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Abstract—Airborne pathogen transmission mechanisms play a
key role in the spread of infectious diseases such as COVID-
19. In this work, we propose a computational fluid dynamics
(CFD) approach to model and statistically characterize airborne
pathogen transmission via pathogen-laden particles in turbulent
channels from a molecular communication viewpoint. To this end,
turbulent flows induced by coughing and the turbulent dispersion
of droplets and aerosols are modeled by using the Reynolds-
averaged Navier-Stokes equations coupled with the realizable
k − ε model and the discrete random walk model, respectively.
Via simulations realized by a CFD simulator, statistical data for
the number of received particles are obtained. These data are
post-processed to obtain the statistical characterization of the
turbulent effect in the reception and to derive the probability
of infection. Our results reveal that the turbulence has an
irregular effect on the probability of infection, which shows itself
by the multi-modal distribution as a weighted sum of normal
and Weibull distributions. Furthermore, it is shown that the
turbulent MC channel is characterized via multi-modal, i.e.,
sum of weighted normal distributions, or stable distributions,
depending on the air velocity.

Index Terms—molecular communication, airborne pathogen
transmission, probability of infection, turbulent channels, com-
putational fluid dynamics, COVID-19

I. INTRODUCTION

Airborne transmission is an important contagion mechanism
of pathogens (e.g., viruses, bacteria) in the spread of infectious
diseases such as influenza and COVID-19 [2]–[4]. In airborne
transmission, infectious diseases spread by pathogen-laden
particles (droplets and aerosols) through respiratory activities
such as breathing, coughing, sneezing and speaking [5]–[7].
Especially, coughing and sneezing induce turbulent flows due
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to the high initial emission velocity of particles from the
mouth [8]. Although there are analytical methods in the
literature of fluid dynamics, these models simplify the effects
of turbulence [9], [10]. Instead, computational fluid dynamics
(CFD) simulators are widely employed to model airborne
transmission via droplets in order to model turbulent flows and
airflow-particle interactions more realistically with a cost of
computational load. In [11]–[13], coughing and the dispersion
of droplets are modeled by using the large eddy simulation
(LES) turbulence model. In [14] and [15], flows as a result of
sneezing/coughing are modeled with the Reynolds-averaged
Navier-Stokes (RANS) equations coupled with the realizable
k − ε and k − ω turbulence models, respectively. Studies in
[16]–[18] also employ simulations using the RANS equations
for respiratory releases. In addition, the stochastic turbulent
dispersion of droplets emitted by a cough are evaluated for an
indoor scenario by using the LES turbulence model in [19].

The research in fluid dynamics literature focuses on the
propagation of droplets after the emission but not the recep-
tion elaborately. However, there is a similarity between air-
based molecular communication (MC) systems and airborne
transmission of pathogens [20]–[24]. This analogy can be
considered as a MC problem to detect the airborne viruses with
biological sensors [20], [25]–[27]. In addition, the transfer of
pathogen-laden particles between humans can be considered as
a way of communication. Hence, the usage of MC is proposed
to model the airborne transmission with a holistic approach
[23], [28]–[35].

The studies in [23] and [29] lay the theoretical and ex-
perimental foundations of dualities between pathogen-laden
droplet propagation and MC. In [31] and [32], the trans-
mission mechanism of Severe Acute Respiratory Syndrome-
Corona Virus-2 in the respiratory system is modeled with a
MC perspective. In [33], a statistical model for the spread
of viruses through imperfectly fitted masks is proposed. In
[28], an end-to-end MC system model which considers the
coughed droplets as a cloud with a probabilistic approach
is proposed to model the airborne transmission between two
humans. This approach also enables an analytical derivation of
infection probability which can be used in transmission and
epidemiology models. In [35], the analogy between human
groups and telecommunication networks is employed for the
mobile human ad hoc network architecture to estimate the
time course of epidemics by exploiting MC. However, none
of the aforementioned works employs the turbulent flows and
aerosols together with a MC perspective. Furthermore, the
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statistical characterization of received particles under turbulent
flows and the corresponding analytical expression for the
probability of infection is not known.

In this paper, a CFD approach is proposed to model the
airborne transmission of cough droplets and aerosols together
with turbulent flows between an infectious and susceptible
human which are the transmitter (TX) and receiver (RX),
respectively. In this approach, the channel is modeled as
a turbulent two-phase flow medium which comprises the
movement of airflows with turbulence (continuous phase) and
the motions of particles (discrete phase) interacting with these
airflows and RX. The turbulence is modeled by employing
the RANS equations coupled with the realizable k − ε model
and the turbulent dispersion of particles is tracked in the CFD
simulator by using the discrete random walk model.

In order to observe and characterize the effect of turbu-
lence in airborne transmission, extensive CFD simulations are
executed. Thus, statistical data for the received particles are
obtained and employed to derive the probability of infection.
Our statistical analysis shows that modeling the effect of
turbulence on infections is not straightforward, since the
probability density function (pdf) of received particles are
modeled by multi-modal distributions, i.e., weighted addition
of normal and Weibull distributions. Additionally, it is shown
that aerosols are more effective than large droplets for 1.5
m in reception and the increment of the ambient airflow
increases the probability of infection. Moreover, the end-to-
end impulse response of the turbulent air-based MC channel
is characterized. While for lower air velocities (vair = 0.1 m/s
and vair = 0.3 m/s) its pdf is multi-modal, i.e., weighted sum
of normal distributions, it has a uni-modal stable distribution
for vair = 0.5 m/s.

Our main contributions can be summarized as follows:

• A CFD-based MC approach is proposed to realistically
model the effect of turbulent flows induced by coughing
in airborne infectious disease transmission.

• The pdf of received number of particles (both droplets
and aerosols) is characterized for an indoor airborne
transmission scenario via coughing and the corresponding
analytical expression for the probability of infection is de-
rived. The underlying multi-modal distributions of these
pdfs are revealed for different ambient air velocities.

• It is shown that aerosols are more important than large
droplets at 1.5 m distance for infection.

• The air-based turbulent MC channel is characterized. It
is shown that the end-to-end system response can have
multi-modal or uni-modal distributions depending on the
ambient air velocity.

The rest of the paper is organized as follows. In Section
II, the end-to-end system model including turbulent flow,
particle tracking and receiver is detailed. Section III provides
the details about the employed CFD simulator setup. In
Section IV, the CFD simulation results are given. Then, the
statistical characterization of the infection probability based on
simulation results is elaborated in Section V. In Section VI,
the end-to-end impulse response of the turbulent MC system
is characterized and the paper is concluded in Section VII.

II. SYSTEM MODEL

In this section, the 3-D system model for a scenario where
the TX emits pathogen-laden spherical particles by coughing
towards the RX in a room with an airflow as illustrated in Fig.
1 is detailed. As shown in Fig. 2, emitted particles from the
TX is considered as an impulsive input signal and propagate
through the channel and sensed by the RX. Hence, the end-
to-end system response is given as the output of the system,
i.e., the infection state of the susceptible human. The end-
to-end system model includes the details about the receiver
model, turbulent two-phase channel model and emitted particle
characterization which is given as follows.

TX

RXChannel

RX Cross-
section

vair

1.5 m

2 m

2 m

Fig. 1. Airborne pathogen transmission scenario between two humans.

A. Emitted Pathogen-Laden Particle Size Distribution

In the literature of airborne transmission, only the prop-
agation of large droplets (≥ 10 µm) is taken into account.
However, there is also evidence for the airborne transmission
cases with aerosols (< 10 µm) [2]. Therefore, aerosols are
also included to the emitted cough particles in our scenario.
Experimental data in [36], [37] are used for the number and
size (diameter) of spherical droplets and aerosols, respectively.
These data are fitted by using the maximum likelihood es-
timation for a better implementation in the CFD simulator
according to a Weibull distribution which has the probability
density function (pdf) for data samples (x ≥ 0) as given by

f(x) =
k

λ

(x
λ

)k−1

e−( xλ )
k

, (1)

Channel Receiver

Emitted pathogen-
laden particles

from the infected
human (TX)

Infection state of
the susceptible

human

End-to-end system response

Fig. 2. End-to-end system model.
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Droplet Size Distribution
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Fig. 3. Histogram and fitted Weibull droplet size distribution according to
[36]. λd = 0.0001184 with the estimation variance 5.553e − 12, kd =
1.9368 with the estimation variance 0.00293.

where k and λ are shape and scale parameters, respectively.
These parameters are estimated by using the maximum like-
lihood estimation which is based on finding the unknown
parameter values (y = [y1, y2, ..., yn]T ) which maximizes the
log likelihood function (Ln(y;x)) as given by [38]

Ln(y;x) = log [fn(x;y)] =

n∑
k=1

log [fk(xk;y)] , (2)

where x represents the observed data samples, log(.) is the
natural logarithm, and fn(x;y) is the joint pdf where data
samples are assumed as independent and identically distributed
random variables. Hence, the estimated parameters are deter-
mined according to the rule as given below:

ŷ = arg max
y∈Θ

Ln(y;x) (3)

where Θ is the parameter space. By applying this rule, the
parameters are estimated in a least-square sense iteratively, i.e.,
the best fit for the estimated function is found by minimizing
the sum of the squared error between the estimated values and
actual values. Thus, the shape and scale parameters for the pdfs
of droplet (kd, λd) and aerosol sizes (ka, λa) are estimated as
λd = 0.0001184 with the estimation variance 5.553e − 12,
kd = 1.9368 with the estimation variance 0.00293 as shown
in Fig. 3, and λa = 7.92e − 7 with the estimation variance
5.0147e − 18, ka = 1.7338 with the estimation variance
2.785e− 5 as shown in Fig. 4, respectively.

B. Turbulent Two-Phase Flow Channel Model

Pathogen-laden particles, which consist of large droplets
and aerosols, are subject to some interactions with the air
after the emission with an initial velocity from the TX. These
interactions lead to turbulent airflows in the vicinity of the TX
in addition to the constant air velocity (vair). The motion of
particles rely on these airflows as well as other factors such as
gravity and air drag. All of these motions in the MC channel
can be examined as continuous (or gas) phase for airflows and
discrete (or liquid) phase for particle movements.

Aerosol Size Distribution
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Fig. 4. Histogram and fitted Weibull aerosol size distribution according to
[37]. λa = 7.92e−7 with the estimation variance 5.0147e−18, ka = 1.7338
with the estimation variance 2.785e− 5.

1) Continuous Phase: Turbulence is considered by using
the 3-D Navier-Stokes equations that determine airflow veloc-
ity components ui where i = 1, 2, 3 for x, y and z in Cartesian
coordinates, respectively. To reduce the computational com-
plexity for the solution of the Navier-Stokes equations, the
RANS equations, which average the Navier-Stokes equations
in time, are employed [39]. Instantaneous flow velocities are
considered as the addition of the average values (ui) and the
fluctuation values (u′i), i.e., ui = ui+u

′
i. The RANS equations

in tensor form for the average velocities are given by [40]

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (4)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)

−2

3
δij
∂uk
∂xk

]
+
∂
(
−ρu′iu′j

)
∂xj

, (5)

where ρ is the fluid density, µ is the dynamic viscosity, p is
the fluid pressure, and δij is the Kronecker delta function and
x1, x2, and x3 represent the Cartesian coordinates x, y and
z, respectively. Please note that (4)-(8) are given in tensor (or
Einstein) notation in order to write the equations in a shorter
form. In addition, ρ is assumed as a constant value whereas p
is a variable depending on time and space. In (5), the terms
−ρu′iu′j give the Reynolds stresses calculated by using the
Boussinesq hypothesis to close the RANS equations as given
by [39] [41]

− ρu′iu′j = µt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

(
ρk + µt

∂uk
∂xk

)
(6)

where µt is the turbulent viscosity and k is the turbulent
kinetic energy. Here, k and its dissipation rate (ε) are obtained
by the realizable k − ε model which is a widely used and
accurate turbulence model as applied in [14]. Although LES
model is more accurate than k−ε model, it is computationally
very complex and not appropriate for our aim which is to
obtain statistical data by running several simulations. Transport
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equations for realizable k − ε model are given by [42]

∂(ρk)

∂t
+
∂(ρkuj)

∂xj
=

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+Gk−ρε+Sk (7)

∂(ρε)

∂t
+
∂(ρεuj)

∂xj
=

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+ ρC1Sε

− ρC2
ε2

k +
√
νε

+ Sε, (8)

where C1 = max
[
0.43, η

η+5

]
, η = Sk/ε, S is the mean rate

of strain tensor S =
√

2SijSij with Sij being the strain tensor,
Sk and Sε are user-defined source terms, C2 = 1.9, C1ε =
1.44, σk = 1 and σε = 1.2 are the turbulent Prandtl numbers
for k and ε, respectively. Here, Gk which is the term related
with the turbulent kinetic energy is given as Gk = µtS

2 with
µt as given by

µt = ρCµ
k2

ε
(9)

where Cµ is calculated by the formulas given in [42] (equa-
tions (19)-(21) in [42]).

By solving the equations (4)-(9) iteratively, the average
airflow velocities can be obtained whereas the fluctuating
airflow velocities are calculated as follows.

It should be noted that a constant airflow velocity (vair) is
added to −→u in the +z direction towards the RX in addition
to the turbulent airflow velocity as also shown in Fig. 1. The
stochastic effect of turbulence is incorporated to the system
model by adding the fluctuation values, i.e., u′i, via the discrete
random walk (DRW) model so that the turbulent dispersion
of particles are modeled. According to DRW model, u′i is
determined as [43] [41]

u′i = β

√
2k

3
(10)

where β is a standard normal random variable, i.e., β =
N (0, 1). Each particle is tracked along the eddy interaction
time as given by tint = min(τe, tR) where τe is the eddy
lifetime in a turbulent flow and calculated by τe = −TL ln(r)
where r is a standard uniform random variable and TL ≈
0.15k/ε is the Lagrangian integral time. In addition, tR is the
particle eddy transit (or crossing) time as given by

tR = −τr ln

[
1−

(
Le

τr|−→u −−→up|

)]
, (11)

where Le is the eddy length scale, −→u and −→up are
the air and particle velocities, respectively. Here, τr =
(24ρpd

2
p)/(18µCDRe) is the particle relaxation time [44]. A

new value is assigned to u′i via updating β, when tint is
reached during the tracking of a particle. At each time step,
τe is updated according to the changing k and ε at each point
in the flow domain.

2) Discrete Phase: According to the Newton’s second law
of motion, the acting forces on a spherical particle is given by

mp
d−→up
dt

= mp

−→u −−→up
τr

+mp

−→g (ρp − ρ)

ρp
, (12)

where mp shows the particle mass, ρp is the particle density,
and −→g is the gravitational acceleration. Here, the second

term on the right hand side shows the net force downwards
(difference between gravitational and buoyant force) as also
derived in [28], and the first term on the right hand side gives
the drag force, Re is the Reynolds number, dp is the particle
diameter. CD is the drag coefficient following the spherical
drag law as given by [45]

CD = K1 +
K2

Re
+

K3

Re2
(13)

where K1, K2 and K3 are experimentally validated constants
which change according to Re as given in [45].

C. Receiver Model

As for the reception, particles reaching at the RX cross-
section as shown in Fig. 1 are counted until every particle
leaves the flow domain. This RX cross-section is in the center
of the human face including eyes, nose and the mouth and
is a circle having a diameter rR = (

√
β2
bb + β2

ss)/2 where
βbb is the biocular breadth and βss is the Sellion-Stomion
length as also given in [28]. Next, the usage of the models
by numerically solving the equations in this section in a CFD
simulator is elaborated.

III. COMPUTATIONAL FLUID DYNAMICS SIMULATOR

In this section, the details about the setup of CFD simu-
lations which are executed by using Ansys Fluent 2021 R.2
simulator are given. As shown in Fig. 1, two identical manikins
are used as the TX and RX which are 176 cm high. The
flow domain which is shown as a green cuboid has the 3-D
dimensions 2 × 2 × 1.5 m. The airflow and particle motions
are simulated within this flow domain which includes the
TX emission and RX reception surfaces. The CFD simulator
calculates variables such as pressure and velocity with the
finite volume method which requires the flow domain to be
divided into small volumes. To this end, meshing is performed
by generating 74520, 25772 and 26092 tetrahedral cells for the
flow domain, TX and RX volumes, respectively.

The mouth of the TX is modeled as an ellipse (4 × 1 cm,
area = 314mm2) [11] and aligned in the same axis with the
RX. The center of the RX cross-section and TX are at a height
of 162.6 cm and 159 cm high from the ground, respectively.
Particles and air are emitted with an initial velocity (u0) from
this mouth surface along the emission time (Te) according to
the size distributions derived in Section II-A.

In the flow domain given in in Fig. 1, boundary conditions
are arranged as follows. The rectangular surface (z = 1.5
m) where the RX circular cross-section is also deployed
is configured as an absorbing boundary in order to count
the received number of particles. All the other surfaces of
the cuboid and the human body surfaces are configured as
reflecting surfaces. When there is no constant airflow (vair)
except the initial impulsive cough velocity, the boundary
conditions can be much more effective on the propagation of
particles. In addition, the simulation of this scenario without
considering vair takes more time, which is not feasible for
our purpose of observing the statistical distribution of received
particles. Furthermore, real life scenarios which include more
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Fig. 5. Visualization of a human cough and its reception with 48800 particles for vair = 0.1 m/s at (a) t = 0.12 s (b) t = 1.5 s (c) t = 12 s.

RX RX RXTX TX TX

vair = 0.1 m/s vair = 0.3 m/s vair = 0.5 m/s

1.5 m 1.5 m 1.5 m

t = 12 s t = 4.5 s t = 2.7 s
z

y

(a) (b) (c)

Fig. 6. The effect of different air velocities and turbulence on the pathogen-laden cough particles during the reception for (a) vair = 0.1 m/s at t = 12 s
(b) vair = 0.3 m/s at t = 4.5 s (c) vair = 0.5 m/s at t = 2.7 s.

reflecting or absorbing boundary conditions such as offices
or supermarkets can be more complicated. However, these
scenarios are beyond the scope of this paper.

By using these boundary conditions and the governing
equations (4)-(8), the CFD simulator discretize these equations
by converting them from their integral form to algebraic equa-
tions relating p and ui values at each cell center [41]. Then,
these equations are linearized via Taylor series expansions
and solved iteratively by guessing the pressure and velocity
values at each cell center after each iteration. At each iteration,
the mass conservation is calculated and iterations continue
until the error of mass imbalance converges. In Ansys Fluent,
the coupled pressure-based solver is used for the calculations
of transient simulations. After ui is determined for each
cell at each time step (∆t), these values are used by also
using the models explained in Section II-B2 to calculate the
turbulent dispersion of particles (including their interactions
with continuous phase), i.e., their instantaneous velocities and
positions.

IV. SIMULATION RESULTS

In this section, visual simulation results which are obtained
via the CFD simulator as detailed in Section III are presented.

The CFD simulations and the observations for the reception,
i.e., counting particles at the RX, are repeated 500 times for
each of three different air velocities, i.e., vair = {0.1, 0.3, 0.5}
m/s using the parameter values in Table I along ts. These
chosen air velocities are based on still air and two different
ventilation scenarios similar to the works in [12], [15]. In
indoor environment, there is nearly always a slight airflow,
even if it seems like still air [49]. The scenario when vair =
0.1 m/s corresponds to the indoor still air environment. The
other velocities (0.3, 0.5 m/s) represent two different ventila-
tion scenarios induce by open doors, windows or ventilation
systems. The initial cough flow rates for droplets (Qd) and
aerosols (Qa) are calculated by dividing the emitted droplet
and aerosol masses to Te. The number of emitted droplets (Nd)

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
∆t 0.06 s ts {18, 9, 6} s
Te 0.12 s [46] u0 11.2 m/s (cough) [47]
Qd 47.83× 10−6 kg/s [36] g 9.81 m/s2

Qa 9.9259 kg/s [37] µ 17.894×10−6 kg/(m s)
ρ 1.225 kg/m3 βbb (female) 8.853 cm [48]
ρp 998.2 kg/m3 βbb (male) 9.131 cm [48]
Nd 800 βss (female) 6.901 cm [48]
Na 48000 βss (male) 7.57 cm [48]
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Fig. 7. Probability density function of NR for (a) vair = 0.1 m/s (b) vair = 0.3 m/s (c) vair = 0.5 m/s.

TABLE II
ESTIMATED STATISTICAL PARAMETERS OF fNRi

Pdf w1 Distribution 1 w2 Distribution 2 w3 Distribution 3 MSE
fNR1

0.86 µ1=2294.9 σ1=444.2 0.14 µ2=8195.7 σ2=1000 - - - 6.458e−8

fNR2
0.20 µ1=4938.1 σ1=527.5 0.44 µ2=6929.5 σ2=1846.1 0.36 k3=58.4 λ3=15242.7 1.317e−8

fNR3
0.46 k1=60.9 λ1=14915.6 0.54 µ2=33888.1 σ2=1218.8 - - - 1.332e−8

and aerosols (Na) are given in Table I. Here, the numbers
of each particle size is distributed according to the Weibull
distribution values estimated in Section II-A. In addition, βbb
and βss values are taken as the average value of female and
male values to calculate rR of the RX as also applied in [28].

In Fig. 5, the trajectory and dispersion of the cough particles
can be observed for vair = 0.1 m/s between the emission
and reception. At the initial state, larger particles tend to
move faster due to the initial velocity as shown in Fig. 5 (a).
However, as these larger particles (or large droplets) continue
their movement, they are affected by the air drag and lose their
momentum more quickly. In addition, large droplets fall down
to the ground due to the gravity as it is clearly observed in Fig.
5 (b). In contrast to large droplets, aerosols are affected less
by the gravity and air drag due to their small sizes. Therefore,
they are entrained by the ambient air flow towards the RX
and large droplets cannot reach at the RX for a distance of
1.5 m. Furthermore, the effect of ambient air velocity on the
dispersion of particles is shown in Fig. 6. These results show
that as vair increases, particles propagate for a longer distance
before they fall down to the ground. Besides, smaller vair
causes more dispersion on the particles as shown in Fig. 6
(a)-(c), while it increases the reception time of droplets. The
reason of this dispersion is the randomness due to the effect of
turbulence at the initial state of the particle propagation. In the
next section, data obtained via CFD simulations are used for
the statistical characterization of the probability of infection.

V. PROBABILITY OF INFECTION

In this section, the collected data for the received number of
particles via the CFD simulations are analyzed and employed
for statistical characterization of the reception in airborne
pathogen transmission. The probability of infection is derived
for different scenarios by using these statistics and an analysis
is given based on the reception statistics.

A. Characterization

In Fig. 7, the histograms and the fitted probability density
functions (pdfs) of the received number of particles for three
different ambient air velocities are given. As observed from
this figure, the distributions are multi-modal and can be mod-
eled by using the weighted sums of different distributions. To
this end, these weighted distributions are determined visually
according to the shapes of histograms, which are given as

fNR1
(NR)=w1N (µ1, σ

2
1)+w2N (µ2, σ

2
2) (14)

fNR2
(NR)=w1N (µ1, σ

2
1)+w2N (µ2, σ

2
2)+w3W(k3, λ3) (15)

fNR3
(NR)=w1W(k1, λ1)+w2N (µ2, σ

2
2), (16)

where w1, w2 and w3 show the weights,N (µR, σ
2
R) is the nor-

mal distribution with mean µR and variance σ2
R,W(kR, λR) is

the Weibull distribution with the scale parameter λR and shape
parameter kR, and fNR1

(NR), fNR2
(NR), fNR3

(NR) are the
pdfs for vair = 0.1 m/s, vair = 0.3 m/s, and vair = 0.5 m/s,
respectively. The parameters in (14)-(16), which are estimated
via the maximum likelihood estimation method detailed in
Section II-A, are given in Table II with their mean square
error (MSE) values.

In the next step, these derived pdfs in (14)-(16) with their
estimated parameters given in Table II can be employed to
obtain the probability of infection (Pinf ) as given by [28]

Pinfi = P (NR > γ) =

∫ ∞
γ

fNRi (x)dx (17)

where i shows the index according to vair as also applied in
(14)-(16) and γ is the detection threshold corresponding to
the immune system’s strength of the RX. Thus, the derived
expressions for the probability of infections for different air
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Fig. 8. Probability of diameters of received particles for (a) vair = 0.1 m/s (b) vair = 0.3 m/s (c) vair = 0.5 m/s.
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velocities are given by

Pinf1 =w1Q

(
γ − µ1

σ1

)
+w2Q

(
γ − µ2

σ2

)
(18)

Pinf2 =w1Q

(
γ − µ1

σ1

)
+w2Q

(
γ − µ2

σ2

)
+w3e

−
(
γ
λ3

)k3
(19)

Pinf3 =w1e
− γ
λ1

k1

+w2Q

(
γ − µ2

σ2

)
, (20)

where Q(x) = 1√
2π

∫∞
x

e−
u2

2 du shows the Q-function.

B. Analysis

Although the multi-modal distributions in Fig. 7 may seem
counter-intuitive at the first glance, they actually reflect the
very complicated nature of airborne transmission due to the
turbulent flows with different particle sizes. Firstly, larger
particles have a ballistic trajectory due to gravity as also
observed in Fig. 5. Secondly, the smaller particles tend to
suspend in the air, and they are entrained by the constant
and turbulent airflows. Since the characteristic of turbulent
flows is inherently stochastic, every emission with the same
parameters can lead to different trajectories in the channel.
In [19], an analysis that investigates the stochasticity of the
particle dispersion due to a turbulent cough emission shows
that the spatial probability distributions of the emitted particles

have multi-modal distributions in the air. Furthermore, the
results and analysis in [50] shows that there can be unexpected
particle velocities in the MC channel due to the turbulence in
the vicinity of the TX. Therefore, these effects can lead to
multi-modal distributions in the reception.

In Fig. 8, the probabilities of particle reception with respect
to their diameters are given. In parallel with the observations
in Figs. 5 and 6, Fig. 8 shows that mostly aerosols arrive at
the RX, which is based on statistical data obtained by CFD
simulations. Although there are some large received particles
up to 25 µm for vair = 0.1 m/s and vair = 0.3 m/s and
41 µm for vair = 0.5 m/s, their reception probabilities are
negligible and most of the received particles are smaller than 6
µm. Moreover, while the reception probability decreases as the
particle diameter increases as given in Figs. 8 (a) and (b), this
is not the case for vair = 0.5 m/s as shown with the chaotic
distribution of diameters in Fig. 8 (c). This chaotic distribution
of diameters depicts the fact that the effect of turbulence still
continues due to the increased velocity of particles by the
ambient airflow.

The resulting plot of Pinf values given in (18)-(20) for
different γ values are shown in Fig. 9. These results show
that larger air velocities increase the infection probability for
susceptible people for a face-to-face scenario. Even though γ,
i.e., the immune system’s strength of a susceptible human, is
high, the risk of infection still continues due to the higher
exposure of pathogen-laden particles. The results in Fig. 9
also show the effect of aerosols which are not taken into
account before in the literature for the calculation of the
probability of infection in addition to the effect of large
droplets in smaller numbers. This derivation of Pinf shows
that modeling the reception of particles is non-trivial due to the
highly complex nature of turbulence and it shows that multi-
modal distributions lie under this turbulent complexity. These
analytical derivations also can be employed in epidemiology
studies with more realistic parameters for interhuman airborne
pathogen transmission.

For real-life scenarios, airborne pathogen transmission can
be more complicated, since the infection actually includes
the interactions of pathogen-laden particles at the reception
regions into the human body such as mouth, nose, and eyes.
Furthermore, pathogens interact with the immune system and
the vaccinations can be also effective in the process ending
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Fig. 10. Samples of the end-to-end impulse response for the turbulent MC channel when (a-c) vair = 0.1 m/s (d-f) vair = 0.3 m/s (g-i) vair = 0.5 m/s.

with infection. These are open research issues which are also
covered within the broader mobile human ad hoc network
framework given in [35]. In this paper, our focus is to investi-
gate the effect of turbulent flows on the reception. Therefore,
we employ a simple reception model. As for the channel, the
Navier-Stokes equations are accepted as the standard method
to model the turbulent flows, although it is known that it
cannot capture the nature of turbulent flows in every scenario
[39]. In the next section, we focus on the characterization of
the turbulent MC channel by using obtained data in the CFD
simulations.

VI. END-TO-END IMPULSE RESPONSE
CHARACTERIZATION FOR THE TURBULENT MC CHANNEL

In this section, we focus on the characterization of the
turbulent MC channel between the TX and RX. To this end,
the obtained data via CFD simulations are post-processed and
the end-to-end impulse responses are generated. Then, the pdfs
for different air velocities are estimated as done in Section V.

Since the particles from the TX are emitted in a very
short emission time, the input to the turbulent MC channel

can be considered as an impulse-like emission. Therefore, the
received signal, which is the number of received particles at
the RX, can be considered as the end-to-end impulse response
of the MC system (h(t)) as shown in Fig. 2 [22]. In Fig. 10,
nine different end-to-end impulse responses where the rows
correspond to the air velocities in the MC channel as 0.1 m/s
(a-c), 0.3 m/s (d-f) and 0.5 m/s (g-i) are shown. In this figure,
each row depicts three different samples of h(t) among 500
trials for the same air velocity in the MC channel. In Fig.
10 (a)-(c) for vair = 0.1 m/s, it is observed that the system
response can be in very different signal shapes. While h(t) has
an approximately symmetric shape like a Gaussian function
in Fig. 10 (a), it can have a more skewed shape as a long-
tailed function as shown in Fig. 10 (c). In addition, it can
also have a longer response time (≈10 s) and relatively much
lower amplitude than other responses as given in Fig. 10 (b).
Moreover, the peak arrival times of the particles show a large
variation in Figs. 10 (a)-(c). The results for vair = 0.1 m/s are
important to understand the effect of turbulence caused by the
emission in an indoor environment without ventilation, since
there is nearly always a slight airflow in air-based indoor MC
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Fig. 11. Probability density function of h(t) for (a) vair = 0.1 m/s (b) vair = 0.3 m/s (c) vair = 0.5 m/s.

TABLE III
ESTIMATED STATISTICAL PARAMETERS OF fhi

Pdf w1 Distribution 1 w2 Distribution 2 w3 Distribution 3 MSE
fh1

0.05 µ1=4.54 σ1=0.19 0.55 µ2=12.6 σ2=0.2 0.4 µ3=13.4 σ3=0.55 0.054949
fh2

0.68 µ1=4.65 σ1=0.14 0.32 µ2=4.61 σ2=0.32 - - - 0.27498
fh3

- α1=1.47,
β1=0.99

c1=0.03,
m1=2.8

- - - - - - 1.9779

channels. As vair increases in the turbulent MC channel, h(t)
resembles to a more impulse-like function. Nevertheless, the
variation of the reception times are large due to the turbulence.

Based on the results for different air velocities, the his-
tograms and the estimated pdfs are shown in Fig. 11. Similar to
the pdfs of received number of particles in Fig. 7, the estimated
pdfs are characterized by weighted multi-modal distributions
except for vair = 0.5 m/s. Based on the visual inspection of
the histograms, it is decided which distribution to use for the
pdf estimation. These weighted pdfs are given by

fh1
(t)=w1N (µ1, σ

2
1)+w2N (µ2, σ

2
2) +w3N (µ3, σ

2
3) (21)

fh2
(t)=w1N (µ1, σ

2
1)+w2N (µ2, σ

2
2) (22)

fh3
(t)= S(α1, β1, c1,m1), (23)

where fh1
(t), fh2

(t), fh3
(t) are the pdfs for vair = 0.1

m/s, vair = 0.3 m/s, and vair = 0.5 m/s, respectively, w1,
w2, w3 are weight coefficients, N (µ, σ2) show a normal
distribution with the mean µ and standard deviation σ, and
S(α1, β1, c1,m1) shows a stable distribution where α1 is the
stability parameter, β1 is the skewness parameter, c1 is the
scale parameter, and m1 is the location parameter. The pdf of
the stable distribution is not analytically expressible in general.
Instead, this pdf is defined via the inverse Fourier transform
of its characteristic function (Φ(x)) as given by [51]

fh3
(t) =

1

2π

∫ ∞
−∞

Φ(x)e−jxtdx. (24)

Here the characteristic function is analytically given as

Φ(x) = exp (jxm1 − |c1x|α1(1− jβ1sgn(x)κ)) , (25)

where sgn(x) is the sign function and κ is defined by

κ =


tan
(πα1

2

)
, α1 6= 1 (26a)

− 2

π
log|t|, α1 = 1. (26b)

For the pdfs given in (21)-(23), the parameters are estimated
with the maximum likelihood estimation method as explained
in Section II-A. These estimated parameters are given with
their MSE in Table III.

As shown in Fig. 11, the end-to-end system responses are
not characterized similar to a diffusion MC channel with
drift where the flow velocity changes the system response
with the same analytical expression as reviewed in [52]. The
obvious distinction of turbulent air-based MC channel from the
diffusion MC channels with drift is the high initial velocity
of particles, gravity and the varying sizes of particles. The
high initial velocity causes the turbulent flows and the cor-
responding air-particle interactions. Furthermore, the gravity
has a similar role to a filter in the MC channel by eliminating
large particles by settling to the ground. As for the small
particles, i.e., aerosols, they suspend in the air in the abscence
of an airflow. In our case, they are entrained by the turbulent
airflows. As given in Fig. 8, when vair is smaller, the received
particles are dominated by smaller particles. As vair increases,
the reception is dominated by larger particles with a shorter
arrival time at the RX. Hence, the arrival times for vair = 0.5
m/s can be explained with a uni-modal distribution. However,
when the ambient air velocity is not strong enough, the particle
cloud is more dispersed and the effect of turbulence in the
vicinity of the TX can be amplified as particles move closer
to the RX. Hence, it causes large variations in the arrival times
ending up with multi-modal distributions.

The results for the characterization of turbulent flows in
a MC channel can be employed for the further analysis and
implement new techniques in different turbulent MC scenarios.
For instance, an information theoretical analysis can be useful
for the analysis of air-based turbulent MC channels as applied
in [53], [54]. Furthermore, the encoding of information in
turbulent MC scenarios can be developed with the obtained
results in this paper.
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VII. CONCLUSION

In this paper, the airborne transmission of pathogens emitted
via coughing between two humans is modeled with a CFD
approach incorporating turbulent airflows and turbulent dis-
persion of droplets and aerosols. By using the statistical data
collected with CFD simulations, it is revealed that turbulence
cause multi-modal distributions for the pdf of received parti-
cles by the susceptible human. Furthermore, numerical results
show that augmented air velocity causes the increment of
the probability of infection. Derived probability of infection
expressions can be employed in epidemiological models to
realistically consider the indoor airborne transmission. On the
other hand, the end-to-end system response of the air-based
turbulent MC system is characterized. It is shown that the
system response also shows multi-modal distributions except
for the larger ambient air velocity. The characterization of the
turbulent MC channel can also be used for the realistic design
of MC systems with turbulent flows. As the future work, it
is planned to extend this study by including scenarios with
masks and breathing.
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[11] M.-R. Pendar and J. C. Páscoa, “Numerical modeling of the distribution
of virus carrying saliva droplets during sneeze and cough,” Phys. of
Fluids, vol. 32, no. 8, p. 083305, 2020.

[12] V. Vuorinen, M. Aarnio, M. Alava, V. Alopaeus, N. Atanasova, M. Au-
vinen, N. Balasubramanian, H. Bordbar, P. Erästö, R. Grande et al.,
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