Limitations of the Pub/Sub Pattern for Cloud Based
[oT and Their Implications

Daniel Happ, Adam Wolisz
Technische Universitit Berlin, Telecommunication Networks Group (TKN)
{happ, wolisz} @tkn.tu-berlin.de

Abstract—The current approach to roll out large scale IoT sys-
tems is to outsource the crucial parts of the system to cloud based
services, such as message brokerage, devices management, or sen-
sor data storage and processing. One core protocol for messaging
in those settings is the widely adopted publish/subscribe protocol
MQTT. Pub/sub protocols, however, were not designed for this
particular scenario and have decoupling properties that make
some common task in IoT settings more challenging to achieve.
It is, for instance, not straightforward to discover potential
publishers of sensor data or to give guarantees that all, a certain
number or at least one subscriber of a certain set of possible
subscribers will received a message. Because they are missing in
the standard, different approaches and implementations tackling
those challenges will lead to incompatibilities between users of
different systems. In this work, we therefore give an overview
of the challenges with discovery and guaranteed delivery to a
certain number of subscribers over pub/sub networks in IoT
settings and present different possible solutions. We give advice
on which implementation is useful under which circumstances
and provide a proof-of-concept that can be used with little
adaption for enabling discovery and reliability in MQTT.

I. INTRODUCTION

The Internet of Things (IoT) is the vision of an upcoming
ubiquitous network of interconnected physical objects, with a
number of connected devices estimated to be in the order of
billions [1], [2]. These objects can sense and interact with the
physical environment, enabling deep-real time awareness of the
world around us and enabling new upcoming applications like
smart home, smart enterprise or smart city. The current IoT
landscape is characterized by a large heterogeneity in various
aspects: different vendors; different hardware specifications
and capabilities, including processing power and means of
communication with the outside world; diverse communication
protocols; and distinct data formats and semantics.

Another aspect of this heterogeneity is the distributed control
over these independent sensing and actuating devices by
different operators. Since traditional sensor networks were
tailored to a specific application, this has led to a plethora
of existing silo solutions implemented mostly independently
without any reference standard which now need to be connected
and integrated into an internetwork of things. We rather envision
an open system that overcomes those silo solutions.

The challenge to overcome this heterogeneity is commonly
tackled by academics and industry using a cloud centric
architecture similar to the one depicted in Figure 1 [2], [3].
Devices connect and send sensor data to a cloud tier using
standardized protocols via a gateway. The cloud tier can operate

additional services on the data, e.g. data storage, aggregation,
or analysis. Individual components are connected using a
message bus. User facing applications can get access to the data
through the services or directly using the bus. Publish/subscribe
has proven to be a suitable candidate for IoT messaging [3]-
[5]. However, it was not specifically design for this use-case.
Because of that, the decoupling properties deeply associated
with pub/sub systems do not allow an easy discovery of sensor
streams or reliable end-to-end transfer. This may lead to vendor-
specific solutions, limiting interoperability. In this work, we
outline the limitations of pub/sub systems, show different
approaches to these limitations and show how they can be
overcome using the MQTT protocol as an example.

The first challenge is the discovery of publishers, more
specifically topics, to subscribe to. As the subscriber has
no knowledge about potential publishers, it is unlikely to
successfully guess the topic a publisher will choose to publish
its messages. Common pub/sub systems, such as MQTT, do not
offer discovery of publishers or topics, so topics to subscribe to
have to be known in advance or negotiated over another channel.
The lack of well-defined schemes of publisher discovery is a key
challenge that has to be overcome to enable the interoperability
of different IoT data providers and producers.

Another challenge is the guaranteed delivery when publishing
to a distributed database. Guarantees are usually given for the
delivery to the broker and from the broker to the subscriber;
in case of MQTT at-least-once, at-most-once and exactly-once
semantics are available. However, as the publisher does not
know if or how many subscribers are subscribing to a given
topic, the publisher cannot be sure if certain messages reach
all, a certain fraction or at least one of the subscribers. This

Device Tier Cloud Tier App Tier
Sensor Gateway Event Queuing & Value-added User-facing
Nodes Nodes Messaging Services Applications

o o System, T
"] o » L+ CEP
> <> [Store

i Viz

Fig. 1. General architecture of a cloud-centric IoT platform with cloud-based
message bus and value-added services.

can be a mayor drawback if guaranteed delivery to a certain
set of subscribers is important.

We illustrate those drawbacks with an example. Let us
assume a car-sharing business, that has several cars that have
sensors for location, availability and level of fuel. Cars are
added and temporarily removed from the car pool because
of repair work all the time. To keep the manual intervention
minimal while provisioning new cars, the cars themselves
should register with a service and be discovered by entities
needing their information, such as web interface, database,
and so on. That way not one of the service depending on
the information would have to be changed. However, in many
pub/sub systems, such as MQTT, there is no standard way
of advertising that a sensor device, in our example car, will
start publishing information on a certain topic. Likewise, if the
car-sharing business intends to evaluate where cars are needed
most to provide additional cars in certain areas, it has to ensure
that all location data points are stored so that they can be
analyzed later; for example by big data analytics. Database
servers would subscribe to the location information, but in case
the subscriber looses its connection to the pub/sub system, the
publisher will not notice. There is no standard way in pub/sub
systems to ensure at least one subscriber receives a message.

We try to trigger additional work on that topic by contributing
in the following ways:

1) We emphasize on the limitations of the pub/sub pattern
that arise from its symbolic addressing scheme with
regard to IoT interoperability, namely the challenges of
discovery and reliable message storage.

2) We analyze different approaches to cope with these
limitations and to realize discovery and reliable storage
on top of pub/sub systems.

3) We demonstrate how one of the identified solutions can
be integrated into the existing de-facto standard protocol
for IoT messaging MQTT.

We begin in Section II by motivating the use of pub/sub
messaging for cloud based IoT platforms and emphasize the
limitations of the pub/sub pattern. We give an overview of
possible solutions in Section III. In Section V, we demonstrate
how one of those solutions can be integrated into the MQTT
protocol. We review related work in Section VI. Finally, in
Section VII, we conclude our work.

II. PUBLISH/SUBSCRIBE FOR 10T PLATFORMS

Usually, a message-oriented middleware provides pub/sub
messaging. It offers distributed, asynchronous, loosely coupled
many-to-many communication between message producers
(publishers) and message consumers (subscribers) [6], [7].
Sensor data producers publish messages about events they have
observed to the middleware. Consumers use the middleware
to subscribe to event notifications they are interested in.
The middleware matches messages against subscriptions and
delivers messages accordingly.

Pub/sub enables the monitoring of sensor devices, but
pure pub/sub protocols do not support direct messaging, for
example to address and control actuators. Different types of

filtering messages exist. The most widely adopted type in
IoT deployments is topic-based filtering, where publishers
address their messages to topics, which are usually strings
which can also have a hierarchical structure. Subscriptions are
likewise expressed as topic strings, optionally with wildcard
characters to subscribe to multiple topics. QoS semantics are
not mandatory, but commonly supported to varying degrees.

Three decoupling properties make pub/sub particularly
appealing for IoT applications: 1) The asynchronous, non-
blocking messaging decouples producer and consumer with
regard to their synchronization. 2) The topic acts as a symbolic
address, so that producers and consumers do not have to
know or care about the addresses of other participants (also
called loosely coupled in space). 3) Brokers further decouple
publishers and subscribers in time, i.e. they do not have to be
connected at the same time.

We see a trend to use pub/sub messaging to distribute sensor
data to multiple interested applications in IoT settings [3].
MQTT is emerging as the de-facto standard for IoT messaging.
Message Queue Telemetry Transport (MQTT) [8] is a pub/sub
protocol specifically designed for constrained devices and high-
latency, low-bandwidth, unreliable links, as omnipresent in
IoT settings. Initially developed by IBM, it was standardized
by OASIS in 2014. It can be used royalty-free, so that open
source implementations are widely available, such as mosquitto
broker and client library [9], Eclipse paho client library [10], or
Apache ActiveMQ [11] broker. To run MQTT directly on sensor
nodes, the slightly flattened MQTT-S was introduced [12].

While we consider pub/sub a useful pattern for IoT set-
tings, we identify two mayor limitations of the pattern. Both
drawbacks are a side-effect of the decoupling properties, in
particular the decoupling in space. In pub/sub systems, the
subscriber does not know if there are any publishers publishing
on a given topic, how many of them there might be or who the
publisher of a given message might be. Likewise, the publisher
does not know if there are any subscribers actually interested
in messages on a certain topic.

In MQTT, will-messages can be used to send a message to
all subscribers in case the publisher disconnects unexpectedly.
While this enables the subscriber to detect offline publishers, it
is not defined in the standard how a subscriber should react to
offline publishers or how guaranteed delivery can be achieved.
This lack of a standardized way of guaranteeing at least one
subscriber may pose a mayor challenge for the interoperability
of systems in diverse administration domains, which may
implement different approaches to achieve guaranteed delivery
on top of existing pub/sub systems.

III. ToT DISCOVERY SCHEMES FOR PUB/SUB

A common approach in pub/sub theory is for publishers to
advertise their willingness to publish on a certain topic using a
special advertisement message [6], [13]. We envision a similar
advertisement for IoT devices, where the gateway device by
proxy advertises its sensors on startup, on updates and in fixed
intervals. It advertises not only its topic, but additional meta-
data, like type of sensor, owner, sampling interval, cost. It would

= Sensor = Sensor = Sensor
- Registry & Registry © Resp. . Registry
@ Advertise| |@ Reg. @ Advertise @ Advertise| |@ Req. | ® Resp.
(€§2)) g pcnertss | Pub/SuD ((92) g aertss | Pub/Sub (€ §2) g pcnertss | PUBSUL | 5600,
Publish_| Engine © Publish | Engine g Nty © Publish | Engine 3 notity 23

(a) Option 1: Sensors advertise themselves to a sensor (b) Option 2: Sensors advertise themselves to a sensor (c) Option 3: Sensors advertise themselves to a sensor
registry upon power up. Potential Clients query the registry upon power up. Potential Clients query the registry upon power up. Potential Clients do not

sensor registry over the pub/sub system.

sensor registry using external mechanisms.

search for sensors themselves, but issue a subscription
to the pub/sub system. The system queries the sensor
registry and subscribes the subscriber to relevant
sensor streams.

Fig. 2. Overview of three different options to enable sensor discovery over pub/sub networks.

not be feasible for potential subscribers to subscribe to those
advertisements directly, as the number of devices would lead
to a massive number of advertisements that would be flooded
to all potential subscribers. Instead, the system provides a
central registry that can be queried to find appropriate sensors
to subscribe to. While logically centralized in the Cloud, this
database would be distributed over multiple nodes to spread
the load.

While advertisements are part of some pub/sub protocols,
the protocols commonly used for IoT (MQTT, XMPP, AMQP)
do not implement these messages. However, with those
protocols, advertisements can be sent on a predefined topic or
topic subtree. Based on the principle of advertisements, we
differentiate between three distinct approaches, which we show
in Figure 2 and present in the following.

All approaches share the same advertisement mechanism:
Sensors advertise themselves regularly on a special topic.
At least one of the possibly distributed repository servers
subscribes to each of the topics intended for advertising. On
receiving an advertisement, the database is updated accordingly.
If no advertisement is received for a predefined timeout value,
the sensor is considered offline and deleted from the repository.

The approaches differ in the way potential subscribers search
for publishers and how they receive the response. The first
approach is shown in Figure 2a. Potential Clients query the
sensor registry using a request/response pattern over the pub/sub
system. The advantage of this approach is that it does not rely
on external protocols and just uses the available pub/sub system
for sensor search. In pure pub/sub systems, no request/response
messaging is offered, so dedicated topics would have to be
used to emulate a request/response pattern, which is a clear
disadvantage, or the protocol would have to be extended with
a request/response pattern.

The second option is shown in Figure 2b. While advertise-
ments are sent using the pub/sub sytstem, potential subscribers
query the sensor registry using an external mechanisms, e.g.
a RESTful interface. With this approach, the pub/sub system
would not have to be modified. For the external search queries, a
suitable request/response protocol can be used. A disadvantage
is the usage of two distinct protocols for search and distribution
of sensor data streams, so every application or service using
sensor data would have to implement both interfaces.

The last approach is shown in Figure 2c. Both sensor
advertisements and sensor queries are sent using the pub/sub
system. The approach differs from the first approach in that
potential subscribers do not search for sensors themselves and
subscribe in a second step. Instead, they just issue a subscription
to the pub/sub system including the search query. The pub/sub
system implicitly queries the sensor registry and subscribes
the subscriber to relevant sensor streams. The pub/sub system
could also seamlessly query the registry again after a predefined
time to update sensor sets the subscriber is subscribed to. A
clear advantage is that subscribers and publishers exclusively
use the pub/sub system, although available systems would
have to be modified to incorporate search in subscription
messages, which is a major disadvantage. The subscriber,
similar as in traditional pub/sub, does not know who will be
the producer of sensor readings it will get after a subscription.
This can be an advantage if an abstract set of sensors with
common characteristics is requested rather than particular
sensors, especially if the set of sensors of interest is large
or changing often. Likewise, the subscriber does not have full
control over which sensors readings to get, which can be a
disadvantage.

In real deployments, a request/response messaging as in
option 1 is often used in pure pub/sub systems for commands
or actuation. Some protocols already offer request/response
messaging, e.g. XMPP or AMQP. For pure pub/sub protocols,
such as MQTT, special topics are used. Option 2 is often used
for sensor search as presented, e.g. over a web interface or
HTTP request. Option 3 would correspond to a content-based
pub/sub system, which none of the major protocol in use for
IoT currently supports. As it only requires one protocol, can be
used as is with available pub/sub systems and is already widely
in use, we recommend using option 1 for sensor discovery in
IoT settings.

IV. END-TO-END DELIVERY IN PUB/SUB SYSTEMS

To achieve guaranteed end-to-end delivery of messages, the
straightforward approach is to introduce acknowledgments for
successfully received messages. This is supported by MQTT,
so that the broker can guarantee that messages reach each
subscriber. Still, there is currently no way to enforce the policy
to have messages delivered to a certain number of subscribers.

Controller 3 Register

@ Advertise
@ Adverti @ Adverti
(Ccqy) BAdense, o g |« 250 (Ccq)) BAdese, T s J-Su: (C999) & asvertse | PUD/SUD
b i DB Lo . @Notity | g ‘ © Sub.
@ Pub. Engine | s notify © Publish | Engine =g Notity © Publish | Engine [“g notity

(a) Option 1: Broker indicates to publisher if subscrip- (b) Option 2: Publisher indicates to broker that data (c) Option 3: A dedicated controller is responsible
tions exist and publish successful; publisher stores is to be stored; broker stores data until subscriber is for ensuring that at least one subscriber is subscribed

data if no subscriber is present. present.

to each topic.

Fig. 3. Overview of three approaches to guaranteed end-to-end delivery over pub/sub systems.

The publisher has no knowledge about subscribers and the
broker cannot distinguish topics that no subscriber is interested

in and disconnected subscribers that are supposed to store data.

The challenge is twofold: 1) One entity has to know how
many subscribers are supposed to get a message and how
many actually receive the message successfully; 2) One entity
has to act accordingly when too few subscribers are receiving
the message, usually by temporarily storing the messages and
waiting for subscribers to return. We will assume in the rest
of the paper that we want to ensure at least one subscriber
is present. Additionally, we assume that all subscribers that
subscribe to the topic are equally sufficient to fulfill this
condition. In MQTT, without a specially configured broker,
anyone can subscribe to any topic, so unrelated clients could
trick the publisher into assuming that a message reached at
least one of the intended recipients by subscribing. To ensure
that all subscribers are really intended recipients, additional
approaches have to be developed, such as advertising an access
control list from publisher to broker.

One option for guaranteed delivery is depicted in Figure
3a. The publisher is responsible for ensuring that at least
one subscriber is subscribed to its data at any time. In the
event no subscriber is present, the publisher has to cache
the data until a subscriber becomes available. For this, the
publisher has to be informed when a subscriber subscribes
to the published data stream. The approach we envision is
to give the publisher the option to demand indications for
subscribers in the aforementioned advertisement messages. The
broker forwards the first subscription message on the publisher’s
sensor data stream to the publisher and indicates when the
last subscriber has unsubscribed. Messages are acknowledged
to the publisher only when one subscriber has received the
message. This way, the publisher can cache data that would
not be delivered to any subscriber.

An advantage of this approach is that publishers are aware of

subscribers and can decide how to react on missing subscribers.

One possibility to save energy, which is usually scarce on
sensor nodes, would be to disable sampling altogether when
no subscriber is interested in the data. It would also be
possible to adapt the sampling frequency if no subscriber is
active. A disadvantage is that the publisher, which is usually
a more constraint device than both broker and subscriber is
responsible for its sensor data and may have to store it for an
indefinite period. The approach would need a definition of the

advertisement messages that would be needed. As subscriptions
are usually not forwarded to publishers, publishers would have
to be changed to accept subscriptions and act accordingly. The
message format of subscriptions would not have to be changed,
though, as subscriptions already incorporate all the information
necessary.

Another approach is shown in Figure 3b. Here, the publisher
can also indicate that sensor data should reach at least one
subscriber, but the broker is responsible for storing the data
until a subscriber becomes available. This approach is the
one that is most consistent with the original pub/sub model,
because publishers and subscribers are still strongly decoupled
in space, so do not have to know each other, and the broker is
responsible for the distributions of the data.

A clear advantage of this scheme is that the messaging
protocol does not have to be changed, apart from the introduc-
tion of an advertisement message that would also be needed
for discovery. The storage is done on the broker side, where
cloud storage is more easily upgradeable. A drawback of this
approach is that publishers are still not aware of subscribers
and may sample and send data that will never be needed.

The last approach is to let subscribers be responsible
for getting all relevant sensor readings. This is depicted in
Figure 3c. To ensure that the sensor data of all potential
publishers are stored, it has to be ensured that at least one
subscriber subscribes to the data with a QoS level that ensures
guaranteed delivery between broker and subscriber. To achieve
this, a controller would have to subscribe to the stream of
advertisement messages and order one or more subscribers to
subscribe to topics where storage is necessary. An advantage
would be that this approach works with existing infrastructure,
so it could be used on top of some of the existing IoT platforms
in use. A disadvantaged is that it requires a reliable connection
from controller to broker.

We propose a hybrid approach based on option 1 and 2.
The reason is that it is desirable for the publisher to request
some indication if subscribers are actually interested in the
data provided. As most sensor devices operate on batteries, the
knowledge that no subscriber is present could be exploited for
example to save energy by not sensing and send the data at
all. The broker on the other hand should be responsible for
guaranteed delivery of messages, as publishing devices might
be too constrained to cache messages for an indefinite period.

V. INTEGRATION INTO MQTT

We now show a potential integration of the schemes
mentioned before into the MQTT protocol. We aim not to
modify the core message format to ensure compatibility with
legacy clients and brokers and only do optional extensions
to the protocol, as developers would continue using available
MQTT libraries.

The message format of MQTT is depicted in Figure 4. The
wire-level protocol uses 4 bits to determine the message type. 14
message types are defined in the MQTT standard, the other two
are reserved for future use. The DUP field indicates duplicate
messages, the QoS level can be set to at-least-once, at-most-
once and exactly-once delivery, and the retain flag obligates the
broker to store the message and deliver it to new subscribers.
The rest of the message consists of the remaining length and
headers and payload depending on message type.

A. Discovery with Advertisements

We present one solution for sending advertisements over
the MQTT protocol, as well as a solution to query a database.
To comply with the standard, we propose to use a MQTT
publication message for advertising on a reserved topic. We
propose topics starting with the string “SADV”. This fits in
with other reserved topics used by the mosquitto [9] MQTT
broker. It already uses topics starting with “$SYS” for statistics.

0 1 2 3 4 5 6 7

DUP | QoS Level RETAIN

Message Type

Remaining Length (1-4 bytes)

Optional: Variable Length Header

Optional: Variable Length Payload

Fig. 4. MQTT message format: a mandatory fixed-length header (2 bytes)
is followed by an optional message-specific variable length header and the
actual message payload.

$ADV / $0 / $1 / example
| IS L | - | IS |
advertisement no indication storage topic

Fig. 5. Example of a special advertisement topic.

0 1 2 3 4 5 6 7

PINGREQ/PINGRESP (12/13) DUP | QoS Level RETAIN

Remaining Length (1-4 bytes)

Client ID length (MSB)

Client ID length (LSB)

Client ID (n bytes)

Variable Length Payload

Fig. 6. MQTT PINGREQ/PINGRESP message format extension: client id and
variable payload is added to otherwise empty PINGREQ/PINGRESP messages.

The publisher appends the topic string he is going to publish
on to this string. Subscribers can now get those advertisement
messages by subscribing on a the wildcard topic “SADV/#”.
An extended MQTT broker should only let a predefined set of
trusted registry servers issue such a subscription. The proposed
scheme is payload agnostic. That means the payload of the
advertisement does not affect the brokerage.

To enable clients to request meta-data about sensors from
the registry, the request/response pattern is needed. For systems
that have to use the unaltered standard MQTT, one solution
is to have a topic the sensor registry is subscribed to. Client
can publish requests on this topic. Requests include a response
topic in the payload that the registry can use to reach the
client. This scheme is complex and error-prone for a simple
request/response message exchange. Because of that, we rather
propose extending one of the existing message types defined
in the standard. PINGREQ/PINGRESP messages are defined
as keep-alive messages between broker and connected clients.
They have no payload and therefore a length-field of zero. We
generalize this message type to optionally include a destination
user and payload field and to set the length field accordingly.
The resulting message type fits into MQTT as a mixture of a
publish message and the original ping message and can be used
to reach a client directly by its identifier. The response uses the
PINGRESP type. This solution is not compliant with the current
standard, but keeps the approach backward compatible. That
means an extended broker will interpret PINGREQ/PINGRESP
messages from legacy client without a problem. The new
messages can be used to query the registry with existing query
languages, such as SQL, and get a direct response.

B. Indication & reliable distribution

The goal of this extension is to enable the client to request
subscription forwarding from the broker to the client and to
request storage for individual messages if no subscriber is
present. We propose to add this functionality to the advertise-
ment messages defined above. Basically, the client can request
two modes of operation for the subscription forwarding and
two modes for the message storage: both can be switched on
or off for each topic that is advertised. The default state would
be off and represent the standard MQTT behavior. Message
storage on the broker may also be required on a per message
basis, so in the storage enabled mode, the client would further
need to indicate which message to store.

We propose to extend the advertisement scheme by intro-
ducing two switches after the “$SADV” string, the first for
subscription forwarding mode and the second for message
storage mode, both being either “$0” or “$1”. If those special
markers are found by the broker, the appropriate modes are set
if supported. In the message storage mode, we propose that
the client indicates a wish to store a certain message using the
existing retain field. The field would have a different meaning
than in the standard, as not only the last retained message
would be sent to every newly connecting subscriber, but all
retained messages would only be stored if there is no subscriber
and sent only to the next client subscribing to the topic.

This scheme is backward compatible in the sense that both
legacy clients and legacy servers would accept all messages
used. Legacy brokers would not interpret the messages, so
would not offer the subscription indication and message storage
service outlined in this section.

VI. RELATED WORK

Our work fits into existing literature focusing on cloud based
IoT platforms. The authors of [2] present their vision of IoT
and coin the term cloud centric IoT for a system offering data
distribution and additional services in a cloud based layer. In
[3], the authors find in an analysis of current IoT platforms
that those systems share this architecture.

Publish/subscribe-based systems prove to be a suitable data
dissemination pattern for IoT platforms, their services and
applications. The Sensor Andrew project [4] is an IoT platform
using XMPP for data dissemination. The more recent OpenloT
project [14] uses the CUPUS pub/sub system [5], a specifically
designed content-based pub/sub with the ability to have mobile
brokers, i.e. mobile pub/sub enabled gateways. The authors of
[3] find that most currently deployed commercial and academic
IoT platforms use (topic-based) pub/sub for messaging.

MQTT is widely accepted as one of the de-facto standard
protocol for IoT applications. In [15], the authors emphasize
on the wide availability of implementations, e.g. [9], and
the recognition by standardizing entities, e.g. the binding of
the oneM2M protocols to MQTT [16]. With MQTT-S [12],
there is a stripped-down version of MQTT available, which
is optimized for the small frame sizes commonly found in
traditional wireless sensor networks, enabling sensor devices
to directly participate in IoT pub/sub systems.

In [17], the authors argue that a self-configuring discovery
service for sensors streams is needed and present a system
based on DNS. The authors of [13] present a formal defini-
tion of advertisement messages in pub/sub systems. In [6],
advertisement messages are defined as a way of informing
the subscriber of new information. While advertisements are
not part of MQTT, MQTT offers QoS semantics, so enables
guaranteed delivery between client and broker [8]. However,
as publishers and subscribers are still decoupled in space, they
have no knowledge of potential publishers or subscribers.

VII. CONCLUSION

As the vast majority of IoT systems use pub/sub systems, in
particular MQTT, and discovery and guaranteed delivery are
key features of an IoT platform, new approaches to overcome
these limitations on top of existing pub/sub systems certainly
require further investigation. In this paper, we try to overcome
this gap by further investigating the prevailing challenges in
the IoT landscape currently deployed.

In this work, we argue that the pub/sub message pattern
is in general suitable for IoT messaging. We also show that
pub/sub protocols currently used do not meet all requirements
necessary for seamless interoperability of existing silo solutions.
We summarize the limitations of the pub/sub pattern that arise

from its symbolic addressing and analyze various approaches to
enable discovery and guaranteed end-to-end message delivery.

Nevertheless, we show that missing functionality can be
added to existing pub/sub protocols using MQTT as an example.
At present stage, we have implemented as a proof of concept
the request/response pattern needed for registry lookups on top
of the mosquitto MQTT broker and the corresponding client
library [9]. We are in the process of implementing the proposed
schemes for subscription forwarding and message storage at
the broker.

REFERENCES

[1] M. Chui, M. Loffler, and R. Roberts, “The internet of things,” McKinsey
Quarterly, vol. 2, pp. 1-9, Mar. 2010.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645-1660, Sep. 2013.

[3] T. Menzel, N. Karowski, D. Happ, V. Handziski, and A. Wolisz,
“Social sensor cloud: An architecture meeting cloud-centric iot platform
requirements,” Apr. 2014, 9th KuVS NGSDP Expert Talk on Next
Generation Service Delivery Platforms.

[4] A. Rowe, M. E. Berges, G. Bhatia, E. Goldman, R. Rajkumar, J. H.
Garrett, J. M. Moura, and L. Soibelman, “Sensor Andrew: Large-scale
campus-wide sensing and actuation,” IBM Journal of Research and
Development, vol. 55, no. 1.2, pp. 6:1-6:14, Jan. 2011.

[51 A. Antonic, K. Roankovic, M. Marjanovic, K. Pripuic, and 1. P.
Zarko, “A mobile crowdsensing ecosystem enabled by a cloud-based
publish/subscribe middleware,” in Future Internet of Things and Cloud
(FiCloud), 2014 International Conference on. IEEE, 2014, pp. 107-114.

[6] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The

many faces of publish/subscribe,” ACM Computing Surveys (CSUR),

vol. 35, no. 2, pp. 114-131, Jun. 2003.

E. Curry, “Message-oriented middleware,” in Middleware for Commu-

nications, Q. H. Mahmoud, Ed. John Wiley & Sons, 2005, ch. 1, pp.

1-28.

[8] A. Banks and R. Gupta, “MQTT Version 3.1.1,” Oct. 2014, OASIS

Standard.

Mosquitto, “An open source mqtt v3.1/v3.1.1 broker.” [Online]. Available:

http://mosquitto.org/

Eclipse Foundation, “Paho.” [Online]. Available: https://eclipse.org/paho/

Apache Software Foundation, “ActiveMQ.” [Online]. Available:

http://activemq.apache.org/

U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S — A

publish/subscribe protocol for Wireless Sensor Networks,” in 3rd Int. Conf.

on Communication Systems Software and Middleware and Workshops

(COMSWARE’08), Bangalore, India, Jan. 2008, pp. 791-798.

A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evaluation

of a wide-area event notification service,” ACM Trans. Comput.

Syst., vol. 19, no. 3, pp. 332-383, Aug. 2001. [Online]. Available:

http://doi.acm.org/10.1145/380749.380767

J. Soldatos, N. Kefalakis, M. Hauswirth, M. Serrano, J.-P. Calbimonte,

M. Riahi, K. Aberer, P. P. Jayaraman, A. Zaslavsky, 1. P. Zarko et al.,

“Openiot: Open source internet-of-things in the cloud,” in Interoperability

and Open-Source Solutions for the Internet of Things. Springer, 2015,

pp. 13-25.

A. Antonic, M. Marjanovic, P. Skocir, and 1. Zarko, “Comparison of

the cupus middleware and mgqtt protocol for smart city services,” in

Telecommunications (ConTEL), 2015 13th International Conference on,

July 2015, pp. 1-8.

oneM2M, “Mgqtt protocol binding,” Jan 2015, version: TS-0010-V1.0.1.

R. Klauck and M. Kirsche, “Bonjour contiki: A case study of a dns-based

discovery service for the internet of things,” in Ad-hoc, Mobile, and

Wireless Networks, ser. Lecture Notes in Computer Science. Springer

Berlin Heidelberg, 2012, vol. 7363, pp. 316-329.

IDABC, “European interoperability framework for pan-european egov-

ernment services,” 2004, version 1.0.

World Economic Forum and Accenture, “Industrial Internet of Things: Un-

leashing the Potential of Connected Products and Services,” http://www3.

weforum.org/docs/WEFUSA _Industriallnternet_Report2015.pdf, World

Economic Forum, Tech. Rep., Jan. 2015.

[7

[9

—

[10]
(11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

