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Abstract—We study the problem of platoon formation, trying
to optimize traveling time and fuel consumption based on car-
to-platoon assignments. The general concept of platooning, i.e.,
cars traveling in form of a road train with minimized safety gaps,
has been studied in depth and we see first field trials on the
road. Currently, most research focuses on improved reliability
of the necessary communication protocols to achieve perfect
string stability with guaranteed safety measures. One aspect,
however, remained quite unexplored: the problem of assigning
cars to platoons. Based on the capabilities of individual cars
(e.g., max. acceleration or speed) and preferences of the driver
(e.g., min/max. traveling speed, preference on travel time vs.
fuel consumption), the assignment decision will be different. We
formulate an optimization problem and develop a set of protocols
(centralized and distributed) to support platoon formation. In
an extensive series of simulation experiments, we show that our
protocols not just help forming platoons, but also take care of
the individual requirements of cars and drivers.

I. INTRODUCTION

Road traffic has been growing constantly during the last
years. For example, passenger transport increased by 8 % from
2005 to 2015 in Europe and the individual car is still the major
transportation system with a share of more than 71 % (2015) [1]
in comparison to public transport. Having this many vehicles
on the road leads to issues like environmental pollution (due
to increased emissions) and congestion on the roads.

In order to cope with the continuously growing traffic
needs, the concept of platooning has been developed [2,
3]. In platooning, multiple vehicles form a road-train and
drive with a very small safety gap between each other to
increase the road utilization. This small gap can be maintained
by driving autonomously using Cooperative Adaptive Cruise
Control (CACC), which combines data from local sensors
(e.g., the distance to the previous vehicle measured by radar)
and information from other vehicles via Inter-Vehicle Com-
munication (IVC) [4]. Besides a better utilization of the road,
platooning also brings other benefits such as a reduced air
drag, thus, reducing the fuel consumption [5]. Furthermore,
smoother speed changes by the autonomous driving system lead
to improved traffic flows and increase the driving comfort [6].

The concept of platooning has been investigated in depth in
the literature and in field trials on the road. Well known projects
in the field are PATH [2] and SARTRE [7], both of which
demonstrated the technical feasibility of stable platooning on
the road – certainly limited to a few cars. Ongoing research
mainly focuses on maintaining existing platoons, improving
reliability of the necessary IVC protocols in order to achieve

perfect string stability with guaranteed safety measures [8–10].
Many studies either consider pre-configured platoons or just
do ad-hoc formation, i.e., a vehicle is joining the closest one in
front using Adaptive Cruise Control (ACC). Therefore, platoon
formation has either been artificial or only very basic, certainly
not being very realistic.

However, the typical situation on a freeway will be different.
Individual cars are entering a freeway and drive on their own
until they find an appropriate platoon (or another individual car)
to team up with in a platoon. Therefore, solving the challenge
of platoon formation or, more specifically, selecting candidate
vehicles, is the next important step towards platooning. Once
candidate vehicles are selected by some formation strategy, the
cars should perform maneuvers to join an existing or form a
new platoon [11, 12].

For platoon formation, a car has to start searching for
candidates either immediately when entering the freeway, or
at a later point in time. If there is a platoon, the car may
become part of it and the search is over; otherwise, a new
platoon has to be formed. In any case, a dynamic formation
process is necessary, consisting of, first, finding candidate
platoons/vehicles and, secondly, forming the platoon via a join
maneuver.

In this paper, we first study this problem analytically before
presenting both a centralized and a distributed approach
for platoon formation. The centralized approach uses global
knowledge about all cars in the scenario to make assignment
decisions, while running on a central entity in the network. In
the distributed approach, the algorithm is running on every car
in the scenario, therefore, having only limited local knowledge
about other cars. We compare both approaches for the same
strategy to study their respective advantages and weaknesses
in an extensive set of simulation experiments.

Our main contributions can be summarized as follows:
• We provide an in-depth study of platoon formation

challenges and analytically explore the problem,
• we develop both a centralized and a distributed strategy

and the respective communication protocols, and
• we perform an extensive performance evaluation of both

strategies and discuss the results.

II. RELATED WORK

Early platoon formation solutions can be grouped into several
classes. In one of the early papers, Hall and Chin [13] propose
offline formation strategies, which sort vehicles into platoons



at the entrance ramp of a highway. Vehicles are grouped
according to their destination and enter the highway in a
platoon formation when the group consists of enough vehicles.
Their main optimization goal is to maximize the platoon size
and the time a platoon stays intact. As a second criterion, the
destination is used to make sure that platoons can last as long as
possible. Following a similar line of thought, other approaches
also sort vehicles on the entrance ramp to minimize the total
trip time by optimal speed limits and entrance ramp release
times [14]. Other concepts looked into optimizing the total
fuel consumption for all transport assignments in the scenario,
while taking into account fuel savings due to platooning as
well as speed changes [15]. The complexity of such centralized
optimization has been shown to be NP hard [16].

In contrast to centralized platoon formation, there also have
been studies considering distributed approaches. In a very
early study, Khan and Bölöni [17] developed a system for ad-
hoc convoy formation on freeways. The system continuously
evaluates the cost and the possible benefit of forming a
platoon with other vehicles in proximity; if successful, it
indicates the decision to the driver using an LED to adjust
the ACC accordingly. More recently, Liang et al. [18] studied
fuel-efficient distributed ad-hoc platooning for Heavy Duty
Vehicles (HDVs) by analyzing the optimization problem of
pairwise coordination of vehicles. The proposed algorithm for
coordination lets the leading vehicle slow down and the trailing
vehicle speed up, in order to make the formation process fuel-
efficient and keep delivery constraints.

Larson et al. [19] deploy a distributed network of virtual
controllers at junctions in the road network. The controllers
monitor HDVs approaching these junctions, in order to form
platoons with other vehicles in proximity. Using information
such as speed, position, and the destination of a vehicle, the
controller calculates the cost of adjusting the speed to form a
platoon with another vehicle for all approaching HDVs and the
corresponding possible fuel savings by doing so. Simulation
on the German Autobahn road network showed that only minor
speed adjustments are necessary for a HDV to form a useful a
platoon with other vehicles.

The concept presented by Caballeros Morales et al. [20]
is closest to our solution. A distributed clustering algorithm
using IVC groups cars according to their destination, speed,
and position. The algorithm is executed by every car and forms
groups with other vehicles by minimizing their respective
deviation, in order to increase lifetime of clusters among
the mobility pattern of vehicles. Simulations show that their
algorithm performs well in terms of cluster lifetime, cluster-
head changes, and the number of cluster re-affiliations.

The aforementioned strategies for platoon formation show
that optimal groupings substantially improve the performance
gain. Unfortunately, the optimization objectives are quite
different, making a comparison becomes infeasible, so that a
detailed comparison of centralized and distributed solutions
is still missing in the literature. Furthermore, only limited
optimization parameters were chosen together with a restrictive
set of performance metrics. In this paper, we go one step

further and, besides formally describing the platoon formation
problem, we introduce both a centralized and a distributed
heuristic. We compare both solutions in detail using a wide
range of performance metrics.

III. PLATOON FORMATION

A. Problem Formulation

We are using the desired driving speed as a primary similarity
metric. However, since is it not useful to join a platoon far
away, we also consider the position of the cars as a secondary
optimization metric. In order to come up with a formation
strategy, we formalize the problem as follows: Let a car be
represented by the set

{id, des, pos} , (1)

where id is the identifier of the car, des is the desired speed
of the car, and pos is the current position of the car.

We can now consider platoon formation as the following
optimization problem:

∀i : minimize fi (x) , ∀x ∈ Ωi , (2)

where Ωi is the neighborhood of car i (i.e., all cars x, which
are in (close) proximity of car i) and

fi (x) = α · ds (x, i) + β · dp (x, i) , (3)

determines the cost for car i to join car x, in order to form a
platoon; with

ds (x, i) = ‖desi − desx‖ , (4)

dp (x, i) =

{
‖posi − posx‖ if posx > posi

∞ if posx ≤ posi
, (5)

α, β ∈ [0, 1], α+ β = 1 , (6)

and subject to the following constraints:

ds (x, i) ≤ p · desi, p ∈ [0, 1] , (7)
dp (x, i) ≤ r . (8)

In summary, we try to find the best fitting platoon candidate
x for each car i, maximizing their similarity. It is important
to mention that the definition from Equation (5) only allows
joining at the end of a vehicle or platoon.

As an example, consider the scenario depicted in Fig-
ure 1, where four cars are driving on an arbitrary road
with two lanes (e.g., a freeway) and now try to find a
platoon. The cars in the example are defined by their set

id = 37 id = 13

id = 20

id = 5

Figure 1. Example scenario: Four cars are driving on a road and try to find a
platoon



of properties, {5, 121 km/h, 430 m}, {13, 89 km/h, 270 m},
{20, 107 km/h, 250 m}, {37, 93 km/h, 70 m}, and parameters

α = 0.6, p = 0.4, r = 400 m.

By using these properties and parameters, the list of possible
platoon candidates and their corresponding cost fi (x) can be
calculated as

f13 (5) = 0.6 · 32 + 0.4 · 160 = 83.2

f20 (5) = 0.6 · 14 + 0.4 · 180 = 80.4

f20 (13) = 0.6 · 18 + 0.4 · 20 = 18.8

f37 (5) = 0.6 · 28 + 0.4 · 360 = 160.8

f37 (13) = 0.6 · 4 + 0.4 · 100 = 42.4

f37 (20) = 0.6 · 14 + 0.4 · 180 = 80.4 .

From the list of possible candidates and their corresponding
costs, the optimal solution minimizing the overall cost is

f37 (13) = 42.4

f20 (5) = 80.4 ,

as selecting a candidate pair blocks both involved cars, making
them unavailable for further selection.

Since a car can only be in one maneuver at the same time,
at most two maneuvers can be ongoing in parallel. After these
maneuvers are finished, the cars in the scenario will be grouped
into two platoons: {13, 37} and {5, 20}.

In order to solve this optimization problem, a mathematical
solver is necessary. However, due to computational and time
constraints, we use a heuristic to select feasible candidates
which follows a greedy approach: We calculate the cost fi (x)
for all cars in the neighborhood which do not violate the
constraints given by Equations (7) and (8) and add an entry
for them to a list of possible matches. Then, we select the
candidate x with the smallest cost (i.e., deviation in speed and
position) from this list and let the searching car i join this
selected candidate x.

If the join maneuver is successful, car i afterwards is part
of a platoon with car x (which was just formed or x was
already part of). Once cars become platoon members, they do
not leave the platoon until they reach their destination. In this
study, every car has the same destination. Therefore, the whole
platoon sticks together until this destination is reached.

B. Centralized Approach

In our centralized approach, the optimization problem is
solved for every car in the scenario at the same time. Since
the central server has global knowledge about all cars and
their corresponding information, it can use this information to
make decisions about platoon assignments. We assume that this
global knowledge is collected by means of an infrastructure
based network such as LTE.

We use the heuristic given in Algorithm 1 to create the
list of possible matches. An entry {idi, idx, fi (x)} in this list
contains cars i and x and the cost for letting car i join car x.

Algorithm 1 Centralized heuristic for finding candidate pairs

Input: meta info of all cars in the scenario
for all cars i in the scenario do

if i not in platoon and i not in maneuver then
for all cars x in the scenario with x 6= i do

if x in platoon and x not leader or x in maneuver
then

next;
if ds (x, i) > p · desi or dp (x, i) > r then

next;
add {i, x, fi (x)} to list of possible matches

Output: list of possible matches list ({i, x, fi (x)})

Algorithm 2 Centralized heuristic for best candidate selection

Input: list of possible matches list ({i, x, fi (x)})
for all unique cars i in the list of possible matches do
m← x ∈ list ({i, x, fi (x)});
if ‖m‖ > 0 then
b← {x|min fi (x) , x ∈ m} . Select best candidate x
remove all entries containing cars i and x
let i join b

Output: pairs of cars to perform join maneuver

Note that this is not symmetric as the cost from car i to x
might not be the same as from car x to i.

Once all possible matches and their costs are computed, we
use Algorithm 2 to select the best match for every searching
car i to let it join a candidate car x. In particular, we select
the match with the smallest deviation fi (x) and remove all
entries which contain cars i and x. This heuristic is greedy
from the perspective of a searching car i as it denies other
searching cars to join the same car x later in the process. Due
to its nested for-loop, the computational complexity of this
approach is O

(
n2
)
.

Re-considering the example from Figure 1, the centralized
heuristic selects the following matches out of all possible ones:

f13 (5) = 83.2

f37 (20) = 80.4

After selecting car 13 to join car 5, both cars 13 and 5
are blocked, thus, leaving no match for car 20. Car 37 also
cannot join car 13, hence the heuristic selects car 37 to join
car 20. Although this approach also produces two platoons
after successful finishing of the join maneuver, it does not
compute the aforementioned optimal solution. However, as we
will show in the evaluation, the heuristic performs quite well
for the global scenario.

C. Distributed Approach

In our distributed approach, every car i has to execute the
aforementioned greedy heuristic individually. In order to run
any kind of selection algorithm, cars first of all have to become
aware of other cars in their neighborhood. Therefore, all cars



Algorithm 3 Distributed heuristic for finding candidate pairs

Input: neighbor table storing the information of neighboring
cars x for a fixed car i
for all cars x in the neighbor table do

if ds (x, i) > p · desi or dp (x, i) > r then
next;

add {i, x, fi (x)} to list of possible matches;
Output: list of possible matches list ({i, x, fi (x)})

are transmitting their meta information via periodic beacons
using IVC protocols such as IEEE 802.11p and maintain this
data in a local neighbor table.

Using the entries in the neighbor table, the heuristic given
in Algorithm 3 is executed to prepare the list of possible
matches. Then, a heuristic very similar to Algorithm 2 is used
to select a candidate car x with the smallest cost to join. The
computational complexity of this approach is O (n).

Conceptually, the same matches as in the centralized ap-
proach are selected. However, the selection of possible matches
is limited to the restricted nature of the neighbor table and,
therefore, depends on the time the heuristic is evaluated. Also,
the quality of the heuristic now depends on the quality of
the neighbor information, which depends on the used beacon
protocol [21].

D. Model Implementation

We implemented all algorithms in the simulation tool
Plexe [22]. Plexe can simulate platoons, utilizing SUMO [23]
for simulation of road traffic and Veins [24] for simulation of
realistic wireless communication and thus provides all relevant
functionality for maintaining platoons.

We implemented the centralized approach in form of a
global module in the scenario, that directly accesses the
cars’ information (e.g., speed and position). Based on this
information, it runs the heuristics described by Algorithms 1
and 2 and computes join tasks, which are assigned to the
involved cars. The cars then start a join maneuver with their
corresponding platoon candidates. For the distributed approach,
the heuristics described by Algorithms 2 and 3 are implemented
in the application layer module of every car.

Cars send platoon advertisements via wireless beacons,
including information about themselves as well as the platoon
they are part of. This information is stored and maintained
in a 1-hop neighbor table, which is used by the heuristic.
Additionally, cars periodically broadcast their speed and
position in cooperative awareness messages, later used for
platoon maintenance. Due to the transmission range, cars
conceptually only have local knowledge about the scenario,
i.e., about cars in wireless transmission range.

After the heuristic selects a candidate, the car tries to join this
candidate by executing a join maneuver, using control messages
via wireless communication as well. This join maneuver is
performed by Plexe, which we extended to support dynamic
joining to arbitrary vehicles. We will release all implemented
modules and updates to Plexe as Open Source.

Table I
SIMULATION PARAMETERS FOR MOBILITY AND ROAD NETWORK

Parameter Value

Freeway length 30 km
Number of lanes 4
Spawn position of vehicles First entry ramp
Destination End of the freeway

Max acceleration 2.5 m/s2

Max deceleration 9.0 m/s2

Vehicle length 4 m
Car Following (CF) model ACC and CACC
Desired speed vd U (80, 130) km/h
Min speed vmin 0 km/h
Max speed vmax 140 km/h

Driver imperfection σ 0.5
Driver’s desired minimum headway τ 0.5 s
ACC headway T 1.2 s
CACC desired gap dd 5 m
CACC bandwidth ωn 0.2 Hz
CACC damping ratio ξ 1
CACC weighting factor C1 0.5

Arrival traffic B (1, 0.5)→ 2000 veh/h
SUMO update interval 0.1 s

ACC headway for approaching Tjoin
1
2
· T = 0.6 s

Response timeout 5 s
Lane Change (LC) timeout 20 s
Approach timeout 60 s
Maneuver timeout (leader) 20 s + 60 s + 5 s = 85 s
CACC switch threshold 1.5 · Tjoin · v

IV. EVALUATION

We evaluated and compared both the centralized and the
distributed algorithm in an extensive set of simulations using
Plexe. Additionally, we added a baseline scenario without
platoon formation. We picked several metrics, some of which
(e.g., travel time [13] and fuel consumption [19]) are also used
in other studies, to understand the impact of platoon formation
as such and to show the differences between the centralized
and the distributed algorithm. In general, we assume platoon
control as stable [25] and do not further investigate CACC
properties such as string stability.

A. Simulation Setup

We use a freeway scenario for our simulation as shown in
Figure 2. The freeway has a length of 30 km and contains four
lanes. It has additional entry and exit lanes connected to a road
with one lane, which is used as spawn point for vehicles. In
the simulation, cars only spawn at the first entry and drive to

Figure 2. Screenshot of the simulation scenario. The red car is approaching
the entrance ramp of the freeway while two other cars are performing a join
maneuver (the green car is joining the purple one).



Table II
SIMULATION CONTROL PARAMETERS AND VALUES FOR PARAMETER STUDY

Parameter Value

Simulation time 2700 s
Warm-up period 1350 s
Repetitions 10
Max. concurrent vehicles 500

deviation: Deviation from desired speed 0.1 to 0.3, step 0.1
range: Deviation in position 200 m to 1000 m, step 400 m
alpha: Weight of speed deviation 0.0 to 1.0, step 0.2

the end of the freeway (i.e., a trip of 30 km). The most relevant
mobility parameters are summarized in Table I.

As soon as a car reaches the entrance ramp and merges onto
the freeway, it starts advertising itself as a possible platoon
candidate and begins searching for existing platoons and other
cars to form a platoon with. Additionally, cars periodically
broadcast their speed and position in cooperative awareness
messages, later used for platoon maintenance. We use IEEE
802.11p for both the join maneuver and the neighborhood
management. After the heuristics described in Section III
selected a candidate, the car tries to join by executing the
join maneuver.

Table II lists simulation control parameters, we used for the
simulation. We ran our simulation for 2700 s, which is twice
the minimum time a car driving the slowest desired speed (i.e.,
80 km/h) needs to reach the end of the freeway. We use the first
half of this simulation time as a warm-up period and ignore all
results in this interval. Table II also lists the different values
we used for studying the tuning parameters of the heuristics.

B. Number of Platoon Candidates

The found candidates metric counts the number of possible
candidates for platoon formation as identified by the Algo-
rithms 1 and 3 for a single car. The higher the value, the more
similar cars are known to the respective algorithm and the more
cars can be used to identify the one with highest similarity
(i.e., lowest cost).

The average number of candidates found by the approaches
for every car is shown in Figure 3. As can be seen, in contrast
to our initial expectation, the centralized approach finds less
possible candidates per car than the distributed approach
(the median is only 0.8 in comparison to 1.8). Moreover,
when considering the 95th percentile where 2.7 candidates
in comparison to 4.7 were found.

To explain the contrary effect of a higher number of
candidates for the distributed approach, we have to look at
the cars which are filtered and therefore not considered as
candidates. Cars technically not violating the constraints of
the optimization problem defined by Equations (7) and (8)
are filtered, if they are already in a maneuver, thus, not being
applicable for another one. The distributed approach does not
have the corresponding knowledge and, thus, cannot filter
candidates in the aforementioned sense.

This shows that the centralized approach indeed finds
more platooning opportunities in general because from the
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Figure 3. eCDF showing the average number of candidates found by the
platoon formation strategy in each iteration per car
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Figure 4. eCDF showing the total number of attempted joins per car

perspective of a single car, it is aware of more (i.e., all) other
cars. Nevertheless, many of those candidates are filtered because
they are already involved in maneuver.

C. Join Maneuver

The number of attempted joins helps understanding the
success of the join maneuvers. Whenever a candidate is selected
by one of the heuristics, the searching car sends a message
to the candidate to request the start of the join maneuver.
Independent of the outcome of this message, that is whether
it is positive, negative, or no response at all is received, it is
counted as an attempted join maneuver.

Once a platoon assignment for a car is created (i.e., a
candidate to join has been selected), the car attempts a join
maneuver with the selected candidate by sending a join
request. Figure 4 shows the total number of such attempted
join maneuvers per car. It is evident that the effect of more
found candidates has a direct impact on the number of
attempted join maneuvers. Trying to join candidates which
are not applicable anymore because they are already in a
maneuver, leads to a much higher number of total attempted
join maneuvers per car in the distributed approach. Interestingly,
in both approaches almost 40 % of the cars never get a
single platooning opportunity and, thus, do not attempt a join
maneuver at all.

When looking at the high numbers of up to 500 (and more)
attempted join maneuvers per vehicle in the simulation, and
the fact that vehicles cannot change or leave a platoon, once
they become a member, it is clear that many maneuvers do not
succeed and are aborted. Most importantly, the join request
could be aborted, particularly because the car is already in
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Figure 6. eCDF showing a car’s platoon size when reaching its destination

a join maneuver with another car. Figure 5, therefore, shows
the average number of aborted join maneuvers per car and
different abort causes; causes other than being declined are
grouped in other. Aborted maneuvers occur in both approaches,
being caused by various reasons, such as missed timeouts and
communication failures. In the distributed approach, we see that
the majority of aborts is caused by declines of the join request
by the leading vehicle. This is because the distributed approach
always selects the candidate with the smallest cost, independent
from many times the join already failed, and retries to join
that candidate until the maneuver is completed successfully.

D. Platoon Size

We use the number of cars in a platoon to describe the
ratio of successful platoon formations. If a car does not find a
feasible platoon candidate and, therefore, is not able to become
a platoon member, it will not be in a platoon when reaching
the destination. Since a platoon stays intact once it has formed,
and it only can get more members over time, we consider
this value at the end of the scenario. The results are shown in
Figure 6.

As expected, the baseline shows that all cars arrive as
individuals. About 41 % in the centralized and 35 % in the
distributed approach, respectively, have not joined a platoon
at the end of the scenario. This is either due to not getting an
opportunity or due to not finishing the join process. In both
approaches it may take some time until cars are in a platoon.
The centralized approach leads to smaller platoons (on average,
2.14 cars per platoon), whereas the distributed solution tends
to form larger platoons (on average 2.47 cars per platoon).
This is due to the fact that the distributed algorithm does not
pick a different candidate if the best one is blocked. Therefore,
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Figure 7. eCDF showing the relative deviation from a car’s desired speed
when reaching the destination
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Figure 8. eCDF showing the absolute deviation from a car’s desired speed
when reaching its destination

multiple cars eventually join the same platoon, thus, leading
to longer platoons.

E. Deviation from Desired Speed

The main optimization goal in our strategy is the desired
speed, thus, the deviation from it is of particular interest. The
smaller the deviation from the desired speed, the better. The
results are shown in Figure 7.

The deviation of desired speed is a constraint for considering
cars as possible candidates, being simulated at discrete values
of 10, 20 and 30 %. Thus, the maximum is at 30 %. As more
cars are in a platoon in the distributed approach, more cars
deviate from their desired speed to form the corresponding
platoon (42 % in comparison to 37 % in the centralized case).

When considering the absolute deviation as well, as shown
in Figure 8, an additional effect can be seen. Not only do
more cars deviate and to a bigger extent in the distributed
approach, they also tend to deviate more negatively, hence,
decreasing their initial speed. On the 1st percentile, cars have
to decelerate by −9.2 km/h in the distributed and by −7.8 km/h
in the centralized approach, respectively. This is in contrast
to the 99th percentile, where cars have to accelerate only by
4.75 km/h and by 5.69 km/h, respectively. On average, cars have
to slow down by −0.6 km/h in the distributed case compared
to speeding up by 0.01 km/h in the centralized approach.

F. Travel Time

Looking at the travel time, the effects of the deviation from
the desired speed can be seen. When merging onto the freeway,
every car estimates the time it is going to travel to its destination,
assuming a constant speed at the desired value. Upon arrival,
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Figure 9. eCDF showing the ratio of expected to real travel time per a car. A
value smaller than 100 % means that the car reaches its destination faster than
expected, a value greater than 100 % means that the car is slower.
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Figure 10. eCDF showing the platoon time ratio per car

cars also record their real travel time, calculating the travel
time ratio. We use this metric to show the impact of platooning
on the travel time. Cars have to make compromises when they
want to do platooning with other vehicles. One of these is to
drive at a speed different to their desired one, thus, influencing
their travel time. In this study, the speed of a (new) platoon is
not calculated as a consensus between all members, but is the
speed of the platoon leader. Also, join maneuvers can have an
impact on the travel time.

As shown in Figure 9, the baseline is almost always at
100 % and only deviates to slower speeds due to traffic. When
platooning is enabled, speed deviations in both directions can
be observed. During the join process, the car can be faster than
its desired speed to close the gap to the platoon. During the
trip, the speed can divert from the desired speed both positively
as well as negatively. There is only a slight difference between
the centralized and the distributed platoon formation approach
visible. Due to the aforementioned calculation of a vehicle’s
new speed, vehicles in a platoon tend to be a bit slower than
the desired speed. On average, the distributed case shows a
deviation to 104.36 %, whereas the centralized approach leads
to a deviation to 102.61 %.

In order to understand these effects in more detail, we also
look at the platoon time ratio, i.e., the time a car spends in
a platoon over the total travel time. The results of this ratio
are shown in Figure 10. It is slightly larger for the distributed
approach. Here, platoons are longer and cars stay in the platoon
for a longer time, as they travel with slower speeds. On average,
28 % of the time is spent in a platoon in the distributed case
compared to 24 % in the centralized case.
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Figure 11. eCDF showing the total fuel consumption per car

G. Fuel Consumption

Since a major benefit of platooning is the reduced air drag
due to the small gap between cars, and, thus, a lower fuel
consumption, we consider this effect in our study as well. The
consumption depends on the speed and also on the distance
to a preceding car, since this has an influence on the air drag.
In order to simulate this effect, we added a model to Plexe to
calculate the fuel consumption dependent on the reduced air
drag due to the small gap.

Sovran [26] define a correlation between the change of the
fuel consumption g̃ and the change of the air drag CD by using
a factor η:

∆g̃

g̃
= η · ∆CD

CD
, where (9)

∆g̃ = g̃ − g̃platoon . (10)

In order to simplify Equation (9), we define δ = ∆CD

CD
, so

that the fuel consumption g̃platoon for a car in a platoon can be
modeled as

g̃platoon = (1− η · δ) · g̃ . (11)

Cappiello et al. [27] derive a model to calculate the fuel
consumption of a car from measurements and model fitting.
Thus, we define the normal fuel consumption for a car not in
a platoon g̃ as

g̃ = g̃Cappiello . (12)

We use the following values for δ from Bruneau et al. [28],
Table 5: δLead = 0.12, δMiddle = 0.27, and δLast = 0.23.

Using Equations (11) and (12), η = 0.46 [26], and the values
for δ, the fuel consumption of a car in a platoon g̃platoon can
be calculated as

g̃platoon = (1− ηSovran · δBruneau) · g̃Cappiello , (13)

where δLead is used for the leading car, δLast for the last car,
and δMiddle for every other car in the platoon.

The resulting fuel consumption is plotted in Figure 11. The
values plotted represent the total fuel consumption of cars
until reaching the destination. The absolute values might be
partially misleading as the model gives negative values when
the deceleration is too high; it assumes that values are capped
by different thresholds [29]. The qualitative effects, however,
are correct and we can thus study the relation of the two
platoon formation approaches.



As expected, platooning indeed helps saving fuel compared
to the baseline. However, the distributed solution outperforms
the centralized approach. Even though not the optimal platoons
may be formed, overall, there are more cars in platoons and for
a longer time. Also, the driving speed is slower in the distributed
approach. Both aspects help reducing the fuel consumption.

V. DISCUSSION AND CONCLUSION

In this paper, we investigated platoon formation as an
optimization problem from the perspective of cars searching to
join platoons. We developed both a centralized and a distributed
approach using greedy heuristics to solve this optimization
problem. We simulated both approaches and compared them
using several metrics for platooning.

Comparing both approaches presented, we see that the
centralized approach has more knowledge. It is aware of more
vehicles and, thus, more candidates. However, many vehicles
are filtered due to knowledge of their maneuver status. This
has the advantage of fewer aborted join maneuvers. On the
other hand, the shown data evidences that being greedy (i.e.,
trying to keep joining the same candidates) eventually pays off.
The distributed solution leads to longer platoons, as several
cars eventually join the same platoon.

Overall, both approaches need some time to find a platoon.
Here, the distributed solution is slightly worse. It leads to more
negative speed deviation and the deviation is larger in general
as platoons are longer and more cars need to adjust the speed
to the same leader. Fuel savings can be acknowledged for
platooning in general. Certainly, more time in a platoon also
leads to higher savings.

In future work, we will consider more sophisticated join
maneuvers and merging of platoons. Also, we need to consider
smarter approaches for the distributed solution compared to
the busy wait whenever a join failed.
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