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Vehicloak: A Blockchain-Enabled
Privacy-Preserving Payment Scheme for

Location-based Vehicular Services
Yihao Guo, Zhiguo Wan, Hui Cui, Xiuzhen Cheng, Falko Dressler

Abstract—The Internet of Vehicles (IoV) technology enables vehicles to communicate with each other, with pedestrians and with
roadside infrastructures, to realize more efficient, safer and more environmentally friendly transportation. IoV also promises rich
location-based services for vehicles, such as parking and toll highway. However, preserving privacy for location-based service
payments emerges as a critical and challenging problem in IoV. Existing schemes rely on centralized banks for payment processing,
resulting in location privacy leakage to centralized entities.
In this paper, we utilize blockchain as the payment method, and propose a decentralized privacy-preserving payment scheme named
Vehicloak for IoV. The biggest challenge is to provide location privacy for vehicles while guaranteeing correct service payments using
the transparent blockchain. To tackle this challenge, we introduce a new cryptographic technique called zk-GSigproof that integrates
zero-knowledge proof with group signature. Vehicloak deploys this technique in a smart contract to process payment, which verifies
zero-knowledge proof and group signature without leaking location information. It is not limited to IoV and can be applied in many
payment scenarios. To evaluate the performance of our scheme, we implement Vehicloak on a private blockchain of 100 nodes on
Aliyun, and conduct a test with up to 4,000 transactions. The experimental results prove the feasibility of Vehicloak.

Index Terms—Blockchain, zk-SNARK, Group signature, Location privacy, Smart contract.
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1 INTRODUCTION

The Internet of Vehicles (IoV) technology employs big
data, cloud computing, artificial intelligence and other tech-
niques to realize pervasive network connections and data
exchanges among vehicles, roads and pedestrians, which
gives rise to an integrated system that is capable of dy-
namic information services, intelligent vehicle control and
traffic management. In addition, IoV has the potential to
bring great benefits in improving traffic jams and reducing
harmful exhaust gas and traffic accidents [1].

Unfortunately, IoV involves severe security threats for
vehicles in addition to the aforementioned great benefits.
It has caused countless economic losses due to security
and privacy attacks. The vehicle itself can be the target of
adversaries, while centralized databases of vehicle informa-
tion can also be attacked due to the high value of such
information. Even worse, most vehicle service providers
collect a large amount of personal information, and employ
advanced information technologies such as big data analysis
and artificial intelligence to gain valuable knowledge about
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their clients. This would lead to potential centralization,
monopoly, and severe privacy leak [2], [3].

The protection of vehicle location-based privacy emerges
as a critical problem in recent years. To realize intelligent
traffic management, vehicles have to periodically report
their identities as well as location and driving status infor-
mation to a centralized server. Vehicular services like park-
ing toll and electronic toll collection (ETC) require location
information of vehicles to determine the correct charges [2].
Without appropriate protection on vehicle location privacy,
it is easy for an adversary to track vehicles through data an-
alytics. This problem becomes even more challenging when
location information is required for payment processing. For
example, an ETC system calculates the toll cost based on the
entry and exit points of a given vehicle, and the payment
process would expose the relationship between the vehicle
driver’s identity and the entry/exit points.

Recently, the blockchain technology has attracted
tremendous interests from government and academia to in-
dustry for its decentralization, transparency and immutabil-
ity [4]. It can solve the traditional single point of failure
problem, achieve effective access control, and even enable
mutually distrustful parties to establish trust relationship
in wireless networks [5]. Hence, blockchain is quickly in-
troduced to many areas including finance [6], vaccine [7],
smart grid [2], UAV swarms [8], [9] and cloud services
[10]. However, as a decentralized and transparent system, a
delicate mechanism should be designed to preserve privacy
during the payment process [11].

In this paper, we attempt to address this problem
and design a blockchain-based privacy-preserving payment
scheme for location-based services. For the sake of conve-
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nience, we highlight our contributions as follows:

1) We design Vehicloak, a blockchain-based privacy-
preserving payment scheme for vehicular location-
based services in IoV. To the best of our knowl-
edge, Vehicloak is the first blockchain-based scheme
that preserves location privacy for vehicle pay-
ment. A key component within Vehicloak is a new
cryptographic technique zk-GSigproof, which pre-
serves privacy while guaranteeing correct payment
amount. Besides that, Vehicloak has good univer-
sality and can be applied to multiple application
scenarios such as electricity billing and parking toll.

2) We formulate a rigorous security definition for
zk-GSigproof, and formally demonstrate its secu-
rity. In addition, we provide an in-depth analysis
on security and privacy of Vehicloak, and give a
comprehensive discussion on a few practical con-
siderations. According to our analysis, one can see
that Vehicloak not only can thwart existing attacks
targeting vehicle location privacy, but also demon-
strates high feasibility.

3) We fully implement Vehicloak on a customized
private Ethereum blockchain (BlockMaze [4])—
including zk-GSigproof and the smart contract
Contract-Vehicloak. For BlockMaze, we adopt the
one-time pseudonym technique to achieve privacy-
preserving interactions between vehicles and smart
contracts. Finally, we conduct comprehensive exper-
iments to evaluate the performance of Vehicloak,
and the results show that Vehicloak is highly effi-
cient in processing payments on the blockchain.

The remainder of the paper is structured as follows:
We first review the most related works in Section 2; then
describe the system and threat models, and briefly introduce
the necessary preliminary knowledge in Section 3. After
that, we propose a novel technique zk-GSigproof and pro-
vide a security analysis. In Section 5, we detail our scheme
Vehicloak. Section 6 describes the simulation experiments on
Aliyun to evaluate the performance of Vehicloak. Finally, we
conclude this paper with a future research discussion.

2 RELATED WORKS

Research works related to Vehicloak include the payment
scenarios in IoV and vehicular location-based privacy-
preserving services. According to their design ideas, we
categorize them into traditional centralized schemes and
blockchain-based distributed ones.

2.1 Traditional Centralized Schemes
VPriv [12] realizes location privacy protection based on
an out-of-band enforcement mechanism, which combines
techniques such as homomorphic encryption and random
spot checks. PrETP [13] makes use of a new cryptographic
protocol named Optimistic Payment, which only discloses a
small amount of data to prove the correctness of the payable
amount. Based on VPriv and PrETP, Meiklejohn et al. [14]
proposed Milo. Its key techniques include zero-knowledge
proofs and blind identity-based encryption. All the above
solutions are based on Global Navigation Satellite Systems

(GNSS), in which on-board units play the role of centralized
data collection and processing. Unlike the schemes [12]–[14],
P4TC [15] employs Dedicated Short-Range Communication
(DSRC) to realize privacy-preserving toll collection. Hu et
al. [3] developed PPDIR, which achieves privacy preserva-
tion and billing via delayed information release.

The schemes mentioned above aim to achieve privacy
protection for vehicle information, especially location in-
formation. However, these schemes assume that the third
party is trusted in processing data and payment. In practice,
the third party is not always trustworthy—it may leak pri-
vate information and may be vulnerable to single-point-of-
failures. In addition, realizing privacy-preserving payments
in IoV is challenging in that traditional payment approaches
rely on a centralized entity (e.g. the bank) to deal with
settlement. This centralized entity may accidentally leak
account information, which may be exploited by adversaries
to infer sensitive information [11], [16].

2.2 Blockchain-based Distributed Schemes
Recent years have witnessed the rapid developments of
blockchain-based distributed schemes to protect privacy.
BlockPriv [17] is a location information protection solution
designed for the Internet of Things. It considers the spa-
tiotemporal correlation of continuous transactions and real-
izes location information protection through obfuscation. Li
et al. proposed a scheme [18] applied in vehicular ad-hoc
networks. They used blockchain to store the hash values
of vehicle messages, and hide identity information with K-
anonymity unity and dynamic threshold encryption. Shen
et al. [19] designed a lightweight threshold certificate au-
thority scheme (LTCA) and a privacy-preserving location-
based service protocol (PPVC). LTCA mainly prevents the
privacy leak caused by the traditional single-CA online key
distribution while PPVC protects privacy by continuously
updating the addresses of vehicles on the blockchain.

Compared with the traditional centralized schemes,
blockchain-based distributed ones eliminate the single-
point-of-failure problem. However, these schemes cannot
protect the privacy in payment processing for location-
based services. This problem is highly challenging due to
the following reasons:

• The payment amount must be accurately calculated
based on trusted location information, e.g. entry/exit
points, and this unavoidably discloses location infor-
mation of the vehicles.

• A payment transaction is recorded on a transpar-
ent blockchain, and blockchain validators as well as
others can access the transaction details, resulting in
privacy leak.

Therefore, it is crucial to support correct payments without
leaking location information over blockchain. In this paper,
we present Vehicloak based on zk-GSigproof, which can
effectively address the above challenges.

3 THE VEHICLOAK MODEL AND PRELIMINARIES

In this section, we first describe the major entities in the
Vehicloak system model, then define an appropriate threat
model, and finally provide preliminaries on group signa-
ture, zk-SNARK and BlockMaze.
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3.1 System Model

Vehicloak involves four entities: vehicle (V), station (S), toll
booth (TB), and blockchain miner (M). S can be an entry
station (Sen) or an exit station (Sex) according to the actual
application scenario.

In this system, V has a pseudonym account V′, which is
responsible for interacting with others and uploading public
information, such as group signatures, payable amounts
and zk-SNARK proofs, to the blockchain. It is assumed that
each vehicle has been equipped with a wireless communica-
tion technology, e.g. Dedicated Short Range Communication
(DSRC), to support communications with the road side units
(e.g. the stations).

All stations form a group G and their main task is to
generate group signatures for passing vehicles. There can
be thousands of stations to provide authenticated entry/exit
information, while only one toll booth TB is required to
collect toll payments.

The mentioned TB is essentially represented by an ac-
count in the blockchain. All payable amounts are eventually
transferred to the TB account. It is worth mentioning that
TB is not responsible for verifying the correctness of a
payable amount, and this task is done by miners.

Miners are responsible for managing the blockchain with
a secure consensus algorithm (e.g. proof of work, proof of
stake). Our scheme can be compared to a specific application
of the Ethereum main chain, where miners can get rewards
for their work. Specifically, miners are required to execute a
smart contract to determine the legitimacy of the uploaded
information, such as group signatures, payable amounts and
zk-SNARK proofs.

3.2 Threat Model

In order to capture various attacks, we define the following
threat model.

• Vehicle V. We assume that vehicles can be arbitrar-
ily malicious, and act in their best interests. Fur-
thermore, vehicles may collude with each other to
maximize their benefits.

• Station S. We assume that S is honest but curious.
That is, S would honestly follow the deployed proto-
cols, but it is also interested in inferring the privacy
of V, e.g. identities and location information.

• Miner M. Multiple miners follow a secure consensus
algorithm to maintain the blockchain. Adversaries
cannot compromise the majority of miners to bring
down the overall blockchain system.

• Toll booth TB. We assume TB is honest but curious.
TB would honestly follow the protocol in payment
charging, but it is also interested in inferring the
relationship between a vehicle V and a route (infer-
ring the possible route of V). In addition, TB may
collude with stations to obtain the private location
information of V.

Based on the above threat model, Vehicloak intends to
achieve the following privacy and security goals:

• Location privacy. Location privacy specifically refers
to the passing stations of a vehicle. Assuming that a

vehicle V passes through stations Sen and Sex. Any
adversary should not be able to obtain the corre-
spondence between Sen and Sex, avoiding further
revealing the corresponding relationship among V,
Sen and Sex.

• Identity privacy. Identity privacy refers to the in-
formation of a vehicle, e.g. the identity ID and ac-
count address. In Vehicloak, the identities of vehicles
should be hidden from the public. No other entity,
especially a station, is able to obtain the real identity
of an interacting vehicle.

• Location authenticity. It is an important task to
prove the authenticity of the location information
(i.e. the entry/exit stations), because the actual loca-
tion is one of the necessary conditions for calculating
the correct payable amount. The difficulty of this
task is to resolve the contradiction between proving
the location authenticity to others and protecting the
location privacy.

• Payment correctness. The payable amount is deter-
mined by the information sent to the blockchain by
vehicles. Ensuring the correctness of a payment is
one of the prerequisites for this scheme to be feasible.

In order to achieve the above security goals, we next intro-
duce the adopted key technologies.

3.3 Group Signature
Group signature, proposed by Chaum et al. [20], can hide
the identities of signers in a group. Specifically, each mem-
ber u can use a unique private key gsku to sign on behalf of
the group G. A group signature scheme is composed of five
algorithms: Setup (Setup), member join (Join), group signa-
ture generation (Sign), group signature verification (Verify),
and group signature open (Open). The whole process can be
represented by a tuple of polynomial-time algorithms Σ

def
=

(Setup, Join, Sign, Verify, Open):

• (gpk, gsk) ← Setup(1λ). The Setup algorithm takes
a security parameter 1λ as input, and generates the
group public key gpk and the group private key gsk.

• gsku ← Join(gsk, IDu). When a new member u joins
G, the Join algorithm generates a unique private key
gsku with gsk and the ID of the new member IDu.

• σ ← Sign(gpk, gsku,m). The Sign algorithm takes
the group public key gpk, the private key gsku of u
and the message m as inputs to generate the group
signature σ for m – σ is the signature of m signed by
u on behalf of the group.

• {0, 1} ← Verify(gpk,m, σ). The Verify algorithm
takes the group public key gpk, the message m and
the group signature σ as inputs, and outputs 1 if the
verification is successful; otherwise, it outputs 0.

• gsku ← Open(gsk,m, σ). This algorithm is used to
restore a member’s private key gsku based on the
group private key gsk, the message m and the group
signature σ when necessary.

During initialization of a group G, the Σ.Setup algorithm
relies on a trusted third party (e.g. Certificate Authorities)
for key management. After that, according to the require-
ments of Σ, each G has a trusted manager responsible for
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managing and supervising the group members based on
the algorithms Σ.Join and Σ.Open. The group members can
execute Σ.Sign to generate group signatures and everyone
can verify them using Σ.Verify.

3.4 Zero-knowledge Proof and zk-SNARK

Zero-knowledge proofs can prove the correctness of a state-
ment without leaking any additional information [21]. As
a type of zero-knowledge proof (computationally sound
proof), zero knowledge Succinct Non-interactive ARgument
of Knowledge (zk-SNARK) has found its great value in
preserving privacy for blockchains such as Zerocash [22]
and BlockMaze [4]. This is mainly due to its security features
in the succinct proof. zk-SNARK requires a trusted setup
phase to generate a common-reference string (crs) as the
public parameter, which is used for computing and verify-
ing proofs.

A zk-SNARK scheme can be represented by a tuple
of polynomial-time algorithms Π

def
= (Setup, Prove, Verify).

Every statement to be proved with zk-SNARK should be
transformed into a circuit C , and it works as follows:

• crs ← Setup(1λ, C). The Setup algorithm takes a
security parameter 1λ and a circuit C as inputs to
obtain the proving key pk and verification key vk,
which constitute the common reference string crs.

• π ← Prove(crs, x,w). This algorithm takes the com-
mon reference string crs, the circuit public input x
and the circuit private input w as inputs, and gener-
ates a succinct proof π whose size is irrelevant to the
circuit size.

• {0, 1} ← Verify(crs, π, x). This algorithm takes the
common reference string crs, a succinct proof π and
the circuit public input x as inputs and outputs
the verification result: it outputs 1 if verification is
successful; and otherwise it outputs 0.

In the algorithm Π.Setup, crs is public, which means that
anyone with circuit C can generate and verify a proof.
The size of each proof is fixed, with good succinctness. In
addition, zk-SNARK also satisfies completeness, computa-
tional soundness, computational zero knowledge and non-
interactivity [23].

3.5 Privacy-preserving Blockchains

In this paper, we choose BlockMaze, an efficient privacy-
preserving blockchain as the underlying blockchain sys-
tem. BlockMaze adds the zero-knowledge balance to the
original Ethereum that takes only plaintext balance. In
BlockMaze, each user account has a key pair (p̃ku, s̃ku)
used for sending transactions. Theoretically, other privacy-
preserving blockchains can also be adopted by our scheme.

The zero-knowledge balance zk balance of user A is
defined as follows:

zk balance = (addrA, valueA, snA,NA, cmtA).

where addrA is A’s account address, valueA is A’s account
balance, snA is a serial number, NA is a random number, and
cmtA is a commitment over (valueA, snA,NA). During the

transfer process between user A and B, cmtv is a commit-
ment over (p̃kB , addrA, v, snA,Nv), which is used to update
zk balance, and v represents the transfer amount.

The BlockMaze scheme is composed of 4 polynomial-
time algorithms: Mint, Send, Deposit and Redeem. A
privacy-preserving transaction between A and B proceeds
as follows:

1) A runs the Mint algorithm to generate a transaction
named Txmint, converting A’s plaintext balance into
zk balance.

2) A runs the Send algorithm to generate a transaction
recorded as Txsend and a zero-knowledge fund cmtv
as a commitment to the blockchain. The fund cmtv
is intended for B.

3) B selects multiple zero-knowledge funds as well as
cmtv on the blockchain to form a Merkle tree, gen-
erating a Merkle proof to prove the corresponding
cmtv is on the tree. Then B runs the Deposit algo-
rithm to generate Txdeposit containing the Merkle
proof, which transfers the corresponding fund to B’s
zk balance. Therefore, the cost of judging whether a
cmtv is on the tree is low, which effectively allevi-
ates the additional resource consumption caused by
privacy protection.

4) Optionally, B can run the Redeem algorithm to gen-
erate Txredeem, transferring its zk balance to plain-
text balance.

Note that the Merkle proof is used to prove whether
the value of a specific node is in the set without knowing
the values of other nodes. Its storage overhead is small too.
Therefore, the cost of judging whether a cmtv is on the tree
is low, which effectively alleviates the additional resource
consumption caused by privacy protection.

Through the above process, BlockMaze can effectively
hide the transfer relationship between A and B. No other
party can figure out how much money has been sent or re-
ceived by the two involved parties. However, because smart
contracts cannot support the transfer of zero-knowledge
funds, BlockMaze can not be applied to transfer operations
between smart contracts and users. Fortunately, one can use
the pseudonym technique to solve the problem mentioned
above, as detailed in Sec. 5.2.

4 ZK-GSIGPROOF: A ZK-SNARK WITH GROUP
SIGNATURE

In this section, we propose zk-GSigproof, a special zk-
SNARK that makes use of the advantages of group sig-
natures. It provides basic technical support for Vehicloak
and is proven to satisfy data authenticity and authenticator
anonymity in addition to the standard properties of zk-
SNARKs.

4.1 Introduction of zk-GSigproof
In Vehicloak, we aim to enable a vehicle to securely upload
payment information and correctly complete the payment
operation, while eliminating the reliance on a third-party
billing agency. However, under the assumption that the
vehicle is arbitrarily malicious, how to ensure the correct-
ness and privacy of payment information becomes difficult.
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Although the current techniques such as zero-knowledge
proofs can help realize privacy-preserving computing, they
usually cannot guarantee the authenticity of the input infor-
mation; while the general signature techniques can prove
the authenticity of information but expose the identity
privacy of the signer. These observations motivate us to
propose zk-GSigproof, which combines group signature and
zero-knowledge proof to ensure the authenticity of the
uploaded information and the correctness of the amount
to be paid while eliminating the risk of privacy leak dur-
ing information uploading and payment calculation, since
group signature can hide the address of the signer, perfectly
making up for the deficiencies of zero-knowledge proof
mechanisms.

In the following, we give the definition of zk-GSigproof.

Definition 1 (zk-GSigproof). zk-GSigproof is a zk-SNARK
for arithmetic circuit, and is composed of 4 polynomial-time

algorithms ∆
def
= (Setup, DataAuth, Prove, Verify).

We claim that zk-GSigproof satisfies data authenticity
and authenticator anonymity, in addition to standard zk-
SNARK properties, i.e. perfect completeness, succinctness,
knowledge extraction and computational zero-knowledge.
The construction of zk-GSigproof ∆ is based on a zk-SNARK
algorithm Π and a group signature scheme Σ. It works as
follows:

(crs, gpk, gsku) ← Setup(1λ, C). On inputs of a security
parameter λ and a circuit C , the algorithm first runs
Σ.Setup(1λ) to generate the group public key gpk and
group private key gsku for group member IDu, then
runs Π.Setup(1λ, C) to produce a common reference
string crs, and finally publishes crs and gpk.
Note that crs is related to the structure of C (like the
number of inputs and their operations) and is inde-
pendent of the specific input assignment. The specific
circuit logic used in Vehicloak is shown in Fig. 1. The
private input w includes entry/exit stations (Sen/Sex),
two random numbers (Nen,Nex) and the pre-deposit
identification Txid (details shown in Sec. 5.2.2). The
calculation result F represents the amount payable and
the hash results (Hen and Hex) are to be signed with the
algorithm Σ.Sign.

 Compute Hash Hash 

  

 

Fig. 1. The logic diagram of the circuit in zk-GSigproof. The inputs with
gray background are private ones protected with zk-SNARK proof.

π ← Prove(crs, x,w). This algorithm generates a proof π
based on Π.Prove(crs, x,w). Users can generate their
own proofs with the same crs and different input
assignment.

σ ← DataAuth(gpk, gsku,m). For each message m, such
as the hash result Hen or Hex, this algorithm runs
Σ.Sign(gpk, gsku,m) and obtains a group signature σ.

{0, 1} ← Verify(crs, gpk, π, x,m, σ). This algorithm first
runs Π.Verify(crs, π, x) to verify the proof π with the
public input x and the common reference string crs.
Then, it runs Σ.Verify(gpk,m, σ) to verify the group
signature with the group public key gpk and the
message m. It outputs 1 if the proof π and the group
signature σ are valid and 0 otherwise.

The additional properties of the zk-GSigproof are defined
as follows.

• Data Authenticity. The prover can convince the ver-
ifier that the output F is computed from the private
input w authenticated by group signatures σi|i∈T ,
where T is a given set containing multiple instances.
Formally, we define the following experiment:

Expauth
zk-GSigproof,A(1λ, C) :

(crs, gpk, gsku)← Setup(1λ, C)
(π, x, σi|i∈T)← ADataAuth(gsku,·)(crs)
w← E(transA)
if ((x,w), σi) /∈ S and

Verify(crs, gpk, π, x,mi|i∈T, σi|i∈T) = 1
return 1

else return 0

Here A is a non-uniform polynomial-time adversary,
S is the list including all messages signed with legiti-
mate gsku, transA is the list containing allA’s inputs,
outputs and randomness. This experiment represents
the probability that the adversary composes a valid
instance with a zero knowledge proof without query-
ing the signing oracle.
We say that a zk-GSigproof scheme achieves data
authenticity if for any non-uniform polynomial-time
adversary A, there exists a probabilistic polynomial-
time witness extractor E such that the probability
Pr[Expauth

zk-GSigproof,A(1λ, C) = 1] is negligible.
• Authenticator Anonymity. This property is de-

fined as the notion that an adversary cannot link
a zk-GSigproof to the corresponding authenticator.
More formally, we define the following experiment:

Expanon
zk-GSigproof,A(1λ, C) :

(crs, gpk, gsku)← Setup(1λ, C)
(u0, u1,m, state)←
ASetup(·),Prove(·),Verify(·)

1 (crs, gpk)

b
$← {0, 1}

σ∗ ← DataAuth(gpk, gskub ,m)

b′ ← ASetup(·),Prove(·),Verify(·)
2 (σ∗, state)

if b′ = b return 1
else return 0

It represents the probability that the adversary com-
poses a valid instance with a zero knowledge proof
without querying the signing oracle.
We say that a zk-GSigproof scheme achieves au-
thenticator anonymity if for any non-uniform
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polynomial-time adversary A, the probability
Pr[Expanon

zk-GSigproof,A(1λ, C) = 1] is negligible.
For the security of the above construction, we have the

following theorem.

Theorem 1. If Π is a zk-SNARK scheme satisfying complete-
ness, soundness, succinctness and zero knowledge, and Σ is
a secure group signature scheme, then the above construction
of zk-GSigproof satisfies data authenticity and authenticator
anonymity in addition to completeness, soundness, succinctness
and zero knowledge.

The proof of the above theorem is deferred to Sec. 4.2.

4.2 The Security Proof of zk-GSigproof
Proof. It is trivial to prove that the zk-GSigproof construction
satisfies completeness and succinctness. The soundness of
our construction can also be easily reduced to the soundness
of the corresponding zk-SNARK scheme. In the following,
we prove data authenticity of our zk-GSigproof construction.

As described in Sec. 4.1, we need to show that the
probability Pr[Expauth

zk-GSigproof,A(1λ, C) = 1] is negligible.
Due to the soundness of our zk-GSigproof construction, it
implies that the probability of the following experiment
returning 1 is negligible:

Expsound
zk-GSigproof,A(1λ, C) :

(crs, gpk, gsku)← Setup(1λ, C)
(π, x, σi|i∈T)← ADataAuth(gsku,·)(crs)
w← E(transA)
if (x,w) /∈ RC and

Verify(crs, gpk, π, x,mi|i∈T, σi|i∈T) = 1
return 1

else return 0

Here RC is the relation defined by the circuit C .
Denote E1 as the event that

Verify(crs, gpk, π, x,mi|i∈T, σi|i∈T) = 1, E2 as the event
that (x,w) /∈ RC , and E3 as the event ((x,w), σi) /∈ S .
Then Pr[Expsound

zk-GSigproof,A(1λ, C) = 1] = Pr[E1 ∩ E2] and
Pr[Expauth

zk-GSigproof,A(1λ, C) = 1] = Pr[E1 ∩E3]. So we have

Pr[Expauth
zk-GSigproof,A(1λ, C) = 1] = Pr[E1 ∩E3]

= Pr[E1 ∩E3 ∩ Ē2] + Pr[E1 ∩E3 ∩E2]

≤ Pr[E3 ∩ Ē2|E1] · Pr[E1] + Pr[E1 ∩E2]

≤ AdvhashA (1λ) + Pr[Expsound
zk-GSigproof,A(1λ, C) = 1]

Here AdvhashA (1λ) denotes the advantage of the adversary
breaking the hash function. Note that event E1 represents
validity of σi with regard to H, and event Ē2 represents H is
the hash of w. Therefore, event E3 ∩ Ē2|E1 happens only if
the adversary can find w′ such that H = hash(x,w′), where
((x,w′), σi) /∈ S .

Since both AdvhashA (1λ) and Pr[Expsound
zk-GSigproof,A(1λ, C) =

1] are negligible, Pr[Expauth
zk-GSigproof,A(1λ, C) = 1] must be

negligible.
The authenticator anonymity of zk-GSigproof can be

reduced to the full anonymity of the underlying group
signature scheme as in [24].

To sum up, our zk-GSigproof construction satisfies data
authenticity, authenticator anonymity in addition to the
standard properties of zk-SNARK.

5 VEHICLOAK: A ZK-GSIGPROOF ENABLED
DECENTRALIZED PRIVACY-PRESERVING PAYMENT
SCHEME

In this section, we first provide an overview on Vehicloak,
then explain the protocol in detail, and finally discuss a few
practical considerations and analyze a number of privacy
and security problems of Vehicloak.

5.1 Overview
Assuming that the Vehicloak has been successfully initial-
ized (Initialize), vehicles act as blockchain users to send
payment transactions, and all stations form a group to
generate group signatures.

Suppose a vehicle V joins Vehicloak and its route is
from Sen to Sex. Before V enters Sen, it first calls the smart
contract (Contract-Vehicloak) to prepay amount F′, which
must be greater than the maximum amount Fmax. We define
the above process as Pre-deposit, and each pre-deposit
transaction ultimately corresponds to a unique Txid, which
is used as a certificate for V to enter Sen.

After V enters Sen, Sen first computes the hash value Hen

of its address, then generates the group signature σen for
Hen, and finally sends both Hen and σen to V. By the same
way, V obtains the hash value Hex and the group signature
σex from Sex. After leaving Sex, V calls Contract-Vehicloak
to pay the payable amount F. In order to prove correctness
of F while preserving location privacy, V needs to generate
a zero-knowledge proof, which requires the corresponding
circuit shown in Fig. 1. Finally, V uploads the payable
amount F, the zk-SNARK proof, and the group signatures
of entry/exit to the blockchain. This is the Upload process
of Vehicloak.

In Validate, the miners are responsible for verifying
the on-chain information to obtain rewards (just like the
main chain of Ethereum). We add the verification process
to Contract-Vehicloak, so that miners only need to execute
Contract-Vehicloak to prove the correctness of the prepay
amount F′, the payable amount F, the zk-SNARK proof, and
the group signatures of entry/exit.

The Settlement process is automatically executed
by Contract-Vehicloak. When Validate is successful, the
amount equivalent to F is transferred to the TB account, and
the remaining amount (F′ - F) is returned to V’s account.
If the verification fails or malicious behavior exists, e.g.
timeout, the prepay amount F′ is deducted for punishment.

We summarize the entire process in Fig. 2, and describe
the smart contract and basic protocol in Fig. 3 and Fig. 4,
respectively.

5.2 The Basic Protocol
In this section, we first detail the entire protocol, i.e., the 5
steps of Vehicloak: Initialize, Pre-deposit, Upload, Validate
and Settlement. Then, we add a Timeout mechanism to
punish vehicles for malicious behaviors.

5.2.1 Initialize
During the initialization process, vehicle V registers on
Vehicloak to get its pseudonym V′ and obtain the key pair
(p̃kV ′ , s̃kV ′ ). Note that V has two accounts in blockchain,
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3-1. Vehicle Entry:
Group signature on entry 

1. Intialize / 2. Pre-deposit

Vehicle Entry point Vehicle Exit point Vehicle

3-2. Vehicle Exit:
Group signature on exit 

Vehicle

5.Settlement 

Miners 

Smart
Contract

Pre-deposit 
Proof Verify 

GrpSig Verify 
Settlement 

3-3. Upload
F，zk-SNARK proof 
& Group signatures

Toll booth 

4. Verify zk-SNARK proof 
& Group signatures 

F' - F

F 

F'

Fig. 2. Vehicloak contains 5 steps marked from 1 to 5. Step 1 represents Initialize, which is responsible for initializing the system. Step 2 refers to
Pre-deposit and transfers the prepay amount to the smart contract. Step 3 describes the Upload process, which is responsible for generating the
verifiable information and uploading them to blockchain. Step 4 illustrates the Validate process, in which miners execute the smart contract to verify
the uploaded information. According to the verification result, the amount is transferred to the vehicle and the toll booth in Step 5 Settlement.

Contract-Vehicloak

Initialize:
1) Set state := INIT.

Pre-deposit:
Upon receiving (“Pre-deposit”, F′) from pseudonym V′:

1) Assert state = INIT;
2) Assert F′ > amount threshold Fmax;
3) Set state = DEPOSIT.

Validate:
Upon receiving (“Upload”, π, σen, σex, Hen, Hex, F) from
V′:

1) Assert state = DEPOSIT;
2) Set state = UPLOAD;
3) Verify (π, σen, σex) based on zk-GSigproof ∆:

If ∆.Verify(crs, gpk, π, F, Hen, Hex, σen, σex) = 1:
Set state = VALIDATE-TRUE;
Settlement.

Else:
Set state = VALIDATE-FALSE;
Settlement.

Settlement:
1) If state = VALIDATE-TRUE:

Transfer F⇒ TB;
Transfer (F′-F)⇒ V′;

2) Else:
Transfer F′ ⇒ TB.

3) Set state = FINISHED.
Timeout:
When state = DEPOSIT, Timer T starts timing:

1) If current T > Tend and state 6= UPLOAD:
Transfer F′ ⇒ TB.

2) Set state = TIMEOUT.

Fig. 3. The smart contract of Vehicloak (Contract-Vehicloak).

with one corresponding to its true identity V and one to
the pseudonym V ′. The pseudonym account is used only
once for the particular trip while the true account stays in
blockchain as needed. V also receives the common reference
string crs from the group that consists of all stations. The
crs is used to generate/verify proofs for the system. Each
station S obtains its key pair (gpk, gskS) based on the Setup
algorithm in zk-GSigproof (∆), where gskS is used to sign on
behalf of the entire group G.

(crs, gpk, gskS) = ∆.Setup(1λ, C).

5.2.2 Pre-deposit

V transfers the prepay amount F′ to its pseudonym account
V′. We emphasize that a privacy-preserving cryptocurrency
must be used to protect the identity privacy by hiding

the transfer relationship between two parties, so we re-
sort to BlockMaze (shown in 3.5). First, V executes the
BlockMaze.Mint algorithm to convert its deposit prepay
amount F′ to cmtv and update its zero-knowledge balance
zk balance. V runs the BlockMaze.Send algorithm to send
cmtv to the blockchain. Then, the pseudonym V′ builds
a Merkle tree, whose leaf nodes are based on multiple
cmtv in the blockchain network. V′ generates a Merkle
proof based on this tree, executes BlockMaze.Deposit to
prove that its cmtv exists on the tree and get cmtv. Af-
ter that, V′ runs BlockMaze.Redeem to update its zero-
knowledge balance zk balance and convert zk balance into
plaintext balance. Finally, V′ sends TxPre-deposit to transfer F′

to Contract-Vehicloak. We set the address of TxPre-deposit as
the identification of Pre-deposit, recorded as Txid.

TxPre-deposit
def
= (From : V′,To : contract,Amount : F′).
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The Vehicloak Protocol Details

Vehicle V with its pseudonym V′:

Initialize:
1) Get (p̃kV ′ , s̃kV ′ ) from blockchain;
2) Get crs = zk-GSigproof ∆.Setup(1λ, C).

Pre-deposit:
Upon arriving the entry of station Sen:

1) Send (“Pre-deposit”, F′)→ contract;
2) Store (“Pre-deposit”, F′) as Txid;
3) Send Txid → Sen.

Upload:
Upon receiving (σen, Hen, SNen) and (σex, Hex, SNex) from [Sen,
Sex]:

1) Get random numbers (Nen, Nex) = ECC(s̃kV ′ , SNen,
SNex);
2) Generate proof π = ∆.Prove(crs, Sen, Sex, Nen, Nex, Txid);
3) Send (“Upload”, π, σen, σex, Hen, Hex, F)→ contract.

Station S [Entry station Sen, Exit station Sex]:

Initialize:
1) Get ( gpk, gskS) = ∆.Setup(1λ, C).

Upload:
[Sen]: Upon receiving Txid from V′:

1) Assert the legitimacy of Txid;
2) Generate a new random 16-bit integer Nen;
3) Compute Hen = Hash(Sen, Txid, Nen);
4) Get signature σen = ∆.DataAuth(gpk, gskS, Hen);
5) Encrypt SNen = ECC(p̃kV ′ ,Nen);
6) Send (σen, Hen, SNen)→ V′.

[Sex]: V′ is about to leaving:
7) Generate a new random 16-bit integer Nex;
8) Compute Hex = Hash(Sex, Txid, Nex);
9) Get signature σex = ∆.DataAuth(gpk, gskS, Hex);
10) Encrypt SNex = ECC(p̃kV ′ ,Nex);
11) Send (σex, Hex, SNex)→ V′.

Fig. 4. The Vehicloak protocol details.

5.2.3 Upload
When V arrives at entry station Sen, Sen calculates a hash
value Hen of Nen, Sen and Txid. Nen, generated by Sen using
the BBS generator [25], is a new random 16-bit integer
to enhance the randomness of the hash result. Then, Sen
generates a group signature σen for Hen and sends σen,
Hen and SNen to V′. SNen is the encrypted random number
based on the public key p̃kV ′ and the random number Nen,
and we can use the algorithm based on the Elliptic Curve
Cryptography (ECC) [26] to implement that. By the same
way, when V arrives at Sex, it also gets the signature result
σex, the hash value Hex and the encrypted random number
SNex.

Hen/ex = Hash(Nen/ex,Txid,Sen/ex),

σen/ex = ∆.DataAuth(gpk, gsk,Hen/ex).

In addition, V′ needs to generate a zero-knowledge proof to
hide the location information while ensuring the correctness
of the payable amount F. Based on the zk-SNARK protocol,
V needs to generate the circuit C according to Fig. 1. The
whole circuit includes Compute and Hash functions, where
Compute calculates the payable amount F based on the
private location information (Sen, Sex) and Hash calculates
the hash results (Hen, Hex) based on Sen, Sex, Nen, Nex and
Txid. Then, V′ generates a proof π based on the algorithm
∆.Prove.

π = ∆.Prove(crs,Sen,Sex,Nen,Nex,Txid).

Finally, V′ packages F, π, σen, σex, Hen and Hex into a new
transaction TxUpload and sends it to blockchain.

TxUpload
def
= (π, σen, σex,Hen,Hex,F).

5.2.4 Validate
When TxUpload is sent successfully, miners execute
Contract-Vehicloak for verification. There are three main
components of verification: π, σen and σex. The parameters
required for the ∆.Verify algorithm are common reference

string crs, group public key gpk, proof π, group signature
σ, payable amount F and hash value H. Among them,
crs and gpk are publicly generated by ∆.Setup, and other
parameters are provided by TxUpload.

{1, 0} = ∆.Verify(crs, gpk, π,F,Hen,Hex, σen, σex).

5.2.5 Settlement
If the verification is successful, Contract-Vehicloak transfers
F to the toll booth TB, and returns the remaining amount
(F′ - F) to vehicle’s pseudonym account V′. Otherwise, V′ is
judged to be illegal and the prepay amount F′ is transferred
to TB as punishment. The final task is to transfer the balance
from V′ to V while not revealing the transfer relationship
between them. First, V′ executes BlockMaze.Mint to con-
vert plaintext balance into zk balance. Then, V′ converts
zk balance to cmtv and sends cmtv to the blockchain based
on BlockMaze.Send. V selects multiple cmtv to form a
Merkle tree, and executes BlockMaze.Deposit to prove that
its cmtv exists on this tree and get cmtv. Finally, V runs
BlockMaze.Redeem to convert cmtv into plaintext balance.

5.2.6 Timeout
We set a threshold Ten to prompt V′ to complete the
payment. Specifically, when V′ completes step Pre-deposit,
the timer T of Contract-Vehicloak starts timing. When
T exceeds Ten and V′ does not complete step Upload,
Contract-Vehicloak would transfer all the pre-deposited
amount to TB as a penalty. On one hand, this timeout mech-
anism makes it unnecessary for vehicles to pay the amount
immediately when they leave, reducing the possibility of
congestion during peak traffic hours. On the other hand, it
effectively prevents the malicious behavior of vehicles from
not uploading information to avoid payment.

5.3 Discussions
5.3.1 Extending to a Generalized Framework
Vehicloak has good universality in real payment scenarios,
and its application is not limited to IoV (Internet of Vehicle).
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In this subsection, we first discuss a few practical applica-
tion scenarios of Vehicloak and then abstract a generalized
framework.

In the highway toll collection application exemplified in
5.2, the calculation of the payable amount depends on loca-
tion information. However, for applications such as parking
charging, the payable amount depends on time, i.e. the entry
time (Ten) and the exit time (Tex). A slight modification
to the circuit should suffice. Specifically, we add Ten and
Tex as the inputs of the Compute function to compute the
payable amount F, and the time information is also used
as part of the hash calculation. For other applications such
as calculating electricity bills and shopping checkout, our
scheme is also applicable. Taking the electricity billing as
an example, we should reduce the number of inputs of
the circuit to 1, compute the bill based on the electricity
consumption E, and then use E to calculate the hash value
for group signature verification.

One may notice that different scenarios affect the logic of
the circuit, thus we abstract a generalized one as shown in
Fig. 5. The required parameters of the amount computing
function Compute are recorded as obj, which are private
(e.g. E for the electricity billing, Ten and Tex for the parking
charging, and Sen and Sex for highway toll collection). The
number of obj and hash calculations Hash can be arbitrary,
recorded as n. Each hash calculation contains a random
value N, which is for the sake of enhancing randomness. It
is worth noting that the description in Sec. 5.1 is for the case
of n = 2, which is applicable to scenarios such as highway
toll collection and parking charging.

 Compute Hash Hash 

  

 

Hash 

…

…

…  …

Fig. 5. The generalized logic diagram of the circuit for different payment
scenarios. The inputs with gray background are private ones protected
by the zk-SNARK proof.

In summary, our scheme is not limited to IoV, it is also
applicable to other payment scenarios. However, one may
notice that the collection of obj depends on a certain number
of entities (e.g. the station S for highway toll collection),
but it is reasonable. Currently in practice, there exist one
or more central servers (e.g. smart meters, toll booths and
electronic cashiers), which are responsible for not only col-
lecting information but also calculating the payable amount.
Our scheme changes the role of these servers so that they
are only responsible for collecting the payment-related in-
formation, which enables our solution to be quickly applied
to various real-life scenarios without destroying the original
infrastructure.

5.3.2 Alternative Zero-knowledge Proofs and Privacy-
preserving Blockchains
In this study, we adopt Groth16 [27] in zk-GSigproof because
it is the most optimized zk-SNARK in terms of proof size.

However, Groth16 needs to establish a trusted setup, relies
on a one-time common reference string, and has “toxic
waste”. Fortunately, zk-GSigproof has a strong reconfigura-
bility, and can be combined with other zero-knowledge
proof schemes such as the transparent setup scheme [28]
and the universal setup scheme [29], based on the actual
needs. The transparent setup scheme [28] does not rely on
any trusted setup; it solves the problem of “toxic waste” and
has higher security, however, it has poor succinctness. The
universal setup scheme [29] can solve the one-time use of
reference string problem, but it is inferior to the transparent
setup in terms of algorithm security and its proof size
requires greater storage consumption than Groth16.

Additionally, we employ the privacy-preserving
blockchain Blockmaze in Vehicloak to cut off the association
between an account and its pseudonym, protecting the
former’s identity and route records. Another reason of
adopting Blockmaze is because Blockmaze is implemented
based on zk-SANRK, which perfectly fits the need of
our zk-GSigproof without extra work. However, although
Blockmaze meets our technical needs, it brings considerable
changes to Ethereum, making Blockmaze-enabled Vehicloak
not directly usable in Ethereum. Fortunately, in fact, the
implementation of zk-GSigproof does not depend on
Blockmaze. In Vehicloak, Blockmaze and zk-GSigproof
jointly provide a secure and private environment, but they
are not related to each other. Therefore, one can replace
Blockmaze with other privacy-preserving blockchains such
as AttriChain [30] and Zether [31] to implement Vehicloak
in Ethereum without modifications to the underlying
blockchain.

5.3.3 Security and Privacy Analysis
In this subsection, we deeply analyze the security goals
proposed in Sec. 3.2.

Location Privacy. Location privacy is well protected
because the original location information is never exposed
in public. Suppose there is an adversary A who intends to
obtain the location information of the vehicle V . There are
two cases: A would try to intercept the information sent
by stations to vehicles, or A would obtain useful location
information from TxUpload.

As for the first case, according to zk-GSigproof, the loca-
tion information is protected by hashing. Therefore, even if
A can obtain this information, it is impossible to determine
the specific location of vehicles. As for the second case,
zk-GSigproof hides the location information as the private
inputs of zk-SNARK, and A cannot get the private inputs
based on the proof and its public inputs.

Identity Privacy. In Vehicloak, we protect vehicles’
identity privacy based on a privacy-preserving scheme
BlockMaze and pseudonyms. Suppose there is an adversary
A who colludes with a station Sadv and tries to obtain the
identity information. There are two cases: A would get the
identity of passing vehicles through Sadv. Besides that, the
transparent transfer relationship on the blockchain is also a
hidden danger of identity exposure.

As for the first case, each vehicle would get a pseudonym
account for a particular trip. All the interaction processes
among vehicles and other entities (e.g. vehicles and sta-
tions, vehicles and blockchain) are completed through
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pseudonyms, so A cannot directly obtain the true iden-
tity information through Sadv. As for the second case,
transparent and traceable blockchain transaction records
would expose the direct relationship between a vehicle’s
real account and its pseudonym account. Vehicloak resorts
to BlockMaze, which hides the direct relationship between
senders and receivers based on the zero-knowledge balance.
Therefore,A can only obtain the information of the vehicle’s
pseudonym account and cannot get further information of
its real identity.

Location Authenticity and Amount Correctness.
Vehicloak can ensure the location authenticity and correct-
ness of the payable amount and effectively resist the over-
spending attack based on zk-GSigproof. Suppose there is an
adversary A who intends to illegally prepay more amount
or reduce the payable amount. There are two cases:Awould
attempt to forge F′ in TxPre-deposit to get more pre-deposit
amount (over-spending attack) or A would provide a fake
F or location information to pay less.

However, as for the first case, Vehicloak stipulates that
each prepay amount must be greater than Fmax. In or-
der to remove human intervention, we use smart contract
Contract-Vehicloak (shown in Fig. 3) to realize the verifi-
cation of the amount. Each TxPre-deposit is strictly limited
to the logic of Contract-Vehicloak and public supervision.
As for the second case, zk-GSigproof has been proven to
have data authenticity, and the details are shown in Sec. 4.2.
It combines the advantages of zero-knowledge proof and
group signature to protect location privacy while ensuring
the correctness of the payable amount and the authenticity
of location.

6 IMPLEMENTATION AND PERFORMANCE EVALUA-
TION

In this section, we describe the concrete implementation
of Vehicloak and test its performance. Specifically, we first
elaborate on the implementation of Vehicloak, then simulate
realistic scenarios on Aliyun, and finally summarize the
experimental results.

6.1 Implementation

The implementation of Vehicloak mainly includes three
components: Ethereum, zk-GSigproof and smart contract.

1) Ethereum: The Ethereum geth1 comes from Github.
We add two interfaces for group signature and zk-
SNARK proof verification, which would be called
by the smart contract. In order to facilitate the
interaction with smart contract and Ethereum, we
use web3.py2 to deploy and call the smart contract.

2) zk-GSigproof: We resort to the zk-SNARK algo-
rithm in Github and group signature algorithm [32]
to implement zk-GSigproof. In order to generate a
zero-knowledge proof that meets our need, we use
xJsnark3 to generate the circuit. xJsnark is a new
type of high-level framework, which combines with

1. https://github.com/ethereum/go-ethereum
2. https://pypi.org/project/web3
3. https://github.com/akosba/xjsnark

Jetbrains MPS to provide programmers with a plat-
form for programming in Java. After generating the
circuit, we use Jsnark4 (an open source Java library)
to realize key generation, proof generation and ver-
ification. We modify the source code of libsnark so
that it can take the circuit as an input parameter and
support separate proof verification. Finally, we use
the CGO to integrate the proof verification function
into Ethereum. For group signature algorithm, we
implement the scheme for our application scenarios
and integrate the group signature verification pro-
cess into Ethereum.

3) Smart contract: First, in order to reflect the decen-
tralization and automated execution of the scheme,
we use smart contract to achieve zero-knowledge
proof and group signature verification. Then, due to
the natural financial properties of smart contracts,
we add pre-deposit and settlement functions to it.
Finally, we use Solidity5 as a compilation tool for
these functions and modify its source code to sup-
port the verification functions of group signature
and zk-SNARK proof.

6.2 Performance Evaluation
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Fig. 6. The performance of zk-SNARK (a) (b), group signature (c) and
smart contract (d).

In our experiment, we test the performance of Ethereum,
zk-GSigproof and smart contract on local desktops and
Aliyun. In order to test the performance of zk-GSigproof
more accurately, we conduct experiments on zk-SANRK and
the group signature algorithm separately. Each desktop is
equipped with Intel Core i5-8500@3.00 GHz*6 and 19.40 GB
RAM running 64-bit Ubuntu 18.04. In the experiment on
Aliyun, we use 25 ecs.g6.2xlarge instances, each of which
running Ubuntu 18.04 system Intel Xeon (Cascade Lake)
Platinum 8269CY processor, 8 vCPUs of frequency 2.5/3.2
GHz and 32 GB RAM. We start 4 docker nodes in each

4. https://github.com/akosba/jsnark
5. https://github.com/ethereum/solidity
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Fig. 7. The transaction delay (a) and Poisson distribution experiment (b) (c) based on a 100-node blockchain in Aliyun.

instance to form a 100-node blockchain network based on
the proof-of-work consensus algorithm, and the number of
transactions reaches up to 4000.
The performance of zk-SNARK. We test the size of the
common reference string crs, i.e. the proving key and the
verification key, under different number of stations, and
report the results in Fig. 6 (a). One can see that when the
number of stations rises from 1000 to 5000, the size increase
of the proving and verification keys is small. Specifically,
the size of the proving key is about 18.50 MB and that
of a verification key is around 0.90 KB. We then test the
time of the three algorithms of zk-SNARK, and report the
results in Fig. 6 (b). One can observe that the time of setup
Π.Setup is about 14.20 seconds, of generating proof Π.Prove
is stable at 4.30 seconds, and of verifying proof Π.Verify is
the shortest, which is around 15 milliseconds. The above
results are reasonable because we fix stations in the circuit
instead of taking them as inputs, so the size and running
time of zk-SNARK are minimally affected by the number
of stations. One may notice that the performance of zk-
SNARK (shown in Fig. 6 (a) (b)) is only slightly affected by
the number of stations, thus Vehicloak actually has a good
scalability.
The performance of group signature. As shown in Fig. 6
(c), the time for each step is at the millisecond level. Spe-
cially, the three algorithms, namely member setup (Setup),
member join (Join) and open (Open), take 1.2 milliseconds.
The generation and verification of group signatures take
less than 25 milliseconds. These results all benefit from the
optimization of group signature algorithm by schemes [24],
[32]. In the verification experiment of group signature and
zk-SNARK (shown in Fig. 6 (b) (c)), the experimental results
seem to be close to ideal. They are all in milliseconds, which
only consume a small amount of computing resources on
the chain, proving good performance of zk-GSigproof.
The performance of smart contract. In Fig. 6 (d), we show
the execution time of each function in Contract-Vehicloak
(Pre-deposit and Validate (including Settlement). In order
to make the experimental results more accurate, we further
divide Validate into Verifyσ (group signature verification of
entry/exit) and Verifyπ (proof verification). One can see that
Verifyσ only takes about 0.04 seconds and Verifyπ takes less
than 2.50 seconds. It is worth mentioning that the longest
time is spent on the transaction deployment, and the time
used to verify a proof is very short according to Fig. 6

TABLE 1
Smart contract cost of Vehicloak

Function Gas Used Ether Cost USD

Contract Creation 825364 0.000825 1.834
Pre-deposit 62453 0.0000625 0.139
Verifyσ 709538 0.000710 1.578
Verifyπ 303600 0.000304 0.676

1 Gas = 1 Gwei, and 1 ether=2223 USD.

(b). As the logic of Pre-deposit is relatively simple, the
consumed time is at microsecond. To accurately estimate
the cost of smart contract, we conduct experiments based
on linear regression to simulate the gas of four functions
(shown in TABLE 1). Compared to the average cost (21000
gas) in Ethereum, our functions need more gas, which is
reasonable, because they include complex calculations such
as bilinear pairing computations. Among these functions,
Verifyσ and Verifyπ consume more gas, which costs about
$2.25. However, there are many feasible methods to reduce
the transaction gas, such as zk-Rollup and Optimistic Rollup
[33], which can decrease the workload on the main chain
by reducing the amount of transaction data or putting the
complex work off-chain.
Ethereum transaction delay. In Fig. 7 (a), we test the broad-
cast delay and the consensus delay of transactions (calling
functions Verifyσ and Verifyπ). Broadcast delay refers to the
time period of broadcasting a transaction to other peers in
the blockchain, while consensus delay refers to the time
from when a new transaction is verified until the block
containing this transaction is confirmed by miners. In this
experiment, all nodes send a total of 4000 transactions.
The broadcast delay is less than 90 milliseconds, and the
consensus delay is about 4.8 – 6.5 seconds.
Transaction processing with Poisson distribution. In Fig.
7 (b) (c), we show the effect of traffic volume on the ex-
perimental results. During this experiment, each transaction
is sent 500 – 4000 times, and the transaction generation
conforms to Poisson distributions. We set the expectations
(E(X)) of the Poisson distribution to be 10 and 20. One
can see that E(X) = 20 takes more time than E(X) = 10.
This indicates that as the frequency of transactions increases,
the number of delayed transactions increases. One can also
see that when a large number of transactions are sent in a
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certain period of time, the delay increases. To remedy this,
we present a timeout mechanism in the smart contract to
ensure that Vehicloak can avoid transaction aggregation, as
detailed in Sec. 5.2.6.

7 CONCLUSION AND FUTURE RESEARCH

In this paper, we propose Vehicloak, a decentralized privacy-
preserving payment scheme for location-based vehicular
services. Vehicloak takes a new cryptographic technique
called zk-GSigproof, which can hide the vehicle location,
thereby ensuring the authenticity of private information and
the correctness of payment. The entire verification process
is implemented in smart contract Contract-Vehicloak, which
realizes the automation of verification without relying on
any trusted third party. In order to prove the practicality of
our scheme, we simulate a 100-node blockchain in Aliyun.
Experimental results validate the effectiveness of Vehicloak.

In our future research, we will explore the blockchain
scalability techniques such as zk-Rollup and Optimistic
Rollup, to reduce transaction gas and on-chain workload,
which is of great significance for enhancing the performance
and feasibility of our scheme. In addition, we will also in-
vestigate novel schemes that can handle scenarios in which
periodic payments are needed and users may not faithfully
report private information.
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