
Towards Gateway to Cloud Offloading
in IoT Publish/Subscribe Systems

Daniel Happ, Adam Wolisz
Technische Universität Berlin, Telecommunication Networks Group (TKN)

{happ, wolisz}@tkn.tu-berlin.de

Abstract—It is not uncommon today that sensor devices
connected to the Internet solely send their data to Cloud-based
servers for storage and processing. This does not only mean
clients requesting data have to contact the Cloud-based service,
even if the data is available in the local network, but also that
data is sent to external services with unknown or ambiguous
privacy policies. The great potential in using closer to the edge fog
computing instead of Cloud computing to both enable faster and
more privacy-aware processing locally has been recognized in the
research community. In particular, on premise smart gateways
can provide local low-latency storage and processing capabilities
that are controlled locally and can be trusted. In this work, we
outline a combined fog Cloud system that automatically selects a
suitable execution location for processing tasks. We emphasize on
the design challenges of such a system and further demonstrate
a solution for the interplay between Fog and Cloud by showing
how processing task can be migrated from one system to another
on the fly without service interruption.

I. INTRODUCTION

The upcoming Internet of Things (IoT) embeds sensors,
software and network connectivity into physical objects. The
insights gathered from these smart devices allow us to under-
stand the physical world around us in real-time in ways never
possible before. One common way to cope with the increasing
processing demand is Cloud computing [1]. However, Cloud
computing is not always suitable for the processing tasks
commonly found in the IoT context, especially for latency
and privacy sensitive applications [2]. Instead of forcing all
processing to Cloud servers that are possibly located far away,
in different judicial areas, fog computing proposes moving the
intelligent processing of data to the edge of the network, in
our case specifically to smart gateways [3].

Through leveraging local processing on smart gateway
devices and migrating heavy computation to resourceful Cloud
servers on demand, the resource constraints of local gateway
hardware regarding CPU-, memory-, or network-intensive tasks
can be overcome. In this work, we present our design of a
flexible IoT processing relocation framework. Although the
concepts provided here universally apply to process placement
and migration in distributed IoT related systems using pub-
lish/subscribe, we consider the subproblem in the context of
gateway to Cloud offloading as an example. The platform
allows the definition of constraints for gateway providers and
the definition of continuous IoT processing tasks along with
metadata for users. The system dynamically and automatically
determines if those processing tasks should be computed on a
Cloud server rather than the local gateway device. As this is

ongoing work, we highlight the open challenges that have to
be met to implement the system.

II. RELATED WORK

The ubiquitous availability, flexibility, reliability and usage-
based cost model makes it feasible to send sensor data to
the Cloud and to store and process it there [1], [4]. There
have been several recent proposals to use pub/sub systems
for IoT messaging [2], [5]–[7]. However, we also identify a
trend to move data and data processing closer to the client,
similar to content delivery networks (CDN). This approach
is followed by Akamai’s EdgeComputing [8], Cisco’s Fog
Computing [3], Intel’s Intelligent Edge [9] and Microsoft’s
Cloudlet [10]; Especially the emerging Fog Computing concept
has been proposed to overcome the challenges of the Cloud-
based IoT approach [2], [3].

Previous work in the area of process migration can be divided
into two distinct areas: mechanism and policy [11]. While the
mechanism explores how to migrate processes between two
hosts, the policy orchestrates which processes to be execute
where and when to migrate. For example, policy related
work includes [12] where the authors propose a joint control
algorithm for mobile users and Cloud service provider in a
unified mobile Cloud computing framework to minimize the
overall financial cost. In [13] the author presents his findings
regarding time- and energy-aware offloading decision making.

In the IoT context, the authors of [14] describe an integrated
fog cloud IoT (IFCIoT) architectural paradigm, including appli-
cation, analytics, virtualization, reconfiguration, and hardware
layer. In [15], the authors propose a virtual machine migration
mechanism for fog computing. Aazam and Huh [16] present
a resource estimation and pricing model for fog-based IoT
including resource prediction, estimation, reservation, and
pricing. We complement this existing work and focus on the
mechanism of gateway to Cloud offloading in the specific
context of publish/subscribe and consider the sub-class of
more simple processing tasks using this paradigm instead of
virtualization.

III. SYSTEM MODEL

We consider the overall architecture of today’s IoT to be 3-
layered, having a Cloud, fog, and device layer. This architecture
is depicted in Figure 1. The device layer consists of sensor
and actuator devices, which are severely constrained, mostly
by processing power, memory and energy. Those devices

Small

Scale

Large

Scale

Low

Latency

High

Latency

Fog

Cloud

Sensors

GW

S

GW

VM VM

VM

VM

Last Mile Link

DSL, Cable, 3G

GW

S

S
S S

S

Direct Connection Sensor Network

Gateways

Fog Virtual Machines

Cloud Virtual Machines

Fig. 1. Overall architecture of a Cloud-based IoT platform.

are directly connected to a gateway to interact with remote
hosts. Gateways are themselves part of the fog layer. More
general, fog instances provide the means to analyze and process
data within the network closer to the end-user than in a
centralized remote Cloud. The top layer is the remote Cloud
layer, which provides ubiquitous and seemingly infinite access
to storage and processing. While available resources and thus
scalability increases towards the top, the latency and cost
of communication also increases. Cloud services additionally
may be provided from another legal area, making storage and
processing of certain types of sensitive sensor data difficult or
even prohibited by law.

We envision that all components use the publish/subscribe
pattern to communicate [2], [5]–[7]. In this one-to-many pattern,
the matching between consumer and producer of data is done
by multiple dedicated message brokers. In the topic based
scheme, the symbolic channel addresses are topics, usually in
the form of strings, i.e. producers publish to and consumers
subscribe to topics and messages are only delivered to matching
subscribers.

While traditionally sensor devices used where very con-
strained in terms of processing power and storage, today’s
IoT hardware include powerful smartphones and embedded
single-board computers. While most sensor devices are still
energy-constrained, they will mostly use a gateway to connect
to the public Internet. Those gateways, on the other hand, are
usually mains-powered and powerful enough to take over some
of the tasks Cloud services are providing today. A selection of
suitable gateway devices is compiled in Table I. We argue that
a lot of potential processing power and storage is available
right on premise that is not fully utilized.

TABLE I
OVERVIEW OF SUITABLE SMART GATEWAY HARDWARE.

Device CPU Clock Memory Storage Price
Intel NUC 1.3 GHz 16 GB SATA ∼$300
BeagleBone Black 1 GHz 512 MB 4GB EMMC, SD $55
Raspberry Pi 3 1.2 GHz 1 GB SD ∼$35
TP-Link TL-WR841N 650 MHz 32 MB 4 MB ∼$20

Local

(internal)

To Cloud

(external)

Smart Gateway

Message

Broker

P
u
b
lis

h
/S

u
b
s
c
ri
b
e

Sensor

Interface

Processing

Tasks

Historical

Storage

Last Mile Link

DSL, Cable, 3G

Fig. 2. Internal building blocks in IoT smart gateway device.

We envision the gateway to run the four main components
depicted in Figure 2: The sensor interface offers the traditional
gateway functionality of bridging low-power network and wide-
area network. We introduce a pub/sub message broker that
disseminates the sensor to processing or storage. The local
pub/sub broker forwards subscriptions for external data of
internal users and processing tasks to the Cloud. Data published
locally is sent to the Cloud if a remote subscriber is present.
Every processing task can therefore use internal as well as
external data and reach any consumer of output data, local as
well as remote.

A. Offloading of Sensor Processing

We distinguish two forms of sensor data processing: 1) batch
processing 2) real-time processing. For the first, the data is
stored and processed in a batch, e.g. every day at night an
analysis is performed and the result saved as a summary of the
data. For the latter, data is continuously processed and creates
new streams of data. In this work, we consider real-time sensor
data processing that follows the stream-based task model.

We define sensor processing as the computation of a set of
output values on a set of input values. In the context of our
system model, the input values are exclusively derived from
subscriptions to a pub/sub system. The output is published on
one or more output topics. We do not make any assumptions
about the function provided, as it can be entirely defined by
the user.

As opposed to the more traditional model of Cloud process-
ing, we envision the system to default to local computation
on the gateway device and only give tasks to Cloud-based
services as an option. This has several advantages: Regarding
performance, the local execution will not introduce additional
networking delays to send data to remote Cloud services.
Regarding the robustness of the system, local actuation loops
can still run in case of network outages. Regarding privacy,
we consider the local gateway to be fully under the control of
the local operator and trusted, i.e. not leaking private data to
third parties.

The task may also be offloaded to a Cloud-based service.
Since different task have different requirements, not all tasks are
suitable for remote execution. The task issuer gives additional
constraints and requirement along with the processing task
itself. The placement of the processing task must comply with
the requirements given as well as the available resources on
the gateway. We first identify the following broad classes for
processing tasks requirements:

Migration Request

Transfer Program

Stop Sensor
GetState, Send State

Delete

Migration Response
(accept)

Verify Program
Setup
Subscribe (fill buffers)
Acknowledge Program

SetState
Start
Acknowledge Start

Hypervisor Hypervisor

Fig. 3. Migration between two hypervisors.

• Offloadable Tasks: Those task can be processed either
locally or remotely using Cloud infrastructure. The gate-
way is free to offload the task at any time as long as all
specified requirements are met.

• Unoffloadable Tasks: Some task have to be executed
locally, mainly because they cannot be run remotely, e.g.
when they need local resources that cannot be transmitted
to the remote infrastructure in time with the constraint
bandwidth of gateways. Another reason might be privacy
or juridical concerns that prohibit remote execution.

Because the system has to take into account available
resources, task may also not be feasible to run at all, for
instance if a lot of input data has to be processed fast and
both processing power and upload bandwidth to the Cloud is
severely constraint. For those task neither local nor remote
execution of the task is possible, so that the task has to be
rejected by the system.

Additionally, the system should dynamically adapt to the
current state of both gateway and Cloud and offer migration in
both directions, so that a processing task can also be relocated
to the gateway. We see two sources of information required
to make migration decisions. The first are static policies for
the offloading. Those policies are given by the issuer of the
processing task, e.g. regarding privacy requirements. We further
assume profilers collect real-time performance metrics to help
making offloading decisions. We identify CPU utilization,
memory consumption and network traffic as relevant metrics
for the offloading decision in the case of continuous precessing
task on local gateways.

B. Migration of Sensor Processing

The migration framework consists of two identical parts on
the local gateway and Cloud side. In a more general setting
of processing placement in any distributed environment, the
building blocks needed would be replicated across every system
that would take part in the processing of sensor data, e.g.
different Cloud instances or fog based intermediate systems.
Those building blocks are a hypervisor that gets the offloading
decisions from the offloading engine and put them into practice
in the execution environment, which is the second building
block, by controlling the running processing tasks.

To be migrated, every processing task has to offer a
predefined set of operations to the hypervisor, which are given
in Table II. Since we do not want to make any assumption

TABLE II
OVERVIEW OF SPECIFIC PROCESSING TASK METHODS.

Method Desciption
setup called before launch to initialize task
subscribe called to subscribe to input topics and fill buffers
setState called to set initial state to representation given
start called to start processing
restart called to restart processing
stop called to stop processing
getState called to get representation of the process state
delete called for terminating the processing task

TABLE III
METHODS OFFERED BY HYPERVISOR.

Method Desciption
start called to register processing task
stop called to stop processing task
startRemote called to register remote processing task
stopRemote called to stop remote processing task
migrate called to migrate process to target

on the specific type of process, each process has its own
constructor/de-constructor (setup/delete) methods to initialize
the process. The task is initialized with a particular pub/sub
broker to connect to and a set of input and output topics. After
initialization, the hypervisor calls the subscribe method. This
method starts to subscribe on every input topic given and fills
the relevant queues with sensor data.

The setState method is called to set the initial state of the
process. Likewise, the getState method is used to extract the
current process state. Every processing task needs to provide
those functions to serialize their relevant state to a byte stream
and set their internal state when called with a suitable byte
stream. The specific encoding is up to the task developer.

Please note that so far no command has actually started
processing any data. This is triggered by a call to the start
method. A process can likewise be stopped using the stop call.
If necessary, a processing task can be restarted with the restart
method.

For the hypervisor, we envision the interface given in Table
III that can be called by the offloading engine. It can start or
stop a processing task, both locally on the same gateway as
well as remote. Additionally, it can instruct the hypervisor to
migrate a processing task.

The hypervisors communicate with each other as described
in Figure 3. When one of the hypervisors was triggered to
initiate the migration, it contacts its counterpart with a migration
request. The migration request contains the sensor metadata.
The remote hypervisor consults its decision engine to check if
enough resources are available and all policies would be met.
The hypervisor would accept or decline the offloading request.

In the next step, the sensor is actually migrated. This includes
the code as well as the current state. First, the code is submitted.
The remote hypervisor executes the code and calls the setup
method. It then instructs the processing task to subscribe to
its input topics. We leverage the decoupling properties of the
pub/sub system here, since at that point in the scheme we
subscribe both the old and the new processing node to the
same input topics.

The hypervisor then stops its local sensor and requests and

Decision
Engine

Hypervisor

Execution
Environment

Controller

Profiling

Gateway Cloud

Hypervisor

Execution
Environment

Profiling Plugins

CPU
Memory

Network

Task Issuer

Administrator

Optimizer

Fig. 4. Simplified gateway to Cloud offloading architecture.

sends the current state. The state includes an offset where
the processing stopped and where it should continue. On
receiving the state, the remote hypervisor is directed to start
its processing task. Like with subscribing multiple processing
tasks, we can seamlessly switch between the two processing
tasks by publishing using the other task on the same topic.
As long as the new processing task starts at the same offset,
subscribers will not be able to identify which publisher issued a
certain message and would not notice the migration. In case of
an error, the original task can still be resumed on the original
hypervisor at the last known offset. On successful migration,
the original processing task is deleted.

The migration approach outlined above is similar to existing
solutions, but innovates by taking advantage of the decoupling
properties of the pub/sub system. Ongoing subscriptions of
consumers do not have to be explicitly transfered between
processing nodes, as is the case for traditional service migration.
Consumers are not required to address a different host after
migration; the migration is fully transparent to the subscribers.

IV. GATEWAY OFFLOADING ARCHITECTURE

We identify three distinct roles in our system:
• The gateway administrator defines constraints for the

gateway device, for instance he can restrict the total CPU
or memory consumption of all sensor processing tasks to
reserve resources for other tasks that are not controlled by
our system. The same applies to bandwidth constraints.

• The task issuer defines processes that are to be executed
on sensor data. He has to provide the processing function
and additional metadata, such as estimates of resource
consumption and input and output topics as well as
estimated output frequencies.

• The optimizer dictates the optimization goal in case
multiple valid task allocations are found.

We do not consider consumers of processed data explicitly
as a role, since they are decoupled from the system using the
pub/sub network. The system can estimate the communications
cost of the messaging middleware, if both publishers and
subscribers are known to the messaging system, e.g. if
advertisements are used before publishing on a topic. The
offloading decision as such only takes into account local
and remote traffic, but does not explicitly require knowledge
of consumers. In future work, a joint processing and data
storage optimization would be possible, where historical data
is relocated close to processes needing that data.

Figure 4 depicts the overall architecture of our gateway
to Cloud offloading system. The components of the system

along with the typical workflow is given as follows: The system
consists of a gateway and Cloud part. The gateway is the central
entity of the system and the entry point in the definition of
sensor processing tasks for task issuer, constraints for gateway
administrator and optimizing target for the optimizer. Both parts
have a hypervisor that can start, stop and migrate processing
tasks and an execution environment wherein the processing
tasks are run. The execution environment is instrumented with
profiling plugins that monitor the overall and per task resource
usage.

The system consists of the following building blocks:
• The controller in the gateway receives requests along with

relevant metadata
• The profilers gather data to make an offloading decision.
• The decision engine get constraints, processing tasks,

optimization goal and profiling data and decides on the
placement of tasks.

• The local hypervisor either executes the task in the local
execution environment or offloads the task to a remote
hypervisor.

A. Policy and Processing Metadata

The three roles we identified have to be able to specify their
requirements. The gateway administrator will have to specify
the performance characteristics of the system along with certain
constraints on his hardware to be able to reserve resources for
unrelated other tasks running on the gateway. He has to give
an estimate of the computing power of his processing node. He
would further give an average percentage of CPU he is willing
to use for processing as well as an additional allowance for
bursts. The administrator further has to define the networking
capabilities of his node, i.e. the upload and download bandwidth
available to processing tasks, again separated into average and
burst allowance.

In the proposed model, the optimizer would provide the
optimization goal as an integral part of the development
process. The optimization goal could either be the optimization
on one particular metric, such as lowest external bandwidth
consumption, lowest memory consumption or lowest CPU
usage, or a more complex multi-objective decision problem.
The optimizer could provide the optimization goal using a
utility function that can be used to assign a numerical constant
to every processing task. The system could provide a number of
predefined template functions, such as CPU only, network only
and memory only. Those templates would allow developers to
specify goals without much additional effort. The offloading
engine would then try to optimize the system with regard to
the provided utility function.

The sensor processing task user would specify metadata
related to its processing task. He would define the input and
output topics of the processing tasks. Additional information,
such as estimated CPU usage, memory usage and network
usage, also have to be estimated. The CPU usage can be
estimated in floating-point operations per second (FLOPS) per
event using static program profiling. Likewise, the memory
consumption can be estimated by analyzing the memory
allocation calls per event on a certain input stream. All those

parameters heavily depend on the frequency of input events on
the input topics, so those have to be estimated by the user as
well. In case the user does not want to provide this data on his
own, the system could alternatively assume some conservative
default values and obtain the real data based on measurements.

The exact format to specify the metadata is the focus of
ongoing work. We consider simple key-value structures, such
as JSON, as well as more powerful semantic technologies. With
the use of RDF ontologies, the exact meaning of requirements
could be fixed. For instance, in the context of Cloud computing
a similar approach based on RDF was proposed [17], which
includes CPU, memory, networking and storage constraints
already. Another benefit of RDF data could be the vast amount
of knowledge and tools to automatically reason based on the
provided data.

B. Profiling of Sensor Processing Tasks

We identify the need for the following profilers in our system:
A static and dynamic program profiler is needed to provide
an estimate of the runtime characteristics of the processing
task. The static profile would be created by the user registering
the processing task. Since the runtime characteristics heavily
depend on the amount of input event-based sensor data, the
user would have to estimate the frequency of input events.
A dynamic profiler is needed to verify those characteristics
at run-time per processing task and to monitor the overall
system usage as a whole. A networking profiler is needed
that measures both internal and external traffic. The distinction
between internal and external traffic is important, since on
task migration, internal traffic, which is associated with little
cost, would become external traffic, which would introduce
additional cost. However, external traffic would shift to an
external node and would not need to be routed to the gateway
anymore, thus reducing the cost on the gateway side. The
profiler is needed for every processing task and the system as
a whole, to also capture unrelated background processes that
run on the gateway node.

Profiling is not particularly challenging on most systems. As
an example, we focus on a Linux based system, but similar tools
for other operating systems are also available. CPU usage and
memory consumption on the overall system and of individual
processes can be obtained using the /proc pseudo-filesystem.
Networking information is also available via the /proc pseudo-
filesystem. For the differentiation between internal and external
traffic, the corresponding local pub/sub broker has to further
be instrumented with internal and external message and size
counters per topic. Considerations of suitable sampling intervals
for the profilers are subject to future research.

C. Offloading Decision Engine

The decision the offloading engine has to take is whether to
accept or reject a certain task based on the provided metadata
and where to place the processing task. To determine if there
is at least one allocation that would fulfill all requirements to
be able to accept the request and to find a useful allocation
strategy is subject to additional research. The problem is related
to the knapsack problem and NP-hard.

We provide here as a first estimate an example strategy based
on a greedy approach. If the task can be run locally without
moving other processes, the processing task is accepted and
run locally. Otherwise, the task is added to a temporary list
of processing tasks along with all already running processes
on the gateway. Out of this set, all processes that were
determined to never be offloaded and have to run locally are
copied to another set, the gateway set. If the resources on the
gateway are not sufficient to locally simultaneously execute all
processes in the gateway set, the new processing task has to
be rejected. Otherwise, we iterate through the set of remaining
processes and give priority to processing task according to the
optimization goal to be run locally and allocate resources in a
greedy fashion. If that does not yield a possible allocation, we
act conservatively and reject the task, otherwise we know that
there is at least one possible allocation, although it might not
be optimal.

Since offloading decisions are always associated with trade-
offs, the optimization will probably be based on multiple
objectives at once. Therefore, we also plan to include in
future work a solution based on multi-criteria decision analysis
methods, such as Technique for the Order of Prioritisation by
Similarity to Ideal Solution (TOPSIS) or VIKOR [13].

V. MIGRATION PROTOTYPE

We have implemented the migration framework of the system
outlined above along with a sample application that models
a common processing task that might require migration. The
prototype uses Message Queue Telemetry Transport (MQTT)
as the messaging middleware between both the two hypervisor
subsystems, as well as the actual processing tasks and the
input data producers and consumers. MQTT is an example
for a minimal topic based pub/sub protocol, only offering the
publish, subscribe and unsubscribe primitives, showing that
the proposed approach can be universally applied.

The hypervisor is written in Python. The execution envi-
ronment is also a Python interpreter that is controlled by the
hypervisor. As a broker we use the mosquitto MQTT broker,
deploy it both on the local gateway and remote Cloud instances
and bridge the topics between the brokers so that messages
are forwarded between the brokers. All clients use the paho
MQTT library.

The processing task is a simple image analysis task detecting
movement in a camera stream. The processing task as such
subscribes on a certain input topic and expects individual
images in the JPEG format. It takes the first few images of a
stream and stores them as the background. Every subsequent
image is checked for movement by subtracting the greyscale
representation of the image and the stored background and
comparing the output with a certain threshold. The process
additionally detects edges on regions that were identified to
contain motion and marks those regions with overlay boxes.
The original image with the detection boxes as an overlay is
the output of the task.

The processing task is implemented using the cv2 library.
The state, the implementation holds, consists of a the sequence
number of the images that was processed last and the image
the task considers to be the background.

ams blr fra lon nyc sfo sgp tor
Datacenter

0

50

100

150

200

250

R
T

T
 [m

s]

(a) Round-trip-time between Berlin and DO.

ams blr fra lon nyc sfo sgp tor
Datacenter

0

2

4

6

8

10

12

T
hr

o
ug

hp
ut

 [M
B

/s
]

(b) Throughput between Berlin and DO.

ams blr fra lon nyc sfo sgp tor
Datacenter

0

500

1000

1500

2000

2500

M
ig

ra
tio

n
T

im
e

[m
s]

(c) Resulting migration time.

Fig. 5. Latency, throughput and migration time measurements between Berlin and Digital Ocean (DO) datacenters.

VI. PRELIMINARY EVALUATION

We use the prototype to evaluate the cost of a migration
between a gateway node and a Cloud-based virtual machine in
terms of migration time, which equals to the perceived service
downtime. We use a beaglebone black as the local gateway
located in Berlin, Germany and as the Cloud counterpart
instances in every datacenter of the provider Digital Ocean. The
size of the motion detection task is around 3kb. The size of the
background image, i.e. the state of the task, varies depending
on the background, but is in our case 21kb.

In Figure 5a we measure the latency to the datacenters
offered by the Cloud provider. The results were obtained in
128 measurements with the ping utility, that is available on
most unix-like systems. Figure 5b shows the throughput to
the datacenters, which was also measured 128 times using a
download with the wget command. We expect the migration
time to be three round-trips and the time to transmit task state
and code to the new system. Figure 5c shows the migration
times of 64 migrations back and forth along with a red dot
marking the estimate made beforehand.

The migration is sufficiently fast even to remote datacenters
in Singapore or India, usually in the region under 1s and in
the worst case still under 2.5s. The estimation marks the lower
bound of the migration time, which can be easily derived using
widely available tools. Due to the additional overhead and
latency introduced by the messaging middleware, the actual
average migration time shows to be about twice as high as the
prediction. In conclusion, the migration time is small enough
to be tolerable by the end-user for most sensor applications.

VII. FUTURE WORK AND CONCLUSION

We argue that the full potential of globally interconnected
sensor technology will only be fully utilized through increasing
sensor data processing. To realize this vision we presented
an initial concept and an architecture draft of gateway to
Cloud offloading which enables fast and flexible definition
of processing tasks as well as constraints and optimization
targets. We outline the design challenges to provide simple and
uniform access to processing on constrained gateway nodes
as well as fog and Cloud nodes. We show that a common
processing task found in IoT systems can be migrated in a
reasonable short time in the order of seconds in the worst
case. We intend to expand our research prototype and deploy
a 3-layered testbed based on realistic gateway, fog and Cloud
hardware to carry out a more in-depth performance evaluation.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things
(IoT): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[2] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman, J. Wawrzynek,
E. Lee, and J. Kubiatowicz, “The cloud is not enough: Saving iot from
the cloud,” in 7th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud ’15). Santa Clara, CA: USENIX Association, Jul. 2015.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the First Edition of
the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12. New
York, NY, USA: ACM, 2012, pp. 13–16.

[4] T. Menzel, N. Karowski, D. Happ, V. Handziski, and A. Wolisz,
“Social sensor cloud: An architecture meeting cloud-centric iot platform
requirements,” Apr. 2014, 9th KuVS NGSDP Expert Talk on Next
Generation Service Delivery Platforms.

[5] A. Antonic, K. Roankovic, M. Marjanovic, K. Pripuic, and I. P.
Zarko, “A mobile crowdsensing ecosystem enabled by a cloud-based
publish/subscribe middleware,” in International Conference on Future
Internet of Things and Cloud (FiCloud). IEEE, 2014, pp. 107–114.

[6] D. Happ, N. Karowski, T. Menzel, V. Handziski, and A. Wolisz, “Meeting
IoT Platform Requirements with Open Pub/Sub Solutions,” Annals of
Telecommunications, vol. 72, no. 1, pp. 41–52, 2017.

[7] A. Rowe, M. E. Berges, G. Bhatia, E. Goldman, R. Rajkumar, J. H.
Garrett, J. M. Moura, and L. Soibelman, “Sensor Andrew: Large-scale
campus-wide sensing and actuation,” IBM Journal of Research and
Development, vol. 55, no. 1.2, pp. 6:1–6:14, Jan. 2011.

[8] A. Davis, J. Parikh, and W. E. Weihl, “Edgecomputing: extending
enterprise applications to the edge of the internet,” in Proceedings of
the 13th international World Wide Web conference on Alternate track
papers & posters. ACM, 2004, pp. 180–187.

[9] Intel, “Intelligence From the Data Center to the Edge,” 2014.
[10] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for

vm-based cloudlets in mobile computing,” Pervasive Computing, IEEE,
vol. 8, no. 4, pp. 14–23, 2009.

[11] F. Douglis, “Transparent process migration in the sprite operating system,”
Ph.D. dissertation, Berkeley, CA, USA, 1990.

[12] Y. Kim, J. Kwak, and S. Chong, “Dual-side dynamic controls for cost
minimization in mobile cloud computing systems,” in 13th International
Symposium on Modeling and Optimization in Mobile, Ad Hoc, and
Wireless Networks (WiOpt), May 2015, pp. 443–450.

[13] H. Wu, “Analysis of offloading decision making in mobile cloud
computing,” Ph.D. dissertation, Free University of Berlin, 2015.

[14] A. Munir, P. Kansakar, and S. U. Khan, “Ifciot: Integrated fog cloud
iot architectural paradigm for future internet of things,” CoRR, 2017.
[Online]. Available: http://arxiv.org/abs/1701.08474

[15] L. F. Bittencourt, M. M. Lopes, I. Petri, and O. F. Rana, “Towards virtual
machine migration in fog computing,” in 10th International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Nov
2015, pp. 1–8.

[16] M. Aazam and E. N. Huh, “Fog computing micro datacenter based
dynamic resource estimation and pricing model for iot,” in 29th
International Conference on Advanced Information Networking and
Applications, March 2015, pp. 687–694.

[17] D. Bernstein and D. Vij, “Using semantic web ontology for intercloud
directories and exchanges.” in International Conference on Internet
Computing, 2010, pp. 18–24.

