of the TX
in addition to the constant air velocity (vair). The motion of
particles rely on these airflows as well as other factors such as
gravity and air drag. All of these motions in the MC channel
can be examined as continuous (or gas) phase for airflows and
discrete (or liquid) phase for particle movements.

1) Continuous Phase: Turbulence is considered by using
3-D Navier-Stokes equations that determine airflow velocity
components ui where i = 1, 2, 3 for x, y and z in Cartesian
coordinates, respectively. To reduce the computational com-
plexity for the solution of Navier-Stokes equations, RANS
equations, which average Navier-Stokes equations, are em-
ployed [19]. Instantaneous flow velocities are considered as the
addition of the average values (ui) and the fluctuation values
(u′

i), i.e., ui = ui + u′
i. RANS equations in tensor form for

the average velocities are given by [20]

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (4)

∂ρ
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∂

∂xj
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)
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, (5)

where ρ is the fluid density, µ is the dynamic viscosity, p is
the fluid pressure, and δij is the Kronecker delta function and
xi shows the Cartesian coordinates. In (5), the terms −ρu′

iu
′
j



give the Reynolds stresses calculated by using the Boussinesq
hypothesis to close RANS equations as given by [19] [21]

−ρu′
iu

′
j = µt

(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3

(
ρk + µt

∂uk

∂xk

)
(6)

where µt is the turbulent viscosity and k is the turbulent
kinetic energy. Here, k and its dissipation rate (ϵ) are obtained
by the realizable k − ϵ model which is a widely used and
accurate turbulence model as applied in [4]. Although LES
model is more accurate than k−ϵ model, it is computationally
very complex and not appropriate for our aim which is to
obtain statistical data by running several simulations. Transport
equations for realizable k − ϵ model are given by [22]

∂(ρk)

∂t
+
∂(ρkuj)

∂xj
=

∂

∂xj

[(
µ+

µt

σk

)
∂k

∂xj

]
+Gk−ρϵ+Sk (7)

∂(ρϵ)

∂t
+
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)
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]
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− ρC2
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√
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+ Sϵ, (8)

where C1 = max
[
0.43, η

η+5

]
, η = Sk/ϵ, and S =

√
2SijSij ,

Sk and Sϵ are user-defined source terms, C2 = 1.9, C1ϵ =
1.44, σk = 1 and σϵ = 1.2 are the turbulent Prandtl numbers
for k and ϵ, respectively. Here, Gk which is the term related
with the turbulent kinetic energy is given as Gk = µtS

2 with
µt as given by

µt = ρCµ
k2

ϵ
(9)

where Cµ is calculated by the formulas given in [22] (equa-
tions (19)-(21) in [22]).

By solving the equations (4)-(9) iteratively, the average
airflow velocities can be obtained whereas the fluctuating air-
flow velocities are calculated in stochastic tracking of particles
during the turbulent dispersion as follows.

2) Discrete Phase: According to the Newton’s second law
of motion, the acting forces on a spherical particle is given by

mp
d−→up

dt
= mp

−→u −−→up

τr
+mp

−→g (ρp − ρ)

ρp
, (10)

where mp shows the particle mass, ρp is the particle density,
−→u and −→up are the air and particle velocities, respectively.
Here, the second term on the right hand side shows the
net force downwards (difference between gravitational and
buoyant force) as also derived in [10], and the first term
on the right hand side gives the drag force where τr =
(24ρpd

2
p)/(18µCDRe) is the particle relaxation time [23], Re

is the Reynolds number, dp is the particle diameter. CD is the
drag coefficient following the spherical drag law as given by
[24]

CD = K1 +
K2

Re
+

K3

Re2
(11)

where K1, K2 and K3 are experimentally validated constants
which change according to Re as given in [24].

It should be noted that a constant airflow velocity (vair) is
added to −→u in the +z direction towards the RX in addition

to the turbulent airflow velocity as also shown in Fig. 1. The
stochastic effect of turbulence is incorporated to the system
model by adding the fluctuation values, i.e., u′

i, via the discrete
random walk (DRW) model so that the turbulent dispersion
of particles are modeled. According to DRW model, u′

i is
determined as [25] [21]

u′
i = β

√
2k

3
(12)

where β is a standard normal random variable, i.e., β =
N (0, 1). Each particle is tracked along the eddy interaction
time as given by tint = min(τe, tR) where τe is the eddy
lifetime in a turbulent flow and calculated by τe = −TL ln(r)
where r is a standard uniform random variable and TL ≈
0.15k/ϵ is the Lagrangian integral time. In addition, tR is the
particle eddy transit (or crossing) time as given by

tR = −τr ln

[
1−

(
Le

τr|−→u −−→up|

)]
, (13)

where Le is the eddy length scale. A new value is assigned
to u′

i via updating β, when tint is reached during the tracking
of a particle.

C. Receiver Model

As for the reception, particles reaching at the RX cross-
section as shown in Fig. 1 are counted until every particle
leaves the flow domain. This RX cross-section is in the center
of the human face including eyes, nose and the mouth and
is a circle having a diameter rR = (

√
β2
bb + β2

ss)/2 where
βbb is the biocular breadth and βss is the Sellion-Stomion
length as also given in [10]. Next, the usage of the models
by numerically solving the equations in this section in a CFD
simulator is elaborated.

III. COMPUTATIONAL FLUID DYNAMICS SIMULATOR

In this section, the details about the setup of CFD simu-
lations which are executed by using Ansys Fluent 2021 R.2
simulator are given. As shown in Fig. 1, two identical manikins
are used as the TX and RX which are 176 cm high. The
flow domain which is shown as a green cuboid has the 3-D
dimensions 2 × 2 × 1.5 m. The airflow and particle motions
are simulated within this flow domain which includes the
TX emission and RX reception surfaces. The CFD simulator
calculates variables such as pressure and velocity with the
finite volume method which requires the flow domain to be
divided into small volumes. To this end, meshing is performed
by generating 74520, 25772 and 26092 tetrahedral cells for the
flow domain, TX and RX volumes, respectively.

The mouth of the TX is modeled as an ellipse (4 × 1 cm,
area = 314mm2) [3] and aligned in the same axis with the
RX. The center of the RX cross-section and TX are at a height
of 162.6 cm and 159 cm high from the ground, respectively.
Particles and air are emitted with an initial velocity (u0) from
this mouth surface along the emission time (Te) according
to the size distributions derived in Section II-A. In the flow
domain, boundary conditions are arranged so that particles can
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Fig. 3. Visualization of a human cough and its reception with 48800 particles for vair = 0.1 m/s at (a) t = 0.12 s (b) t = 1.5 s (c) t = 12 s.

escape at the end of the flow domain’s surface and particles are
absorbed at the RX circular cross-section. Other surfaces are
configured as reflective for particles. By using these boundary
conditions and the governing equations (4)-(8), the CFD sim-
ulator discretize these equations by converting them from their
integral form to algebraic equations relating p and ui values
at each cell center [21]. Then, these equations are linearized
via Taylor series expansions and solved iteratively by guessing
the pressure and velocity values at each cell center after each
iteration. At each iteration, the mass conservation is calculated
and iterations continue until the error of mass imbalance
converges. In Ansys Fluent, the coupled pressure-based solver
is used for the calculations of transient simulations. After ui is
determined for each cell at each time step (∆t), these values
are used by also using the models explained in Section II-B2 to
calculate the turbulent dispersion of particles (including their
interactions with continuous phase), i.e., their instantaneous
velocities and positions.

IV. SIMULATION RESULTS

In this section, visual simulation results which are obtained
via the CFD simulator as detailed in Section III are presented.
The CFD simulations are repeated 500 times for each of three
different air velocities, i.e., vair = {0.1, 0.3, 0.5} m/s using
the parameter values in Table I along ts. The initial cough
flow rates for droplets (Qd) and aerosols (Qa) are calculated
by dividing the emitted droplet and aerosol masses to Te. The
number of emitted number of droplets (10 µm - 300 µm) and
aerosols (0.36 µm - 9.5 µm) are configured accordingly with
the values in Section II-A. In addition, βbb and βss values

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
∆t 0.06 s ts {18, 9, 6} s
Te 0.12 s [26] u0 11.2 m/s (cough) [27]
Qd 47.83× 10−6 kg/s [16] g 9.81 m/s2

Qa 9.9259 kg/s [17] µ 17.894×10−6 kg/(m s)
ρ 1.225 kg/m3 βbb (female) 8.853 cm [28]
ρp 998.2 kg/m3 βbb (male) 9.131 cm [28]
Nd 800 βss (female) 6.901 cm [28]
Na 48000 βss (male) 7.57 cm [28]

are taken as the average value of female and male values to
calculate rR of the RX as also applied in [10].

In Fig. 3, the trajectory and dispersion of the cough particles
can be observed for vair = 0.1 m/s between the emission
and reception. At the initial state, larger particles tend to
move faster due to the initial velocity as shown in Fig. 3 (a).
However, as these larger particles (or large droplets) continue
their movement, they are affected by the air drag and lose their
momentum more quickly. In addition, large droplets fall down
to the ground due to the gravity as it is clearly observed in Fig.
3 (b). In contrast to large droplets, aerosols are affected less
by the gravity and air drag due to their small sizes. Therefore,
they are entrained by the ambient air flow towards the RX
and large droplets cannot reach at the RX for a distance of
1.5 m. Furthermore, the effect of ambient air velocity on the
dispersion of particles is shown in Fig. 4. These results show
that as vair increases, particles propagate for a longer distance
before they fall down to the ground. Besides, smaller vair
causes more dispersion on the particles as shown in Fig. 4
(a)-(c), while it increases the reception time of droplets. The
reason of this dispersion is the randomness due to the effect of
turbulence at the initial state of the particle propagation. In the
next section, data obtained via CFD simulations are used for
the statistical characterization of the probability of infection.

V. PROBABILITY OF INFECTION

In this section, the collected data for the received number of
particles via the CFD simulations are analyzed and employed
for statistical characterization of the reception in airborne
pathogen transmission. Then, the probability of infection is
derived for different scenarios by using these statistics.

In Fig. 5, the histograms and the fitted probability density
functions (pdfs) of the received number of particles for three
different ambient air velocities are given. As observed from
this figure, the distributions are multi-modal and can be mod-
eled by using the weighted sums of different distributions. To
this end, these weighted distributions are determined visually
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Fig. 5. Probability density function of NR for (a) vair = 0.1 m/s (b) vair = 0.3 m/s (c) vair = 0.5 m/s.

according to the shapes of histograms, which are given as

fNR1
(NR)=w1N (µ1, σ

2
1)+w2N (µ2, σ

2
2) (14)

fNR2
(NR)=w1N (µ1, σ

2
1)+w2N (µ2, σ

2
2)+w3W(k3, λ3) (15)

fNR3
(NR)=w1W(k1, λ1)+w2N (µ2, σ

2
2), (16)

where w1, w2 and w3 show the weights, N (µR, σ
2
R) is the nor-

mal distribution with mean µR and variance σ2
R, W(kR, λR) is

the Weibull distribution with the scale parameter λR and shape
parameter kR, and fNR1

(NR), fNR2
(NR), fNR3

(NR) are the
pdfs for vair = 0.1 m/s, vair = 0.3 m/s, and vair = 0.5 m/s,
respectively. The parameters given in (14)-(16) are estimated
as given in Table II via the maximum likelihood estimation
method detailed in Section II-A.

In the next step, these derived pdfs in (14)-(16) with their
estimated parameters given in Table II can be employed to
obtain the probability of infection (Pinf ) as given by [10]

Pinfi = P (NR > γ) =

∫ ∞

γ

fNRi
(x)dx (17)

where i shows the index according to vair as also applied in
(14)-(16) and γ is the detection threshold corresponding to
the immune system’s strength of the RX. Thus, the derived

expressions for the probability of infections for different air
velocities are given by
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+w2Q
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Pinf2 =w1Q
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+w3e

−
(

γ
λ3

)k3
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Pinf3 =w1e
− γ

λ1
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+w2Q

(
γ − µ2

σ2

)
, (20)

where Q(x) = 1√
2π

∫∞
x

e−
u2

2 du shows the Q-function. The
resulting plot for these Pinf values given in (18)-(20) for
different γ values are shown in Fig. 6. These results show
that larger air velocities increase the infection probability for
susceptible people for a face-to-face scenario. Even though the
immune system’s strength of a susceptible human is high, the
risk for infection still continues due to the higher exposure of
pathogen-laden particles. The results in Fig. 6 also show the
effect of aerosols which are not taken into account before in
the literature for the calculation of the probability of infection
in addition to the effect of large droplets in smaller numbers.
This derivation of Pinf shows that the modeling the reception
of particles is non-trivial due to the highly complex nature of
turbulence and it shows that multi-modal distributions lie un-



TABLE II
ESTIMATED STATISTICAL PARAMETERS

Pdf w1 Distribution 1 w2 Distribution 2 w3 Distribution 3 MSE
fNR1

0.86 µ1=2294.9 σ1=444.2 0.14 µ2=8195.7 σ2=1000 - - - 6.458e−8

fNR2
0.20 µ1=4938.1 σ1=527.5 0.44 µ2=6929.5 σ2=1846.1 0.36 k3=58.4 λ3=15242.7 1.317e−8

fNR3
0.46 k1=60.9 λ1=14915.6 0.54 µ2=33888.1 σ2=1218.8 - - - 1.332e−8
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Fig. 6. Probability of infection according to γ for different vair values.

der this turbulent complexity. These analytical derivations also
can be employed in epidemiology studies with more realistic
parameters for interhuman airborne pathogen transmission.

VI. CONCLUSION

In this paper, the airborne transmission of pathogens emitted
via coughing between two humans is modeled with a CFD
approach incorporating turbulent airflows and turbulent dis-
persion of droplets and aerosols. By using the statistical data
collected with CFD simulations, it is revealed that turbulence
cause multi-modal distributions for the pdf of received parti-
cles by the susceptible human. Furthermore, numerical results
show that augmented air velocity causes the increment of
the probability of infection. Derived probability of infection
expressions can be employed in epidemiological models to
realistically consider the indoor airborne transmission. As the
future work, it is planned to extend this study by including
scenarios with masks and breathing.
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