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ABSTRACT
The ever-increasing advancements of vehicles have not only made

them mobile devices with Internet connectivity, but also have

pushed vehicles to become powerful computing resources. To this

end, a cluster of vehicles can form a vehicular micro cloud, creating

a virtual edge server and providing the computational resources

needed for edge-based services. In this paper, we study the as-

signment of computational tasks among micro cloud vehicles of

different computing resources. In particular, we formulate a bottle-

neck assignment problem, where the objective is to minimize the

completion time of tasks assigned to available vehicles in the micro

cloud. A two-stage algorithm, with polynomial-time complexity, is

proposed to solve the problem. We use Monte Carlo simulations to

validate the effectiveness of the proposed algorithm in two micro

cloud scenarios: a parking structure and an intersection in Manhat-

tan grid. It is shown that the algorithm significantly outperforms

random assignment in completion time. For example, compared to

the proposed algorithm, the completion time is 3.6x longer with

random assignment when the number of cars is large, and it is 2.1x

longer when the tasks have more varying requirements.

CCS CONCEPTS
• Information systems→Datamanagement systems; •Com-
puter systems organization→ Architectures; • Networks;

KEYWORDS
Edge computing, task allocation, vehicular clouds, virtual edge,

vehicular networks.

1 INTRODUCTION
The ever-increasing capabilities of vehicles have made their use

transcend transportation. Indeed, cars are becoming infotainment
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systems with Internet connectivity, sensing capabilities, and power-

ful computing and storage capacities. For these reasons, vehicular

networks are not only recognized for enabling intelligent trans-

portation systems, e.g., enhanced safety and traffic management,

but they are also envisioned to be integral for a myriad of emerging

domains including smart cities [1], content-sharing applications

[13], and autonomous driving [20].

To address the needs of sharing, storing, and processing a mas-

sive amount of the data expected from the aforementioned appli-

cations, fog, or edge, computing has been proposed to handle the

data near its source, i.e., the end user [3]. Fog computing has tradi-

tionally relied on deploying edge servers, e.g., WiFi access points,

but more recently, emphasis is put on the use of cars themselves as

fog nodes because they are ubiquitous with ever-increasing com-

putational resources. Indeed, the concept of vehicle cloudification
has been discussed in [13], where a cloud leader, i.e., a car that runs

an application, recruits other cars that can share their resources,

forming a cloud to run the application. Alternatively, a large-scale

vehicular cloud can be formed to cover a city [1] or to connect mul-

tiple cities [8], where the cloud members, i.e., cars, provide different

services to end users, e.g., a car offering its unused CPU power for

augmented reality applications on the road. Instead of forming a

single macro cloud as in [1], vehicles can be clustered into several

micro vehicular clouds, where each one acts as a virtual edge server,

offering services ranging from memory storage, CPU power, and

sensing [10]. For example, a micro cloud at an intersection can be

used as a regional storage unit, where the objective is to maintain

data contents in the vehicular cloud members’ on-board memory

storage. Another scenario is to have regional popular or relevant

content processed and cached in these vehicles so that users in the

area can access them any time, without the need to communicate

directly with say a cellular network infrastructure.

The aforementioned works have focused on the feasibility of

vehicular clouds for edge computing, highlighting the design princi-

ples and communication challenges. Recent works have addressed

other aspects of vehicular clouds such as cloud formation and clus-

tering [6, 7, 9], security and privacy [12, 15], and data management

[16]. In this paper, we focus on a different component, and par-

ticularly, we study the allocation of computational tasks across

the available vehicles in the micro cloud. Task allocation in fog

or edge computing architectures has been extensively studied in

the literature. For example, the problem can be cast as an integer
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program [11] or a mixed-integer program [5], where the objective is

to find an assignment between users and fog nodes that maximizes

a cost efficiency function as in [11], or to minimize the total cost of

communication and deployment of edge servers as in [5]. Other for-

mulations have centered around optimizing the energy-efficiency

of fog nodes [4], minimizing service delay [17, 19], etc. These works,

however, assume anchored edge computing resources, and thus the

dynamics inherent in vehicular micro clouds are absent.

More recent work have studied task allocation in vehicular

clouds. For example, the authors in [14] formulate a multiple-choice

Knapsack problem, where the objective is to minimize the total cost

of assigning tasks across multiple cars, each with different compu-

tational power and cost. However, it is assumed that the problem is

solved offline, where future and past cloud dynamics are available

beforehand. In this paper, we only use instantaneous information

about the cloud, and implement a real-time algorithm. In [21], the

authors formulate a multi-objective optimization to minimize ser-

vice latency and quality loss, which is shown to be NP-hard. In our

work, we cast the task allocation as a bottleneck assignment that

minimizes completion time, which is solved using a low-complexity

algorithm. In [18], the authors study task allocation for autonomous

driving using a market-based approach. The work assumes that

cars can adjust their speeds to remain in coverage with the end

user, and thus tasks are not interrupted. In our work, a car may

leave the cloud before the task is completed, and hence it needs to

be rerun on a different car. We use traces from Manhattan grid to

better capture cloud dynamics.

To summarize, we formulate a bottleneck assignment problem,

where the objective is to assign computational tasks to cars, with

various capabilities, so that the time it takes to complete all tasks

is minimized. While we focus on stationary micro clouds, we con-

sider both a parking structure scenario, where the cloud does not

change, and an intersection scenario, where the cloud member-

ship size can vary rapidly over time. The assignment scheduler,

a central controller, is agnostic to cloud dynamics, and thus, we

develop a two-stage low-complexity algorithm. In particular, the

first stage sorts the tasks so that those with the highest likelihood

to be completed without interruptions are passed to the cloud. This

stage reduces the number of tasks passed to the assignment solver,

making it equal to the number of available cars. In the second stage,

we solve the bottleneck assignment, which is an integer program,

via a sequence of linear programs, each of small size. The two-stage

algorithm is implemented periodically to accommodate cloud dy-

namics, reallocate interrupted tasks, and assign new tasks arriving

to the system. Using Monte Carlo simulations, we show that the

proposed algorithm significantly reduces the completion time of

all tasks in comparison to random assignment, particularly when

the cloud size is large, and when the tasks themselves have various

requirements. We also show that the presence of the sorting stage

limits the queuing time of each task in the system.

2 SYSTEM MODEL
We assume that time is discretized into slots, i = 0, 1, · · · , each is of

duration t . In this work, we focus on stationary micro clouds, i.e.,

the cloud is anchored at a fixed geographical region. For example,

cars in a parking structure can form a micro cloud, or any cars in a

particular intersection can be part of a micro cloud.

LetMi denote the number of cars in the vehicular micro cloud

during the i-th slot. Then in the parking structure scenario, we as-

sumeMi = M∀i , i.e., the cloud dynamics are much slower than the

tasks’ dynamics, and hence the number of cars during task alloca-

tion and processing remains the same. In the intersection scenario,

Mi changes over different slots. Thus, the cloud membership size,

i.e., the number of vehicles, can tangibly vary over time, elevating

the need for fast task allocation.

For computational tasks, we assume there are N0 initial tasks.

Then, additional streaming tasks start arriving to the system using

the exponential arrival process, with an arrival rate of λ tasks per

slot. In the simulations, we bound the total number of tasks in the

system by Nmax. Note that if N0 = Nmax, then the model becomes

batch processing of tasks, i.e., tasks do not follow an arrival process

but rather they are all available at once.

We consider car resources to be its CPU computational power.

Specifically, eachm-th car can process Pm CPU cycles per time slot,

where we assume Pm is generated from an exponential distribution

with mean P̄ CPU cycles/slot. Similarly, we assume each n-th task

requires τn CPU cycles, which is generated from another expo-

nential distribution with mean τ̄ . In this work, we only consider

non-preemptive tasks, i.e., if a car running a task leaves the micro

cloud before it finishes it, then the task needs to be restarted. We

note that the proposed algorithm is developed irrespective of the

commodity used as car resources, and irrespective of the distribu-

tions used to generate Pm and τn .
Our objective is to allocate the remaining tasks in the system to

the available cars in the micro cloud, under the constraint that each

car is assigned one task at a time, and each task is assigned to one

car. It is straightforward to include the case of assigning a task to

multiple cars, which improves robustness to cloud dynamics. In this

work, we use a central controller to perform the task assignment. In

particular, when a car joins the micro cloud, it informs the controller

about its computational power. The controller is also assumed to

know if a car is no longer part of the cloud, e.g., if the controller loses

connection to the car or if the car sends a beacon when it leaves the

cloud. Thus, the controller has knowledge about the current cars in
the micro cloud, their processing capabilities, and the requirements

of the remaining tasks in the system. The controller, however, does

not know the future dynamics of the micro cloud. We emphasize

that the notion of a central controller does not have to be a part of

an infrastructure, e.g., edge server. Rather, we refer to the controller

as any entity that has knowledge about the tasks and the current

status of the cloud, e.g., a vehicle with such knowledge in the micro

cloud can do the task allocation. An illustrative example of the

system model is provided in Figure 1. After task assignment, the

micro cloud can use one of the existing data transfer protocols to

send instructions and data between vehicles and the controller [16].

3 PROPOSED TASK ALLOCATION
ALGORITHM

In this section, we discuss how the task allocation problem can be

cast as an assignment problem. We then develop a polynomial-time

complexity algorithm to solve the problem.
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A car leaving the 
cloud (it can inform 
the controller)

Figure 1: An illustrative example of vehicular micro clouds.

3.1 The bottleneck assignment problem
We aim to find an assignment that minimizes the completion time

of the available computational tasks. To this end, we define the cost

of assigning an n-th task at anm-th car starting from the i-th time

slot as

cnm,i = β⋆nm,i t, (1)

where

β⋆nm,i = argmin

j

{
τn ≤

j−1∑
l=i

Pm

}
. (2)

Note that we are assuming here that Pm is fixed across time slots,

yet the formulation in (2) accommodates the case where the CPU

power of the car varies over time (in this case we would use Pm,l
instead of Pm ).

Let us first focus on the initial assignment phase, where we

have N0 tasks and M0 cars. Then, the bottleneck assignment is

formulated as follows

minimize

{xnm,0 }
max

(n,m)
cnm,0xnm,0

subject to

∑N0

n=1
xnm,0 = 1, ∀m = 1, 2, · · · ,M0∑M0

m=1
xnm,0 = 1, ∀n = 1, 2, · · · ,N0

xnm,0 ∈ {0, 1},

(3)

where the first constraint ensures that each car is assigned one

computational task, the second constraint ensures that each task is

assigned to one car, and the third constraint emphasizes that the

optimizing variables are binary, i.e., xnm,0 = 1 if the n-th task is

assigned to them-th car, and xnm,0 = 0 otherwise. Since there are

M0 available cars, then onlyM0 ≤ N0 tasks are selected. Thus, the

problem in (3) finds an assignment that minimizes the maximum

time it takes to finish allM0 tasks.

The initial phase is followed by multiple assignment updates.

Such updates are necessary because cars’ availability vary over

time, e.g., a cloud member becomes available after it finishes its

assigned task, a new car joins the cloud, or an existing car leaves it.

Similarly, some tasks are restarted if their assigned cars have left

the cloud before task completion, while other tasks have not yet

been assigned to any car or have just arrived to the system.

The update phase can be done periodically, say every T seconds,

or by triggering it whenever the number of available cars in the

cloud exceeds some threshold. For the assignment update during

the i-th slot, we have the following problem to solve

minimize

{xn′m′,i }
max

(n′,m′)
cn′m′,ixn′m′,i

subject to xn′m′,i ≥ x⋆n′m′,i−1

(4)

where we still enforce the same constraints as (3). Here, we use

different subscripts n′ andm′
to emphasize that indices can change

over time due to cars’ and tasks’ dynamics. The additional constraint

in (4) implies that anm′
-th car remains assigned to its task if it has

not yet completed it by the i-th slot.

As we will discuss in the next section, we will rely on casting

this problem as a sequence of linear assignment problems, i.e., we

minimize a sum term instead of a max term and relax the binary

constraints for xnm,i . By doing so, we can use existing polynomial-

time algorithms to solve the problem. The issue is that under such

formulation, the problem must have the number of tasks in the

system equal to the number of available cars. This is commonly

handled by augmenting the problem with virtual cars. For example,

if the number of cars, say Mi , is less than the number of current

tasks, say Ni , then we add Ni −Mi virtual cars, and we assign the

cost cnm̃,i = 0 for every virtual m̃-th car. Then, we solve (4), and the

tasks assigned to the virtual cars are dropped. The same approach

can be used if the number of cars is larger than the number of

tasks. In this paper, we avoid augmentation of cars, to keep the

problem instance small. To this end, we only optimize over the set

of available cars and a set of tasks, with cardinality equal to the

number of available cars. This is discussed in details in the next

section.

3.2 A two-stage polynomial-time algorithm
We break down every assignment phase into two stages: a sorting

stage and an assignment one. In what follows, we denote the set of

available cars and the set of remaining tasks during the i-th slot by

Mi and Ni , respectively. We assume |Mi | ≤ |Ni |.

Let cmax

n,i = maxm∈Mi cnm,i be the maximum time it takes

the task to finish if it is assigned to any available car in the mi-

cro cloud. Let qn,i be the time this task has been in the system

queue. We propose first to sort the tasks in the system according

to αn,i = cmax

n,i /qn,i . Then, we select |Mi | tasks with the lowest

αn,i . The rationale behind this sorting is as follows. If all tasks

arrive at the same time, i.e., qn,i = q∀i , then we start assigning the

tasks that require the least amount of time, particularly because

of the uncertainty in car dynamics. By doing so, we reduce tasks’

interruptions, as we assign those that have the highest likelihood

to be completed before their assigned cars leave the cloud. If tasks

arrive to the system at different times, then αn,i takes into account

the time the task has been in the queue, giving more priority to

those that have been in the system for a very long duration. In other

words, αn,i helps pass the tasks that are unlikely to be interrupted,

while still being fair to those tasks that have been in the system for

a very long time.

Once |Mi | tasks are selected from Ni , we use the threshold

algorithm to optimally solve the bottleneck assignment problem

[2], where nowwe have |Mi |
2
optimizing variables instead of |Ni |

2
.

The idea is as follows. The objective function is equal to one of the

entries of the cost matrix:Ci ∈ R |Mi |× |Mi |
, where [Ci ]nm = cnm,i .



Algorithm 1 A two-stage assignment algorithm during the i-th
slot

1: procedure Input(Ni , Mi ,{cnm,i },{qn,i })
2: Compute αn,i = cmax

n,i /qn,i ∀n ∈ Ni
3: Sort the tasks in increasing order according to αn,i
4: Select |Mi | tasks with smallest αn,i
5: Compute the cost threshold c̃ according to (5)

6: Define the assignment costs c̃nm,i = 1(cnm,i > c̃) · cnm,i
7: Initialize ν = 1

8: while (ν , 0) do
9: Solve the LP in (6) to get x⋆

nm,i

10: Update ν =
∑|Mi |
n=1

∑|Mi |
m=1

c̃nm,ix⋆
nm,i

11: Update c̃ = max{c̃nm,ix⋆
nm,i }

12: Update c̃nm,i = 1(cnm,i > c̃) · cnm,i
13: end while
14: Return x⋆

nm,i ∀n ∈ Ni ,m ∈ Mi
15: end procedure

In addition, because of the constraints in (3), every row and every

column in the matrix will have a cost element that contributes to

the cost of assignment. Thus, we can find a lower bound on the

optimal objective function, which is

c̃ = max

1≤k≤ |Mi |
{min

n
cnk ,i ,min

m
ckm,i } (5)

Let c̃nm,i , [C̃i ]nm = 1(cnm,i > c̃) · cnm,i . Then, if we find

an assignment with

∑ |Mi |
n=1

∑ |Mi |
m=1

c̃nm,ix
⋆
nm,i = 0, we know this

assignment is optimal. Otherwise, we increase the threshold to c̃ =
max{c̃nm,ix

⋆
nm,i }, and repeat the process until the aforementioned

linear sum is zero.

The main computations of this algorithm is finding an assign-

ment with zero sum. This is accomplished by solving the following

linear program (LP)

minimize

{xnm,i }

∑ |Mi |
n=1

∑ |Mi |
m=1

c̃nm,ixnm,i

subject to

∑ |Mi |
n=1

xnm,i = 1, ∀m = 1, 2, · · · , |Mi |∑ |Mi |
m=1

xnm,i = 1, ∀n = 1, 2, · · · , |Mi |

0 ≤ xnm,i ≤ 1,

(6)

We note that this is a linear assignment problem, and although there

is no explicit constraint on restricting the optimizing variables to be

integral, the solution will always be integral [2]. Such problem can

be solved in polynomial-time complexity using standard methods

for linear programming or convex optimization. A summary of the

proposed algorithm is provided in Algorithm 1. Finally, we note

that the aforementioned algorithm assumes |Mi | ≤ |Ni |. In the

few instances where there are more available cars than tasks, we

augment the system with virtual tasks as discussed earlier.

4 SIMULATION RESULTS
We evaluate the proposed algorithm with random assignment,

where the controller randomly pairs tasks with available cars in the

micro cloud. We run MATLAB-based simulations, where 100 real-

izations are generated with different car processing capabilities and

tasks requirements. For the random assignment, we run 100 trials

for each realization, each with different assignment, and we show
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Figure 2: Completion time comparison for the parking struc-
ture scenario.

the average performance across these trials. For both assignment

schemes, we consider periodic assignment updates every 10 slots.

Increasing assignment periodicity can further reduce completion

time, yet at the expense of additional communication overhead.

4.1 Scenario 1: Parking structure
In this scenario, we focus on batch processing, where the system

has N0 = Nmax tasks that need to be processed by a large micro

cloud in a parking structure. Unless otherwise stated, we assume

the mean duration of tasks is τ̄ = 100 cycles, while the mean CPU

power of each car is P̄ = 20 cycles per slot.

We compare between the random and proposed assignment

schemes in terms of the completion time, i.e., the time it takes to

finish all tasks, averaged across realizations. In Figure 2a, we show

the completion time for different cloud sizes, where N0 = 100 tasks.

We have two observations. First, as the number of cars increases,

the completion time reduces because there will be a higher chance

to have cars with powerful capabilities that can perform several

tasks in a shorter time. Second, the proposed algorithm provides

tangible reduction in completion time, particularly when the num-

ber of cars is larger, e.g., when there are 100 cars, the completion

time is 3.6x longer with random assignment, showing that the pro-

posed algorithm efficiently utilizes the cars’ capabilities. In Figure
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2b, we show the completion time for different mean task duration,

τ̄ . It is assumed that the number of cars is 50. Note that since the

task duration is exponentially distributed, then increasing the mean

also increases the variance, i.e., variations of computational require-

ments across tasks increase. It is shown that the proposed algorithm

handles higher heterogeneity of tasks’ durations compared to the

random assignment. For example, the completion time is more than

halved compared to random assignment when τ̄ = 500.

4.2 Scenario 2: Intersection in Manhattan grid
In this scenario, using Veins simulator, we generate cars in a Man-

hattan grid and we form a micro cloud at one of the intersections.

To this end, we sample each car trace at 0.5s intervals and find

when it becomes part of the cloud. In Figure 3, we show the number

cars in the micro cloud at the intersection over time under two

different densities. In what follows, we only show results for the

high-density scenario as similar conclusions are obtained for other

densities. We further assume tasks are streaming into the system

with N0 = 20 tasks and Nmax = 200 tasks.

To study the impact of sorting, we also implement the proposed

algorithm without sorting, where tasks are processed on a first

come first served (FCFS) basis. In Figure 4, we show the completion

time for different task mean duration and different arrival rates. It

is evident that the proposed algorithms still outperform random

assignment, even when the micro cloud has high dynamics. Note

that for slow arrival rates, cars may remain idle waiting for tasks to

arrive to the system, increasing the completion time. We also show

in Figure 5 the cumulative distribution function (CDF) of the num-

ber of interruptions due to cars leaving the cloud before completing

their tasks. It is evident that the proposed algorithm reduces the

number of interruptions and limits the worst-case scenario com-

pared to random assignment. We observe that the impact of sorting

is negligible in terms of completion time. However, as evident in

Figure 6, sorting significantly reduces the time a task spends in the

queue. For example, in Figure 6a, we show the CDF for the time

in queue when the arrival rate is 5 tasks/slot, whereas in Figure

6b we show the median wait time for different arrival rates. It is

observed that sorting reduces the delay in sending the tasks to the

cloud compared to the FCFS-based assignment. For example, as the
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arrival rate increases one order of magnitude, the median time in

queue increases by 8x when sorting is implemented and increases

by approximately 19x when it is absent. Such significant reduction

in wait time does not come at the expense of the completion time

performance.

5 CONCLUSION AND FUTUREWORK
Vehicular micro clouds can advance the fog computing architecture

by creating virtual edge servers using a cluster of cars at parking

structures and intersections. A key aspect in micro clouds is the

assignment of computational tasks to cars of different computing

resources. Because of the mobility of cars, the micro cloud is dy-

namic and can rapidly change over time, elevating the need for task

allocation algorithms that can be solved in short time, i.e., with low

complexity. In this paper, we cast the problem of task allocation as a

bottleneck assignment that minimizes the completion time of tasks

to be run on the micro cloud. In particular, we propose a two-stage

algorithm that helps limit the computational complexity. In the first

stage, we sort the tasks according to the ratio of task’s completion

time to its wait time, which helps reduce task interruptions while

still being fair to tasks that have been long enough in the system.

In the second stage, we select a subset of tasks that have the lowest
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Figure 6: Time in queue comparison for the intersection sce-
nario.

ratio, and then solve a sequence of linear programs, typically with

a small number of optimizing variables. Simulation results show

that the proposed algorithm significantly reduces the completion

time compared to the random assignment, particularly when the

number of cars is large. Further, sorting tasks helps limit the time

each one spends in the queue.

Ongoing and future work aim to extend on the system model

and proposed algorithm. For example, the algorithm is blind to

future dynamics, and hence assignments are broken down into

periodic updates, each solved using only knowledge about the

current cloud status. Prediction of cloud dynamics can be used as

a side information to reduce the number of updates, e.g., at peak

hours, cars are expected to spend more time at intersections. In

addition, we only assume a centralized implementation, which is

suitable for stationary clouds. However, for mobile clouds formed

on a highway, distributed coordination may be more practical. Last,

we aim to compare the algorithm with other assignment schemes,

evaluating them using an end-to-end vehicular network simulator

which also captures the impact of connectivity.
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